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7.1 Introduction

In the last chapter we analyzed the motion of rigid bodies under-
going fixed axis rotation. In this chapter we shall attack the more
general problem of analyzing the motion of rigid bodies which can
rotate about any axis. Rather than emphasize the formal mathe-
matical details, we will try to gain insight into the basic principles.
We will discuss the important features of the motion of gyroscopes
and other devices which have large spin angular momentum, and
we will also look at a variety of other systems. Our analysis is
based on a very simple idea—that angular momentum is a vector.
Although this is obvious from the definition, somehow its signifi-
cance is often lost when one first encounters rigid body motion.
Understanding the vector nature of angular momentum leads to
a very simple and natural explanation for such a mysterious effect
as the precession of a gyroscope.

A second topic which we shall treat in this chapter is the con-
servation of angular momentum. We touched on this in the last
chapter but postponed any incisive discussion. Here the problem
is physical subtlety rather than mathematical complexity.

7.2 The Vector Nature of Angular Velocity and
Angular Momentum

In order to describe the rotational motion of a body we would like
to introduce suitable coordinates. Recall thatin the case of trans-
lational motion, our procedure was to choose some convenient
coordinate system and to denote the position of the body by a
vector r. The velocity and acceleration were then found by suc-
cessively differentiating r with respect to time.

Suppose that we try to introduce angular coordinates 4, 6,, and
6. about the z, y, and z axes, respectively. Can we specify the
angular orientation of the body by a vector?

0 L (6.4 + 6,i + 6.k

Unfortunately, this procedure can not be made to work; there is
no way to construct a vector to represent an angular orientation.

The reason that 6.i and 6,j cannot be vectors is that the order
in which we add them affects the final result: 6,1 + 6,§ = 6,j + 6.,
as we show explicitly in Example 7.1. For honest-to-goodness
vectors like 2f and yj, 2i + yj = yj + 2i. Vector addition is
commutative.
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Example 7.1 Rotations through Finite Angles

Consider a can of maple syrup oriented as shown, and let us investigate
what happens when we rotate it by an angle of 7/2 around the z axis, and
then by 7/2 around the y axis, and compare the result with executing
the same rotations but in reverse order.

0,i+0, 0,5 +0,i

The diagram speaks for itself:
0.0 + 6,5 = 6,j + 0.i.

Fortunately, all is not lost; although angular position cannot be
represented by a vector, it turns out that angular velocity, the
rate of change of angular position, is a perfectly good vector.
We can define angular velocity by

dé., do, . do, .

ﬁl-l-aj-f—ak

wid + w,J + w.K.

W =

It
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The important point is that although rotations through finite angles
do not commute, infinitesimal rotations do.commute, so that

o = lim (A8/At) represents a true vector. The reason for this
At—0

is discussed in Note 7.1 at the end of the chapter. Assuming
that angular velocity is indeed a vector, let us find how the velocity
of any particle in a rotating rigid body is related to the angular
velocity of the body.

Consider a rigid body rotating about some axis. We designate
the instantaneous direction of the axis by n and choose a coor-
dinate system with its origin on the axis. The coordinate system
is fixed in space and is inertial. As the body rotates, each of its
particles describes a circle about the axis of rotation. A vector
r from the origin to any particle tends to sweep out a cone. The
drawing shows the result of rotation through angle A¢ about the
axis along n. The angle ¢ between h and r is constant, and the
tip of r moves on a circle of radius r sin ¢.

The magnitude of the displacement |Ar| is

. . Af
|Ar| = 2r sin ¢ sin 7

For A6 very small, we have

sin a4 d
— ~ — an
2 2

If A6 occurs in time At, we have |Ar|/At =~ 7 sin ¢ (A6/At). In the
limit At — 0,

|Ar| = rsin ¢ A6.

. do
= rsin ¢>a-

r
dt
In the limit, dr/dt is tangential to the circle, as shown below.
Recalling the definition of vector cross product (Sec. 1.2e),

we see that the magnitude of dr/dt, |dr/dt| = r sin ¢ d6/dt, and
its direction, perpendicular to the plane of r and n, are given cor-
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rectly by dr/dt = n X r df/dt. Since dr/dt = v and n d8/dt = o,
we have

=V = r. 7-1
l X

Rotation in the zy Plane

To connect Eq. (7.1) with a more familiar case—rotation in the zy plane—
suppose that we evaluate v for the rotation of a particle about the 2 axis.
We have @ = wk, and r = zi + yj. Hence,

v=eXr
= wk X (21 + yj)
= w(zj — yi).

In plane polar coordinates z = r cos 6§, y = r sin 0, and therefore

v = wr(j cos 6§ — isin 6).

But j cos § — isin @ is a unit vector in the tangential direction 6. There-
fore,

v = wrd.

This is the velocity of a particle moving in a circle of radius r at angular
velocity w.

It is sometimes difficult to appreciate at first the vector nature
of angular velocity since we are used to visualizing rotation about
a fixed axis, which involves only one component of angular velocity.
We are generally much less familiar with simultaneous rotation
about several axes.

We have seen that we can treat angular velocity as a vector in
the relation v = o x r. It is important to assure ourselves that
this relation remains valid if we resolve » into components like
any other vector. In other words, if we write © = 01 + o2, is it
true thatv = (01 X ¥) + (02 X ¥)? As the followingexample shows,
the answer is yes.

Vector Nature of Angular Velocity

Consider a particle rotating in a vertical plane as shown in the sketch.
The angular velocity o lies in the zy plane and makes an angle of 45°
with the zy axes.

First we shall calculate v directly from the relation v = dr/dt. To find
r, note from the sketch at left that z = rcos 6, z = —rsin 0/\/2 and

Yy = rsin 0/\/5. Hence,

r r<—1 in 6 + ! in 0j + co 0R>
= —=S —= S S
V2 V2
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and differentiating, we have, since r = constant,

d_r
dt
= rli_—]lcos g —l—-i—:cos 0 — sin GR:’%f

V2 2

wr [—_—1_ cos 6i + L—COS 6 — sin OR], 1
V2

V2

where we have used df/dt = w.
Next we shall find the velocity from v = @ X r. Assuming that o can
be resolved into components,

Il

w w
o=—7Ii+—]
V2 A2
we have
i i k
w w 0
oxXr=| V2 2
—rsin® rsiné
_ r cos 0

V2 V2
r<_1 cos 6i + ! cos 0j sin OR)
= wr { —=cos ——cos 0] —
V2 V2

in agreement with Eq. (1).
As we expect, there is no problem in treating o like any other vector.

In the following example we shall see that a problem can be
greatly simplified by resolving o into components along convenient
axes. The example also demonstrates that angular momentum
is not necessarily parallel to angular velocity.

Angular Momentum of a Rotating Skew Rod

Consider a simple rigid body consisting of two particles of mass m sepa-
rated by a massless rod of length 2. The midpoint of the rod is attached
to a vertical axis which rotates at angular speed w. The rod is skewed
at angle «, as shown in the sketch. The problem is to find the angular
momentum of the system.

The most direct method is to calculate the angular momentum from
the definition L = Z(r; X p;). Each mass moves in a circle of radius
[ cos a with angular speed w. The momentum of each mass is |p| =
mwl cos «, tangential to the circular path. Taking the midpoint of the
skew rod as origin, |r| = I. rlies along the rod and is perpendicular to
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p. Hence |L| = 2mwl?cos a. Lis perpendicular tothe skew rod and lies
in the plane of the rod and the z axis, as shown in the left hand drawing,
below. L turns with the rod, and its tip tracesout a circle about the z axis.

L=(rxp),+

a (rxp), w=wk r\\a
/
S A

p, (into

(out of
paper)

We now turn to a method for calculating L which emphasizes the
vector nature of w. First we resolve @ = wk into components », and
w|, perpendicular and parallel to the skew rod. From the right hand
drawing, above, we see that w, = wcos @, and w| = w sin a.

Since the masses are point particles, o) produces no angular momen-
tum. Hence, the angular momentum is due entirely tow,. The angular
momentum is readily evaluated: the moment of inertia about the direc-
tion of w, is 2ml? and the magnitude of the angular momentum is

L =1Jw,
= 2mliw,
= 2ml*w cos a.

L points along the direction of ®,. Hence, L swings around with the rod;
the tip of L traces out a circle about the z axis. (We encountered a
similar situation in Example 6.2 with the conical pendulum.) Note that
L is not parallel to w. This is generally true for nonsymmetric bodies.

The dynamics of rigid body motion is governed by = = dL/dt.
Before we attempt to apply this relation to complicated systems,
let us gain some insight into its physical meaning by analyzing the
torque on the rotating skew rod.

Torque on the Rotating Skew Rod

In Example 7.4 we showed that the angular momentum of a uniformly
rotating skew rod is constant in magnitude but changes in direction.
L is fixed with respect to the rod and rotates in space with the rod.
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The torque on the rod is given by = = dL/dt. We can find dL/dt
quite easily by decomposing L as shown in the sketch. (We followed a
similar procedure in Example 6.6 for the conical pendulum.) The com-
ponent L, parallel to the z axis, L cos «, is constant. Hence, there is
no torque in the z direction. The horizontal component of L, L, =
L sin «, swings with the rod. If we choose zy axes so that L, coincides
with the z axis at { = 0, then at time ¢ we have

L, = Ljcos wt
= [ sin a cos wt
L, = Ly sin wt

= L sin a sin wt.
Hence,
L = L sin a(i cos wt + j sin wt) + L cos ak.
The torque is

dL
£ = —
dt

= Lw sin a(— wisin wt + j cos wt).
Using L = 2ml?w cos «, we obtain

7, = —2ml2w? sin a cos a sin wt
Ty = 2ml%w? sin @ cos a cos wt.
Hence,

T = \/7::2 + 7,2

2ml%w? sin o cos a

II

wL sin a.

Note that + = 0 for « = 0 or @ = w/2. Do you see why? Also, can
you see why the torque should be proportional to w??

This analysis may seem roundabout, since the torque can be calculated
directly by finding the force on each mass and using® = 2r; X f;,, How-
ever, the procedure used above is just as quick. Furthermore, it illus-
trates that angular velocity and angular momentum are real vectors
which can be resolved into components along any axes we choose.

Torque on the Rotating Skew Rod (Geometric Method)

In Example 7.5 we calculated the torque on the rotating skew rod by
resolving L into components and using © = dL/dt. We repeat the cal-
culation in this example using a geometric argument which emphasizes
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the connection between torque and the rate of change of L. This method
illustrates a point of view that will be helpful in analyzing gyroscopic
motion.

As in Example 7.5, we begin by resolving L into a vertical component
L, = L cos a and a horizontal component L, = L sin « as shown in the
sketch. Since L, is constant, there is no torque about the z axis. Lj is
constant in magnitude but is rotating with the rod. The time rate of
change of L is due solely to this effect.

Once again we are dealing with a rotating vector. From Sec. 1.8 or
Example 6.6, we know that dL,/dt = wL;. However, since itis so impor-
tant to be able to visualize this result, we derive it once more. From
the vector diagram we have

[AL;] = |L4|A8
dL
= = In de
dt dt
= Lhw.

The torque is given by
dL,
T = —
dt
= Lyw

= wl sin «,

which is identical to the result of the last example. The torque = is
parallel to AL in the limit. For the skew rod, = is in the tangential direc-
tion in the horizontal plane and rotates with the rod.

You may have thought that torque on a rotating system always
causes the speed of rotation to change. In this problem the speed of
rotation is constant, and the torque causes the direction of L to change.
The torque is produced by the forces on the rotating bearing of the skew
rod. For a real rod this would have to be an extended structure, some-
thing like a sleeve. The torque causes a time varying load on the sleeve
which results in vibration and wear. Since there is no way for a uniform
gravitational field to exert a torque on the skew rod, the rod is said to be
statically balanced. However, there is a torque on the skew rod when it
is rotating, which means that it is not dynamically balanced. Rotating
machinery must be designed for dynamical balance if it is to run smoothly.

7.3 The Gyroscope

We now turn to some aspects of gyroscope motion which can be
understood by using the basic concepts of angular momentum,
torque, and the time derivative of a vector. We shall discuss each
step carefully, since this is one area of physics where intuition may
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not be much help. Our treatment of the gyroscope in this section
is by no means complete. Instead of finding the general motion
of the gyroscope directly from the dynamical equations, we bypass
this complicated mathematical problem and concentrate on uni-
form precession, a particularly simple and familiar type of gyro-
scope motion. Our aim is to show that uniform precession is con-
sistent with = = dL/dt and Newton’s laws. While this approach
cannot be completely satisfying, it does illuminate the physical
principles involved.

The essentials of a gyroscope are a spinning flywheel and a sus-
pension which allows the axle to assume any orientation. The
familiar toy gyroscope shown in the drawing is quite adequate
for our discussion. The end of the axle rests on a pylon, allowing
the axis to take various orientations without constraint.

The right hand drawing above is a schematic representation of’
the gyroscope. The triangle represents the free pivot, and the
flywheel spins in the direction shown.

If the gyroscope is released horizontally with one end supported
by the pivot, it wobbles off horizontally and then settles down to
uniform precession, in which the axle slowly rotates about the ver-
tical with constant angular velocity 2. One’s immediate impulse
is to ask why the gyroscope does not fall. A possible answer is
suggested by the force diagram. The total vertical force is
N — W, where N is the vertical force exerted by the pivot and
W is the weight. -If N = W, the center of mass cannot fall.

This explanation, which is quite correct, is not satisfactory. We
have asked the wrong question. Instead of wondering why the
gyroscope does not fall, we should ask why it does not swing about
the pivot like a pendulum.

As a matter of fact, if the gyroscope is released with its flywheel
stationary, it behaves exactly like a pendulum; instead of preces-
sing horizontally, it swings vertically. The gyroscope precesses
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only if the flywheel is spinning rapidly. In this case, the large
spin angular momentum of the flywheel dominates the dynamics
of the system.

Nearly all of the gyroscope’s angular momentum lies in L;, the
spin angular momentum. L, is directed along the axle and has
magnitude L, = I.w;, where I, is the moment of inertia of the fly-
wheel about its axle. When the gyroscope precesses about the
z axis, it has a small orbital angular momentum in the z direction.
However, for uniform precession the orbital angular momentum
is constant in magnitude and direction and plays no dynamical
role. Consequently, we shall ignore it here.

L, always points along the axle. As the gyroscope precesses, L,
rotates with it. (Seefigure a below.) We have encountered rotat-
ing vectors many times, most recently in Example 7.6. If the angu-
lar velocity of precession is {, the rate of change of L; is given by

dL,
dat
The direction of dL,/dt is tangential to the horizontal circle swept

out by L,. At the instant shown in figure b, L, is in the z direc-
tion and dL,/dt is in the y direction.

= QL,.

L(t3)

N

::}:'“\ y RN

// \?\ L (1)) ‘ S~

/ "\ \\

/ /A\\\s\ \

/ RN \dL
/ /

Q 7/ \ Q \8 dr
I X \
i

> L (¢) —X
/ W s\l / Ls /'

(@) / (b)

There must be a torque on the gyroscope to account for the
change in L,. The source of the torque is apparent from the
force diagram at left. |f we take the pivot as the origin, the torque
is due to the weight of the flywheel acting at the end of the axle.
The magnitude of the torque is

=W,
< is in the y direction, parallel to dL,/dt, as we expect.
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We can find the rate of precession @ from the relation

dL,
E =T
Since |dL,/dt| = QL and = = [W, we have
QL, = IW.
or
w
Q= Toor 7.2

Alternatively, we could have analyzed the motion about the cen-
ter of mass. In this case the torque is 7o = NIl = WI as before,
since N = W.

Equation (7.2) indicates that @ increases as the flywheel slows.
This effect is easy to see with a toy gyroscope. Obviously € can-
not increase indefinitely; eventually uniform precession gives way
to a violent and erratic motion. This occurs when © becomes so
large that we cannot neglect small changes in the angular momen-
tum about the vertical axis due to frictional torque. However, as
is shown in Note 7.2, uniform precession represents an exact solu-
tion to the dynamical equations governing the gyroscope.

Although we have assumed that the axle of the gyroscope is
horizontal, the rate of uniform precession is independent of the
angle of elevation, as the following example shows.

Gyroscope Precession

Consider a gyroscope in uniform precession with its axle at angle ¢ with
the vertical. The component of L, in the 2y plane varies as the gyro-
scope precesses, while the component parallel to the z axis remains
constant.

The horizontal component of L, is Ly sin ¢. Hence

|[dLs/dt| = QL sin ¢.

The torque due to gravity is horizontal and has magnitude

r=1lsin ¢ W.
We have
QL sin ¢ = lsin ¢ W
W
Iows

The precessional velocity is independent of ¢.
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Our treatment shows that gyroscope precession is completely
consistent with the dynamical equation = = dL/d{. The following
example gives a more physical explanation of why a gyroscope
precesses.

Why a Gyroscope Precesses

Gyroscope precession is hard to understand because angular momentum
is much less familiar to us than particle motion. However, the rotational
dynamics of a simple rigid body can be understood directly in terms of
Newton’s laws. Rather than address ourselves specifically to the gyro-
scope, let us consider a rigid body consisting of two particles of mass m
at either end of a rigid massless rod of length 2[. Suppose that the rod
is rotating in free space with its angular momentum L, along the z direc-
tion. The speed of each mass is vo. We shall show that an applied
torque = causes L, to precess with angular velocity @ = +/L,.

To simplify matters, suppose that the torque is applied only during a
short time At while the rod is instantaneously oriented along the z axis.
We assume that the torque is due to two equal and opposite forces F,
as shown. (The total force is zero, and the center of mass remains at
rest.) The momentum of each mass changes by

Ap = m Av = FA¢.

Since Av is perpendicular to vy, the velocity of each mass changes
direction, as shown at left below, and the rod rotates about a new
direction.

The axis of rotation tilts by the angle

A¢>%ﬁ)
Vo

The torque on the system is r = 2Fl, and the angular momentum is
L¢ = 2muel. Hence

_F At
"~ moe
_2F At
B 2lmu,

Ad
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The rate of precession while the torque is acting is therefore

_A¢
At

Q

r
= —

L,

which is identical to the result for gyroscope precession. Also, the
change in the angular momentum, AL,, is in the y direction parallel to
the torque, as required.

This model gives some insight into why a torque causes a tilt in the
axis of rotation of a spinning body. Although the argument can be elab-
orated to apply to an extended body like a gyroscope, the final result is
equivalent to using ¢ = dL/dt.

The discussion in this section applies to uniform precession, a
very special case of gyroscope motion. We assumed at the begin-
ning of our analysis that the gyroscope was executing this motion,
but there are many other ways a gyroscope can move. For
instance, if the free end of the axle is held at rest and suddenly
released, the precessional velocity is instantaneously zero and the
center of mass starts to fall. It is fascinating to see how this fall-
ing motion turns into uniform precession. We do this in Note 7.2
at the end of the chapter by a straightforward application of
t = dL/dt. However, the treatment requires the general rela-
tion between L and « developed in Sec. 7.6.

7.4 Some Applications of Gyroscope Motion

In this section we present a few examples which show the appli-
cation of angular momentum to rigid body motion.

Precession of the Equinoxes

To a first approximation there are no torques on the earth and its angu-
lar momentum does not change in time. To this approximation, the
earth's rotational speed is constant and its angular momentum always
points in the same direction in space.

If we analyze the earth-sun system with more care, we find that there
is a small torque on the earth. This causes the spin axis to slowly alter
its direction, resulting in the phenomenon known as precession of the
equinoxes.

The torque arises because of the interaction of the sun and moon
with the nonspherical shape of the earth. The earth bulges slightly; its
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mean equatorial radius is 21 km greater than the polar radius. The
gravitational force of the sun gives rise to a torque because the earth’s
axis of rotation is inclined with respect to the plane of the ecliptic (the
orbital plane). During the winter, the part of the bulge above the ecliptic,
A in the top sketch, is nearer the sun than the lower part B. The mass
at A is therefore attracted more strongly by the sun than is the mass
at B, as shown in the sketch. This results in a counterclockwise torque
on the earth, out of the plane of the sketch. Six months later, when the
earth is on the other side of the sun, B is attracted more strongly than
A. However, the torque has the same direction in space as before.
Midway between these extremes, the torque is zero. The average torque
is perpendicular to the spin angular momentum and lies in the plane
of the ecliptic. In a similar fashion, the moon exerts an average torque
on the earth; this torque is about twice as great as that due to the sun.

The torque causes the spin axis to precess about a normal to the
ecliptic. As the spin axis precesses, the torque remains perpendicular
to it; the system acts like the gyroscope with tilted axis that we analyzed
in Example 7.7.

The period of the precession is 26,000 years. 13,000 years from now,
the polar axis will not point toward Polaris, the present north star; it
will point 2 X 234° = 47° away. Orion and Sirius, those familiar winter
guides, will then shine in the midsummer sky.

The spring equinox occurs at the instant the sun is directly over the
equator in its apparent passage from south to north. Due to the pre-
cession of the earth's axis, the position of the sun at the equinox against
the background of fixed stars shifts by 50 seconds of arc each year.
This precession of the equinoxes was known to the ancients. It figures
in the astrological scheme of cyclic history, which distinguishes twelve
ages named by the constellation in which the sun lies at spring equinox.
The present age is Pisces, and in 600 years it will be Aquarius.

The Gyrocompass Effect

Try the following experiment with a toy gyroscope. Tie strings to the
frame of the gyroscope at points A and B on opposite sides midway
between the bearings of the spin axis. Hold the strings taut at arm’s
length with the spin axis horizontal. Now slowly pivot so that the spin-
ning gyroscope moves in a circle with arm length radius. The gyroscope
suddenly flips and comes to rest with its spin axis vertical, parallel to
your axis of rotation. Rotation in the opposite direction causes the gyro
to flip by 180°, making its spin axis again parallel to the rotation axis.
(The spin axis tends to oscillate about the vertical, but friction in the
horizontal axle quickly damps this motion.)

The gyrocompass is based on this effect. A flywheel free to rotate
about two perpendicular axes tends to orient its spin axis parallel to the
axis of rotation of the system. In the case of a gyrocompass, the ‘‘sys-
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tem'’ is the earth; the compass comes to rest with its axis parallel to the
polar axis.

We can understand the motion qualitatively by simple vector argu-
ments. Assume that the axle is horizontal with L; pointing along the
z axis. Suppose that we attempt to turn the compass about the z
axis. If we apply the forces shown, there is a torque along the z axis,
72, and the angular momentum along the z axis, L., starts to increase.
If L, were zero, L, would be due entirely to rotation of the gyrocompass
about the z axis: L, = I,w,, where I, is the moment of inertia about the
2 axis. However, when the flywheel is spinning, another way for L, to
change is for the gyrocompass to rotate around the AB axis, swinging
L, toward the z direction. Our experiment shows that if L; is large, most
of the torque goes into reorienting the spin angular momentum; only a
small fraction goes toward rotating the gyrocompass about the z axis.

We can see why the effect is so pronounced by considering angular
momentum along the y axis. The pivots at A and B allow the system
to swing freely about the y axis, so there can be no torque along the y
axis. Since L, is initially zero, it must remain zero. As the gyrocompass
starts to rotate about the z axis, L; acquires a component in the y direc-
tion. At the same time, the gyrocompass and its frame begin to flip
rapidly about the y axis. The angular momentum arising from this
motion cancels the y component of L,. When L; finally comes to rest
parallel to the z axis, the motion of the frame no longer changes the
direction of L;, and the spin axis remains stationary.

The earth is a rotating system, and a gyrocompass on the surface of
the earth will line up with the polar axis, indicating true north. A practical
gyrocompass is somewhat more complicated, however, since it must con-
tinue to indicate true north without responding to the motion of the ship
or aircraft which it is guiding. In the next example we solve the dynam-
ical equation for the gyrocompass and show how a gyrocompass fixed
to the earth indicates true north.

Gyrocompass Motion

Consider a gyrocompass consisting of a balanced spinning disk held in
a light frame supported by a horizontal axle. The assembly is on a
turntable rotating at steady angular velocity 2. The gyro has spin angu-
lar momentum L, = I,w, along the spin axis. In addition, it possesses
angular momentum due to its bodily rotation about the vertical axis at
rate {2, and by virtue of rotation about the horizontal axle.

There cannot be any torque along the horizontal A B axis because that
axle is pivoted. Hence, the angular momentum L; along the A B direc-
tion is constant, and dL,/dt = 0.

There are two contributions to dL,/dt. If 0 is the angle from the ver-
tical to the spin axis, and I is the moment of inertia about the A B axis,

then L, = I.6, and there is a contribution to dL/dt of I0.
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In addition, L can change because of a change in direction of L,, as
we have learned from analyzing the precessing gyroscope. The hori-
zontal component of L, is L, sin 6, and its rate of increase along the AB
axis is QL; sin 0.

We have considered the two changes in L; independently. It is plau-
sible that the total change in L; is the sum of the two changes; a rigorous
justification can be given based on arguments presented in Sec. 7.7.

Adding the two contributions to dL;/dt gives
dLy

o 1,6+ QL,sin 6.
dt 10+ f2Lsin

Since dL;/dt = 0, the equation of motion becomes

b+ (Lsﬂ) sin § = 0.
I,

This is identical to the equation for a pendulum discussed in Sec. 6.6.
When the spin axis is near the vertical, sin § = 6 and the gyro executes
simple harmonic motion in 6:

0 = 0, sin Bt
where

L
8=

I,

_ \/wsﬂls.
I

If there is a small amount of friction in the bearings at A and B, the ampli-
tude of oscillation 6, will eventually become zero, and the spin axis comes
to rest parallel to €.

To use the gyro as a compass, fix it to the earth with the AB axle ver-
tical, and the frame free to turn. As the drawing on the next page
shows, if A is the latitude of the gyro, the component of the earth’s
angular velocity 2, perpendicular to the AB axle is the horizontal com-
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ponent £, cos \. The spin axis oscillates in the horizontal plane about
the direction of the north pole, and eventually comes to rest pointing
north.

Q psink

The period of small oscillationsis T' = 27/B = 2w NV I /(I s cos \).
For a thin disk I, /I, = 4. ., = 27 rad/day. With a gyro rotating at
20,000 rpm, the period at the equator is 11 s. Near the north pole the
period becomes so long that the gyrocompass is not effective.

The Stability of Rotating Objects

Angular momentum can make a freely moving object remarkably stable.
For instance, spin angular momentum keeps a childs’ rolling hoop upright
even when it hits a bump; instead of falling, the hoop changes direction
slightly and continues to roll. The effect of spin on a bullet provides
another example. The spiral grooves, or rifling, in a gun’s barrel give
the bullet spin, which helps to stabilize it.

To analyze the effect of spin, consider a cylinder moving parallel to
its axis. Suppose that a small perturbing force F' acts on the cylinder for
time At. Fis perpendicular to the axis, and the point of application is a
distance [ from the center of mass.

We consider first the case where the cylinder has zero spin. The
torque along the axis A A through the center of mass is + = F[, and the
“angular impulse” is 7 At = Fl Af. The angular momentum acquired
around the AA axis is

ALA = IA(w - wo) = FlAl
Since wy, the initial angular velocity, is 0, the final angular velocity is
given by
_Fl At
14

w
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The effect of the blow is to give the cylinder angular velocity around the
transverse axis; it starts to tumble.

Now consider the same situation, except that the cylinder is rapidly
spinning with angular momentum L,. The situation is similar to that of
the gyroscope: torque along the AA axis causes precession around the
BB axis. The rate of precession while I acts is dL;/dt = AL, or

_
L,

Q

The angle through which the cylinder precesses is

6= QA
_ FlLAC
Ls

Instead of starting to tumble, the cylinder slightly changes its orientation
while the force is applied, and then stops precessing. The larger the
spin, the smaller the angle and the less the effect of perturbations on
the flight.

Note that spin has no effect on the center of mass motion. In both
cases, the center of mass acquires velocity Av = F At/M.

7.5 Conservation of Angular Momentum

Before tackling the general problem of rigid body motion, let us
return to the question of whether or not the angular momentum
of an isolated system is conserved. To start, we shall show that
conservation of angular momentum does not follow from Newton’s
laws.

Consider a system of N particles with masses my, mq, . . . ,
mj, . . ., my. We assume that the system is isolated, so that
the forces are due entirely to interactions between the particles.
Let the force on particle j be

N
fi= k§=:1 Fie

where f;; is the force on particle j due to particle k. (In evalu-
ating the sum, we can neglect the term with k = 7, since f;; = 0,
by Newton’'s third law.)

Let us choose an origin and calculate the torque =; on particle j.

T =t Xf
=1r X Ek:f,‘k.
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Let z;; be the torque on j due to the particle :
i = r; X fa

Similarly, the torque on [ due to j is

;= 1 X fi;.

The sum of these two torques is

o+ oty =1 X fip 4+ X f

Since f; = —fi;, we have

i+ i = (1 X fi;)) — (r; X i)
=(rnh— ) xfy
= t; X fi,

where t;; is a vector from jto l. We would like to be able to prove
that «; + =; = 0, since it would follow that the internal torques
cancel in pairs, just as the internal forces do. The total internal
torque would then be zero, proving that the angular momentum
of an isolated system is conserved.

Since neither r;; nor fy, is zero, in order for the torque to vanish,
f;; must be parallel to r;, as shown in figure (a). With respect
to the situation in figure (b), however, the torque is not zero, and
angular momentum is not conserved. Nevertheless, the forces
are equal and opposite, and linear momentum is conserved.

The situation shown in figure (a) corresponds to the case of
central torces, and we conclude that the conservation of angular
momentum follows from Newton’s laws in the case of central
force motion. However, Newton’s laws do not explicitly require
forces to be central. We must conclude that Newton’s laws have
no direct bearing on whether or not the angular momentum of an
isolated system is conserved, since these laws do not in themselves
exclude the situation shown in figure (b).

It is possible to take exception to the argument above on the
following grounds: although Newton’s laws do not explicitly require
forces to be central, they implicitly make this requirement because
in their simplest form Newton’s laws deal with particles. Par-
ticles are idealized masses which have no size and no structure.
In this case, the force between isolated particles must be central,
since the only vector defined in a two particle system is the vector
ri from one particle to the other. For instance, suppose that we
try to invent a force which lies at angle 6 with respect to the inter-
particle axis, as shown in the diagram. There is no way to dis-
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tinguish direction a from b, however; both are at angle 6 with
respect to r;. An angle-dependent force cannot be defined using
only the single vector r,; the force between the two particles must
be central.

The difficulty in discussing angular momentum in the context
of newtonian ideas is that our understanding of nature now encom-
passes entities vastly different from simple particles. As an
example, perhaps the electron comes closest to the newtonian
idea of a particle. The electron has a well-defined mass and, as
far as present knowledge goes, zero radius. In spite of this, the
electron has something analogous to internal structure; it pos-
sesses spin angular momentum. It is paradoxical that an object
with zero size should have angular momentum, but we must
accept this paradox as one of the facts of nature.

Because the spin of an electron defines an additional direction
in space, the force between two electrons need not be central.
As an example, there might be a force

Fi2 = Cris X (S1 4 Sy)
Fa1 Cra X (S1 4+ Sv),

It

where C is some constant and S; is a vector parallel to the angular
momentum of the 7th electron. The forces are equal and oppo-
site but not central, and they produce a torque.

There are other possibilities for noncentral forces. Experi-
mentally, the force between two charged particles moving with
respect to each other is not central; the velocity provides a second
axis on which the force depends. The angular momentum of the
two particles actually changes. The apparent breakdown of con-
servation of angular momentum is due to neglect of an important
part of the system, the electromagnetic field. Although the con-
cept of a field is alien to particle mechanics, it turns out that
fields have mechanical properties. They can possess energy,
momentum, and angular momentum. When the angular momen-
tum of the field is taken into account, the angular momentum of
the entire particle-field system is conserved.

The situation, in brief, is that newtonian physics is incapable
of predicting conservation of angular momentum, but no isolated
system has yet been encountered experimentally for which angu-
lar momentum is not conserved. We conclude that conservation
of angular momentum is an independent physical law, and until
a contradiction is observed, our physical understanding must be
guided by it.
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7.6 Angular Momentum of a Rotating Rigid Body
Angular Momentum and the Tensor of Inertia

The governing equation for rigid body, motion, ¢ = dL/dt, bears
a formal resemblance to the translational equation of motion
F = dP/di. However, there is an essential difference between
them. Linear momentum and center of mass motion are simply
related by P = MV, but the connection between L and ® is not
so direct. For fixed axis rotation, L = Iw, and it is tempting to
suppose that the general relation is L = [, where I is a scalar,
that is, a simple number. However, this cannot be correct, since
we know from our study of the rotating skew rod, Example 7.4, that
L and o are not necessarily parallel.

In this section, we shall develop the general relation between
angular momentum and angular velocity, and in the next section
we shall attack the problem of solving the equations of motion.

As we discussed in Chap. 6, an arbitrary displacement of a
rigid body can be resolved into a displacement of the center of
mass plus a rotation about some instantaneous axis through the
center of mass. The translational motion is easily treated. We
start from the general expressions for the angular momentum
and torque of a rigid body, Egs. (6.11) and (6.14):

Il

L = R X MV + 2r} x m;f; 7.3
= =RxF+ 2, xf, 7.4

where r;- is the position vector of m; relative to the center of mass.
Since = = dL/dt, we have

d d o ,
R x F + Zr, xfj=(—l—t(RxMV)+-CE(2rijjr})

d
R x MA + u (Cr; x myi)).
Since F = MA, the terms involving R cancel, and we are left with
’ d ’ =/ 5
Zr; X f; = 7 (Cr; X mytj). 7.

The rotational motion can be found by taking torque and angular
momentum about the center of mass, independent of the center
of mass motion. The angular momentum L, about the center
of mass is

Lo = 2r; X m;}. 7.6
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Our task is to express L, in terms of the instantaneous angular
velocity w. Since r; is a rotating vector,

w/ ’
r,=oXf.

Therefore,
Lo = 2r; X mye X t}).
To simplify the notation, we shall write L for L, and r; for r§. Our
result becomes
L = Erj X m]‘((:) X l‘j). 7.7
This result looks complicated. As a matter of fact, it is com-
plicated, but we can make it look simple. We will take the pedes-
trian approach of patiently evaluating the cross products in Eq.
(7.7) using cartesian coordinates.!
Since © = wid + w,j + .k, we have
0 Xt = (20, — yw)i + (2w, — 20,)] + (Yo, — Tw,)kK. 7.8
Let us compute one component of L, say L,. Temporarily drop-
ping the subscript j, we have
[r X (@ X Nz = ylo X 1), — 2(0 X 1), 7.9
If we substitute the results of Eq. (7.8) into Eq. (7.9), the result is

[r X (0 X Nl: = Ylyw: — 2wy) — 2(Tw, — 2ws)
= (y?* + 2w, — TYw, — T2W,. 7.10
Hence,
L, = Zmy* + 2w, — ZMzyiwy — ZMXRjw,. 7.11
Let us introduce the following symbols:

I, = Zmy(y;® + 2%
I, = —Zm;a;y; 7.12
In = ——Zm,-szj.

I, is called a moment of inertia. It is identical to the moment of
inertia introduced in the last chapter, I = Zm;p,;%, provided that
we take the axis in the x direction so that p;? = y;2 + 2;2. The
quantities I, and I,, are called products of inertia. They are
symmetrical; for example, I,, = —2Zm;x;y; = —ZMyx; = Lys.
To find L, and L,, we could repeat the derivation. However,
a simpler method is to relabel the coordinates by letting x — v,

! Another way is to use the vector identity AX (B X C)=(A-C)B —(A-B)C.
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y— 2, z— z. |If we make these substitutions in Egs. (7.11) and
(7.12), we obtain

L, = I,w, + [0, + I, 7.13a
L, = I,ow, + Iy, + I, 7.13b
L, = L.w, + Ly, + L. 7.13¢

This array of three equations is different from anything we have
so far encountered. They include the results of the last chapter.
For fixed axis rotation about the z direction, » = wk and Eq.
(7.13c¢) reduces to

L, = I.w
Zmyz® + yPo.

However, Eq. (7.13) also shows that angular velocity in the z direc-
tion can produce angular momentum about any of the three coor-
dinate axes. For example, if o = wk, then L, = I,.» and
L, = I,». Infact, if we look at the set of equations for L., L,, and
L., we see thatin each case the angular momentum about one axis
depends on the angular velocity about all three axes. Both L and
» are ordinary vectors, and L is proportional to o in the sense
that doubling the components of w doubles the components of L.
However, as we have already seen from the behavior of the rota-
ting skew rod, Example 7.4, L does not necessarily pointin the
same direction as w.

Rotating Dumbbell

Consider a dumbbell made of two spheres of radius & and mass M
separated by a thin rod. The distance between centers is 2l. The body
is rotating about some axis through its center of mass. At a certain
instant the rod coincides with the z axis, and o lies in the yz plane, ® =
wyj + w.k. What is L?

To find L, we need the moments and products of inertia. Fortunately,
the products of inertia vanish for a symmetrical body lined up with the
coordinate axes. For example, I,, = —2Zm;xy; = 0, since for mass
m, located at (z,.,%.) there is, in a symmetrical body, an equal mass
located at (z,, —¥a.); the contributions of these two masses to I, cancel.
In this case Eq. (7.13) simplifies to

L, = I,
Ly = Iywy
L, = ...
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The moment of inertia I, is just the moment of inertia of two spheres
about their diameters.

I.. = 2(2Mb2) = £11b2.

In calculating I,,, we can use the parallel axis theorem to find the moment
of inertia of each sphere about the y axis.

I

I,, = 2(22b2 + M)

= £21b2 + 2M12.

We have assumed that the rod has negligible mass.
Since ® = w,j + w.k,

L,=0
Ly = Ty,wy
L, = I,w,.

I,y and I., are not equal; therefore L,/L, # w,/w, and L is not parallel
to w, as the drawing shows.

Equations (7.13) are cumbersome, so that it is more convenient
to write them in the following shorthand notation.

L = lo. 7.14

This vector equation represents three equations, just as F = ma
represents three equations. The difference is that m is a simple
scalar while Tis a more complicated mathematical entity called a
tensor. 1 is the tensor of inertia.

We are accustomed to displaying the components of some
vector A in the form

A = (4.,4,4).).

Similarly, the nine components of T can be tabulated in a 3 X 3
array:

Izz Izy Izz
i=(1. I, I.) 7.15
sz Izy Izz

Of the nine components, only six at most are different, since
I, = Iy, I,,'= I, and I,, = [,,. The rule for multiplying » by
I to find L = lo is defined by Eq. (7.13).

The following example illustrates the tensor of inertia.
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The Tensor of Inertia for a Rotating Skew Rod

We found the angular momentum of a rotating skew rod from first
principles in Example 7.3. Let us now find L for the same device by
using L = fo.

A massless rod of length 2/ separates two equal masses m. The rod
is skewed at angle a with the vertical, and rotates around the z axis
with angular velocity w. Att = 0itliesin the zz plane. The coordinates
of the particles at any other time are:

Particle 1 Particle 2

x; = pcos wi Ty = —p cos wi
Y1 = psin wt Y = —psinwt
2y = ‘—h R = h,

when p = lcos @ and A = [sin a.

The components of | can now be calculated from their definitions.
For instance,

I.. = mi@? + 21%) + ma(y.® + 25%)
2m(p? sin? wt + A?)

Iy, =1,
= —MiY121 — MY2R2
= 2mph sin wt.
The remaining terms are readily evaluated. We find:
psin?wt + h*?  —p?sin wtcos wt ph cos wit
I =2m| —p?sinwtcoswt p?cos?wt+ A2  ph sin wt ).
ph cos wt ph sin wt p?

The common factor 2m multiplies each term.
Since ® = (0,0,w), we have, from Eq. (7.13),

L, = 2mphw cos wt

Ly, = 2mphw sin wt

L, = 2mpw.

We can differentiate L to find the applied torque:

7x = —2mphw? sin wt
Ty = 2mphw? cos wt

7, = 0.

The results are identical to those in Example 7.4, provided that we
make the substitution ph = % cos a sin a.
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Principal Axes

If the symmetry axes of a uniform symmetric body coincide with
the coordinate axes, the products of inertia are zero, as we saw
in Example 7.13. In this case the tensor of inertia takes a simple
diagonal form:

I. 0 0
i={o 1, 0} 7.16
0 0 I

Remarkably enough, for a body of any shape and mass distribu-
tion, it is always possible to find a set of three orthogonal axes
such that the products of inertia vanish. (The proof uses matrix
algebra and is given in most texts on advanced dynamics.) Such
axes are called principal axes. The tensor of inertia with respect
to principal axes has a diagonal form.

For a uniform sphere, any perpendicular axes through the
center are principal axes. For a body with cylindrical symmetry,
the axis of revolution is a principal axis. The other two principal
axes are mutually perpendicular and lie in a plane through the
center of mass perpendicular to the axis of revolution.

Consider a rotating rigid body, and suppose that we introduce
a coordinate system 1, 2, 3 which coincides instantaneously with
the principal axes of the body. With respect to this coordinate
system, the instantaneous angular velocity has components wy,
ws, w3, and the components of L have the simple form

L1 = Ilw1
L2 = Ing 7.17
L3 = 13(1331

where I, I,, I; are the moments of inertia about the principal
axes. In Sec. 7.7, we shall exploit Eq. (7.17) in our attack on the
problem of rigid body dynamics.

Rotational Kinetic Energy

The kinetic energy of a rigid body is

K = 3Zmp;*

To separate the translational and rotational contributions, we

introduce center of mass coordinates:

ri=R+r
v, =V 4 v
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We have

K = Zm(V + v))?
= iMV? + Zmp)?
since the cross term V - Zmyv; is zero.
Using v; = X I}, the kinetic energy of rotation becomes
Krot = ‘%;E’I’)’LJ'V;2
= $Zmi(o X r;-) (0 X r;).
The right hand side can be simplified with the vector identity
(AxB):C=A-(BxC). LetA=0, B=rt,andC=o0xTt,.
We obtain
Koy = 3Zmjw + [r]l X (0 X I‘;)]
= 1o+ Imit; X (o X ).
The sum in the last term is the angular momentum L by Eq. (7.7).
Therefore,
Koy = 30 L. 7.18

Rotational kinetic energy has a simple form when L and o are
referred to principal axes. Using Egs. (7.17) and (7.18) we have

Krot = %‘9 - L
= 311012 + 3Low2? + 315052 7.19

Alternatively,

Kov=5r + 50+ 57 7.20

Why Flying Saucers Make Better Spacecraft than Do Flying Cigars

One of the early space satellites was cylindrical in shape and was put
into orbit spinning around its long axis. To the designer's surprise, even
though the spacecraft was torque-free, it began to wobble more and
more, until finally it was spinning around a transverse axis.

The reason is that although L is strictly conserved for torque-free
motion, kinetic energy of rotation can change if the body is not absolutely
rigid. If the satellite is rotating slightly off the symmetry axis, each part
of the body undergoes a time varying centripetal acceleration. The
spacecraft warps and bends under the time varying force, and energy is
dissipated by internal friction in the structure. The kinetic energy of
rotation must therefore decrease. From Eq. (7.20), if the body is rotating
about a single principal axis, K., = L?/2I. K, is a minimum for the
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axis with greatest moment of inertia, and the motion is stable around that
axis. For the cylindrical spacecraft, the initial axis of rotation had the
minimum moment of inertia, and the motion was not stable.

A thin disk spinning about its cylindrical axis is inherently stable
because the other two moments of inertia are only half as large. A
cigar-shaped craft is unstable about its long axis and only neutrally stable
about the transverse axes; there is no single axis of maximum moment
of inertia.

Rotation about a Fixed Point

We showed at the beginning of this section that in analyzing the
motion of a rotating and translating rigid body it is always correct
to calculate torque and angular momentum about the center of
mass. In some applications, however, one point of a body is
fixed in space, like the pivot point of a gyroscope on a pylon. It
is often convenient to analyze the motion using the fixed point as
origin, since the center of mass motion need not be considered
explicitly, and the constraint force at the pivot produces no
torque.

Taking the origin at the fixed point, let r; be the position vector
of particle m; and let R = Xi 4+ Yj + Zk be the position vector
of the center of mass. The torque about the origin is

= 2r; X f,

where f; is the force on m;. If the angular velocity of the body
is », the angular momentum about the origin is

L= EI']' X m]'l"J
= 2r; X mio X ;).

This has the same form as Eq. (7.6), which we evaluated earlier
in this section. Taking over the results wholesale, we have

L = io

where

Lex = Zmi(y;® + 27%)
Iy = —Zmzsy;
etc.

Although this result is identical in form to Eq. (7.13), the com-
ponents of 1 are now calculated with respect to the pivot point
rather than the center of mass.
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Once the tensor of inertia about the center of mass, I, is
known, 1 about any other origin can be found from a generaliza-
tion of the parallel axis theorem of Example 6.9. Typical results,
the proof of which we leave as a problem, are

I:vx = (Io)xx + M(YZ + Z2)
L, = (I)sy — MXY
etc. 7.21

Consider, for example, a sphere of mass M and radius b cen-
tered on the z axis a distance ! from the origin. We have
I, = 2Mb® + M2, I, = 2Mb% + M I,, = 2Mb2.

7.7 Advanced Topics in the Dynamics of Rigid Body Rotation
Introduction

In this section we shall attack the general problem of rigid body
rotation. However, none of the results will be needed in subse-
quent chapters, and the section can be skipped without loss of
continuity.

The fundamental problem of rigid body dynamics is to find the
orientation of a rotating body as a function of time, given the
torque. The problem is difficult because of the complicated
relation L = lw between angular momentum and angular velocity.
We can make the problem look simpler by taking our coordinate
system coincident with the principal axes of the body. With
respect to principal axes, the tensor of inertia 1 is diagonal in
form, and the components of L are

LI = Izzwz
Ly, = I,y
L, = I,w,.

However, the crux of the problem is that the principal axes are
fixed to the body, whereas we need the components of L with
respect to axes having a fixed orientation in space. As the body
rotates, its principal axes move out of coincidence with the space-
fixed system. The products of inertia are no longer zero in the
space-fixed system and, worse yet, the components of 1 vary with
time.

The situation appears hopelessly tangled, but if the principal
axes do not stray far from the space-fixed system, we can find
the motion using simple vector arguments. Leaving the general



SEC. 7.7 ADVANCED TOPICS IN DYNAMICS OF RIGID BODY ROTATION 317

case for later, we illustrate this approach by finding the torque-
free motion of a rigid body.

Torque-free Precession: Why the Earth Wobbles

If you drop a spinning quarter with a slight flip, it will fall with a
wobbling motion; the symmetry axis tends to rotate in space, as
the sketch shows. Since there are no torques, the motion is
known as torque-free precession.

Torque-free precession is a characteristic mode of rigid body
motion. For example, the spin axis of the earth moves around
the polar axis because of this effect. The physical explanation
of the wobbling motion is related to our observation that L need
not be parallel to o. If there are no torques on the body, L is
fixed in space, and © must move, as will be shown.

To avoid mathematical complexity, consider the special case of
a cylindrically symmetric rigid body like a coin or an air suspension
gyroscope. We shall assume that the precessional motion is
small in amplitude, in order to apply small angle approximations.

Suppose that the body has a large spin angular momentum
L = I, along the main symmetry axis, where I is the moment
of inertia and w, is the angular velocity about the symmetry axis.
Let the body have small angular velocities about the other trans-

verse axes.

z

____C_y

Suppose that L; is always close to the z axis and makes angles
0, < 1land 6, < 1 with the z and y axes. Note 7.1 on infinitesimal
rotations shows that to first order, rotations about each axis can
be considered separately. The contribution to L, from rotation
about the z axisis L, = d([..0,)/dt = I, d8,/dt. We have treated
I.. as a constant. The justification is that moments of inertia
about principal axes are constant to first order for small angular
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displacements. (The proof is left as a problem.) Rotation about
y also contributes to L, by giving L, a component L, sin 6, in the
x direction. Adding the two contributions, we have

d. .
L, = I o + L, sin 6,.

Similarly,

ae,
L, =1, d—t” — L, sin 0,.

By symmetry, I, = I,, = I,. For small angles, sin § = 6 and
cos 6 = 1, to first order. Hence

de,
L,=1,——2+ L, 7.22a
dt
do
L =1, —d?” — L. 7.22b

To the same order of approximation,
L, = L
= [,ws. 7.23

Since the torque is zero, dL/dt = 0. Equation (7.23) then gives
L, = constant, w, = constant, and Eqgs. (7.22) yield

IL%+LS%=U 7.24a

I, Cilzf; — L, dgf = 0. 7.24b
If we let w, = d6,/dt, v, = db,/dt, Eqs. (7.24) become

I, %‘:’ + Lyw, =0 7.25a

I, C—l;; — Lyw, = 0. 7.25b

If we differentiate Eq. (7.25a) and substitute the value for dw,/dt
in Eq. (7.25b), we obtain

+ Lyw, =0



SEC. 7.7 ADVANCED TOPICS IN DYNAMICS OF RIGID BODY ROTATION 319

or
d?w,
di?

+ v, = 0, 7.26
where

—_ Ls
Y= I_L

_, L

= w, 7.

Equation (7.26) is the familiar equation for simple harmonic motion.
The solution is

we = A sin (vt + @), 7.27

where 4 and ¢ are arbitrary constants. Substituting this in Eq.
(7.25a) gives

_ L
T T L dt
1,
= Avycos (vt + ¢),
Iw,
or
wy, = A cos (vt + ¢). 7.28

By integrating Eqgs. (7.27) and (7.28) we obtain

A
0, = ;cos (vt + ¢) + 620

Y|
0, = — —sin (vt + ¢) + 0,0, 7.29
Y

where 6., and 6,, are constants of integration. The first terms
of Eq. (7.29) reveal that the axis rotates around a fixed direc-
tion in space. If we take that direction along the z axis, then
0.0 = 0,0 = 0. Assuming thatat¢ =0 6, = 6, 6, = 0, we have

6, = 0ycos vt
6y = 6o sin vt 7.30
where we have taken A/y = 6y, ¢ = 0.

Equation (7.30) describes torque-free precession. The fre-

quency of the precessional motion is v = w,I;/I,. For a body
flattened along the axis of symmetry, such as the oblate spheroid
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shown, I, > I, and v > w,. For a thin coin, I, = 2I, and
v = 2ws;. Thus, the falling quarter described earlier wobbles
twice as fast as it spins.

The earth is an oblate spheroid and exhibits torque-free pre-
cession. The amplitude of the motion is small; the spin axis
wanders about the polar axis by about 5 m at the North Pole.
Since the earth itself is spinning, the apparent rate of precession
to an earthbound observer is

’

Y =Y T Ws

I, — I,
= w; | ——m ) 7.31
‘”( I, )

For the earth, (I, — I,)/I, = =3, and the precessional motion
should have a period of 300 days. However, the motion is quite
irregular with an apparent period of about 430 days. The fluctua-
tions arise from the elastic nature of the earth, which is significant
for motions this small.

Note 7.2 on the nutating gyroscope illustrates another applica-
tion of the small angle approximation that we have used.

Euler’s Equations

We turn now to the task of deriving the exact equations of motion
for a rigid body. In order to find dL/d¢, we shall calculate the
change in the components of L in the time interval from ¢ to
t + Atf, using the small angle approximation. The results are
correct only to first order, but they become exact when we take
the limit At — 0.

Let us introduce an inertial coordinate system which coincides
with the instantaneous position of the body’s principal axes at
time {. We label the axes of the inertial system 1, 2, 3. Let the
components of the angular velocity » at time ¢ relative to the 1, 2,
3 system be w;, ws, w;. At the same instant, the components of
L are L1 = I1w1, Lz = Ing, L3 = 13w3, where I1, Iz, 13 are the
moments of inertia about the three principal axes.

In the time interval At, the principal axes rotate away from the
1, 2, 3 axes. To first order, the rotation angle about the 1 axis is
Af; = w; At; similarly, Af; = w; A, Af; = w3 At. The correspond-
ing change AL, = Ly(t + Af) — Li(t) can be found to first order
by treating the three rotations one by one, according to Note 7.1
on infinitesimal rotations. There are two ways L, can change.
If wy varies, I w; will change. In addition, rotations about the
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other two axes cause L, and L; to change direction, and this can
contribute to angular momentum along the first axis.

The first contribution to AL, is from A(J1w;1). Since the moments
of inertia are constant to the first order for small angular displace-
ments about the principal axes, A(1w1) = 11 Aw;.

To find the remaining contributions to AL, consider first rota-
tion about the 2 axis through angle Af;. This causes L; and L;
to rotate as shown. The rotation of L, causes no change along
the 1 axis to first order. However, the rotation of L; contributes
L; A, = [;w3 Af; along the 1 axis. Similarly, rotation about the
3 axis contributes — L, Af; = —Iywy Af; to AL;.

Adding all the contributions gives
AL] = Il Aw1 + Iswa A02 —_ Igwg A03
Dividing by At and taking the limit At — 0 yields
dditl = Il% + s — [Z)wswz-

The other components can be treated in a similar fashion, or we
can simply relabel the subscripts by 1—2, 2— 3, 3— 1. We
find

dL d
7: = Iz%"‘ Iy — I3)wiws
dL; d
dt =13%—|—(12—11)w2w1.

Since ¢ = dL/dt,

d
T1 = Ilditl “f‘(Ia - Iz)wswz

d
7'2=I2di;+(]1—[3)w1w3 7.32

d
T3 = Ia% + (Iz - Il)wzwh

where 71, 74, 73 are the components of = along the axes of the
inertial system 1, 2, 3. These equations were derived by Euler
in the middle of the eighteenth century and are known as Euler’s
equations of rigid body motion.

Euler's equations are tricky to apply; thus, it is important to
understand what they mean. At some time ¢{ we set up the 1,
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2, 3 inertial system to coincide with the instantaneous directions
of the body’s principal axes. 71, 75, 73 are the components of
torque along the 1, 2, 3 axes at time ¢. Similarly, w;, ws, w3 are
the components of » along the 1, 2, 3 axes at time ¢, and dw;/dt,
dwy/dt, dws/dt are the instantaneous rates of change of these
components. Euler's equations relate these quantities at time
t. To apply Euler's equations at another time ¢/, we have to
resolve ¢ and o along the axes of a new inertial system 1/, 2/, 3/
which coincides with the principal axes at ¢'.

The difficulty is that Euler’s equations do not show us how to
find the orientation of these coordinate systems in space. Essen-
tially, we have traded one problem for another; in the familiar
x, Y, 2 laboratory coordinate system, we know the disposition of
the axes, but the components of the tensor of inertia vary in an
unknown way. In the 1, 2, 3 system, the components of 1 are
constant, but we do not know the orientation of the axes. Euler’s
equations cannot be integrated directly to give angles specifying
the orientation of the body relative to the z, y, z laboratory sys-
tem. Euler overcame this difficulty by expressing wi, ws, w3 in
terms of a set of angles relating the principal axes to the axes of
the z, y, 2z laboratory system.

In terms of these angles, Euler’s equations are a set of coupled
differential equations. The general equations are fairly compli-
cated and are discussed in advanced texts. Fortunately, in many
important applications we can find the motion from Euler’'s equa-
tions by using straightforward geometrical arguments. Here are
a few examples.

Stability of Rotational Motion

In principle, a pencil can be balanced on its point. In practice, the pencil
falls almost immediately. Although a perfectly balanced pencil is in equi-
librium, the equilibrium is not stable. If the pencil starts to tip because
of some small perturbing force, the gravitational torque causes it to tip
even further; the system continues to move away from equilibrium. A
system is stable if displacement from equilibrium gives rise to forces
which drive it back toward equilibrium. Similarly, a moving system is
stable if it responds to a perturbing force by altering its motion only
slightly. In contrast, an unstable system can have its motion drastically
changed by a small perturbing force, possibly leading to catastrophic
failure.

A rotating rigid body can exhibit either stable or unstable motion
depending on the axis of rotation. The motion is stable for rotation
about the axes of maximum or minimum moment of inertia but unstable
for rotation about the axis with intermediate moment of inertia. The
effect is easy to show: wrap a book with a rubber band and let it fall spin-
ning about each of its principal axes in turn. [ is maximum about axis
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a and minimum about axis ¢; the motion is stable if the book is spun
about either of these axes. However, if the book is spun about axis b,
it tends to flop over as it spins, generally landing on its broad side.

To explain this behavior, we turn to Euler’'s equations. Suppose that
the body is initially spinning with w; = constant and w, = 0, w3 = 0, and
that immediately after a short perturbation, w, and w; are different from
zero but very small compared with w;. Once the perturbation ends, the
motion is torque-free and Euler's equations are:

d

I 22 (I — Ty = 0 1
dt
d

I2ﬂ+(11—13)w1w3=0 2
dt
d

13%‘1‘(12—]1)@@2:0- 3

Since w; and w; are very small at first, we can initially neglect the
second term in Eq. (1). Therefore I, dw,/dt = 0, and w,; is constant.

If we differentiate Eq. (2) and substitute the value of dw;/dt from Eq.
(3), we have

d?w, (11—[3)(12—[1)w

I - 2wy =0

2 e I, 1"We
or
d2w2

EtT + Awg =0 4
where
A = (= I — [3)0)12.

1,13

If I, is the largest or the smallest moment of inertia, A > 0 and Eq. (4)
is the equation for simple harmonic motion. w; oscillates at frequency
\/A with bounded amplitude. Itis easy to show that w; also undergoes
simple harmonic motion. Since w, and w; are bounded, the motion is
stable. (It corresponds to the torque-free precession we calculated
earlier.)

If I, is the intermediate moment of inertia, A < 0. In this case w; and
w3 tend to increase exponentially with time, and the motion is unstable.

The Rotating Rod

Consider a uniform rod mounted on a horizontal frictionless axle through
its center. The axle is carried on a turntable revolving with constant
angular velocity €, with the center of the rod over the axis of the turn-
table. Let 0 be the angle shown in the sketch. The problem is to find
0 as a function of time.
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To apply Euler’'s equations, let principal axis 1 of the rod be along the
axle, principal axis 2 be along the length of the rod, and principal axis 3
be in the vertical plane perpendicular to the rod. w; = 6, and by resolv-
ing Q along the 2 and 3 directions we find w, = Qsin 6, w; = £ cos 6.

=

Since there is no torque about the 1 axis, the first of Euler’'s equations
gives

I0+ s — I)Q2sinfcosf =0

or
20 + (u> Q2 sin 260
I,

(We have used sin 6 cos § = % sin 26.)
Since I3 > I,, this is the equation for pendulum motion in the variable
26. For oscillations near the horizontal, sin 20 =~ 26 and Eq. (1) becomes

6+ <ﬂ> 26 = 0.
I

The motion is simple harmonic with angular frequency V (I3 — I,)/I, Q.

I
I
—

Euler’s Equations and Torque-free Precession

We discussed the torque-free motion of a cylindrically symmetric body
earlier using the small angle approximation. In this example we shall
obtain an exact solution by using Euler’'s equations.

Let the axis of cylindrical symmetry be principal axis 1 with moment of
inertia ;. The other two principal axes are perpendicular to the 1 axis,
and [, = I; = I,. From the first of Euler's equations

71 = I(dw,/dt) + (Is — I2)waws,
we have

do

0=Il )
dt

which gives

w; = constant = w;.
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Principal axes 2 and 3 revolve at the constant angular velocity w; about
the 1 axis.
The remaining Euler's equations are

d

0=I_Lﬂ—f—(ll—ll)wsw3 1
dt
d

0=1, % + (I — Iwws. 2

Differentiating the first equation and using the second to eliminate dw;/dt
gives

d*w, + I‘——IJ- Zwszwg = 0.
dt? I,

The angular velocity component w, executes simple harmonic motion with

angular frequency

I, -1,
I,

T =

Ws-

Thus, w; is given by w; = w, cos I't where the amplitude w, is deter-
mined by initial conditions. Then, if I, > I, Eq. (1) gives
1 dwg

Wy = — = —

T dt

w, sin I't.

As the drawing shows, w; and w; are the components of a vector »; which
rotates in the 2-3 plane at rate I'. Thus, an observer fixed to the
body would see o rotate relative to the body about the 1 axis at angular
frequency I'. Since the 1, 2, 3 axes are fixed to the body and the body
is rotating about the 1 axis at rate w,, the rotational speed of @ to an
observer fixed in space is

'+ w, = I—l Ws.

I,

Euler's equations have told us how the angular velocity moves relative
to the body, but we have yet to find the actual motion of the body in
space. Here we must use our ingenuity. We know the motion of ®
relative to the body, and we also know that for torque-free motion, L is
constant. As we shall show, this is enough to find the actual motion of
the body.

The diagram at the top of the next page shows ® and L at some
instant of time. Since L cos a = [,w,, and ws; and L are constant, «
must be constant as well. Hence, the relative position of all the vectors
in the diagram never changes. The only possible motion is for the
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diagram to rotate about L with some ‘‘precessional’’ angular velocity §2,.
(Bear in mind that the diagram is moving relative to the body; Q, is
greater than ws.)

The remaining problem is to find ,. We have shown that  precesses
about @, in space at rate I' + w,. To relate this to Q,, resolve &, into
a vector A along w, and a vector B perpendicular to w;. The magnitudes
are A = Q,cos a, B = Q,sin a. The rotation A turns o about w,, but
the rotation B does not. Hence the rate at which @ precesses about w;
is 2, cos a. Equating this to I" + ws,

Q,cosa =T + w,

I
|
£

or

The precessional angular velocity €, represents the rate at which the
symmetry axis rotates about the fixed direction L. It is the frequency
of wobble we observe when we flip a spinning coin. Earlier in this sec-
tion we found that the rate at which the symmetry axis rotates about a
space-fixed direction is [,w;/I in the small angle approximation. The
result agrees with Q, in the limit « — 0.

Finite and Infinitesimal Rotations

In this note we shall demonstrate that finite rotations do not commute,
but that infinitesimal rotations do. By an infinitesimal rotation we mean
one for which all powers of the rotation angle beyond the first can be
neglected.

Consider rotation of an object through angle « about an axis n, followed
by a rotation through B about axis fAg. It is not possible to specify the
orientation of the body by a vector because if the rotations are performed
in opposite order, we do not obtain the same final orientation. To show
this, we shall consider the effect of successive rotations on a vector r.
Let ry be the result of rotating r through o about fi,, and r.g be the result
of rotating r, through 3 about ﬁﬂ. We shall show that

Fap = rga-

However, we shall find that for o <1, 8 K1, rog = rg, to first order, and
there is therefore no ambiguity in the orientation angle vector for infini-
tesimal rotations.

Consider the effect of successive rotation on a vector initially along the
x axis, r = ri, first through angle a about the z axis and then through
angle B about the y axis. Although this is a special case, it illustrates the
important features of a general proof.
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z First rotation: through angle «a about z axis.

r =i

r, = rcos ai 4+ rsin aj,

since |ro| = |r| = 7.

Second rotation: through angle 3 about y axis.

The component 7 sin aj is unchanged by this rotation.

rep = 7c0s a (cos Bi — sin BK) + 7 sin of

r cos a cos Bi + 7 sin o — r cos « sin Bk 1

Il

To find rg,, we go through the same argument in reverse order. The
result is
rge = 7 COS a cos Bi + rcos B sin aj — 7 sin Bk. 2

From Egs. (1) and (2), rqp and rg, differ in the y and z components. Sup-
pose that we represent the angles by Aa and AR, as in the lower two
drawings, and take Aa<K1, AB < 1. If we neglect all terms of second
order and higher, so that sin A@ = A#f, cos Af = 1, Eq. (1) becomes

rog = i + r Aaj — r AGk. 3

Equation (3) becomes
rse = i + 7 Aaj — r ABk. 4

Hence r,g = rg, to first order for small rotations, and the vector

A0 = ABj + Ak
is well defined. In particular, the displacement of r is
Ar = rgpa — Fnitial
=reg — 7l
=7rAaj —r ABk = A0 X r.
If the displacement occurs in time A¢, the velocity is
dr
V = —
z dt
. A Xr
lim
at—0 At

=oXr,
where

= .
. P ® = lim —0

AB at—0 At
x rap In our example, @ = (dB/dt)j + (dee/dt)k.
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Our results in Eq. (3) or (4) indicate that the effect of infinitesimal rota-
tions can be found by considering the rotations independently one at a
time. To first order, the effect of rotating r = ri through A« about 2
is to generate a y component r Aaj. The effect of rotating r through
AB about y is to generate a z component, —r ABk. The total change in
r to first order is the sum of the two effects,

Ar = r Aaj — r ABK,

in agreement with Eqg. (3) or (4).

More about Gyroscopes

In Sec. 7.3 we used simple vector arguments to discuss the uniform
precession of a gyroscope. However, uniform precession is not the
most general form of gyroscope motion. For instance, a gyroscope
released with its axle at rest horizontally does not instantaneously start
to precess. Instead, the center of mass begins to fall. The falling
motion is rapidly converted to an undulatory motion called nutation. If
the undulations are damped out by friction in the bearings, the gyroscope
eventually settles into uniform precession. The purpose of this note is
to show how nutation occurs, using a small angle approximation. (The
same method is used in Sec. 7.7 to explain torque-free precession.)

Consider a gyroscope consisting of a flywheel on a shaft of length [
whose other end is attached to a universal pivot. The flywheel is set
spinning rapidly and the axle is released from the horizontal. What
is the motion?

Since it is natural to consider the motion in terms of rotation about
the fixed pivot point, we introduce a coordinate system with its origin at
the pivot.

x \y

Assume for the moment that the gyroscope is not spinning but that
the axle is rotating about the pivot. In order to calculate the angular
momentum about the origin, we shall need a generalization of the parallel
axis theorem of Example 6.9. Consider the angular momentum due to
rotation of the axle about the z axis at rate w,. If the moment of inertia
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of the disk around a vertical axis through the center of mass is I, then
the moment of inertia about the z axis through the pivot is I,, + M2
The proof of this is straightforward, and we leave it as a problem. If
we let I, + MI* = I,, then L, = w,I,. By symmetry, the moment of
inertia about the z axis is [, + M[* = I,, so that L, = w,[,.

The results above are exact when the gyroscope lies along the y axis,
as in the drawing, and they are true to first order in angle for small

angles of tilt around the y axis.
z

z
Ao,
W/ Ls
0y \
02 == ¥y

(a) )

Now suppose that the flywheel is set spinning at rate w,. If the
moment of inertia along the axle is I, then the spin angular momentum
is Ly = I ws.

There are two kinds of contributions to the angular momentum asso-
ciated with small angular displacements from the y axis. From rotation
of the system as a whole with angular velocity w, we have angular momen-
tum contributions of the form [,w. In addition, as the gyroscope moves
away from the y axis, components of L; can be generated in the z and z
directions. For small angular displacements 8, such components will be
of the form L,6.

For small angular displacements, 0,<< 1 about the = axis and 6,<<1
about the z axis, the rotations can be considered independently and their
effects added.

a. Rotation about the x Axis (fig. a)

Suppose that the axle has rotated about the x axis through angle 6, << 1,
and has instantaneous angular velocity w,. Then

L, = Iw,

L, = Lscos 0, = L, 1
L, = Lysin 0, = L,0,.

b. Rotation about the z Axis (fig. b)

For a rotation by 0,<< 1 about the z axis, a similar argument gives
L,= —Lssin 0, = —L0,

L, = Lscos 0, = L, 2
L, = I ,w..
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Equations (1) and (2) show that the rotations 0, and 6, leave /., unchanged
to first order. However, the rotations give rise to first order contributions
to L., and L.,. From Egs. (1) and (2) we find

L,, = [pw_z - Lsez

L, = L

],,w;_. + LSGI. 3

>~
R
Il

The instantaneous torque about the origin is
. = —IW, 4

where [ is the length of the axle and 1I" is the weight of the gyro. Since
© = dL/dt, Egs. (3) and (4) give

I, — Liw, = —1I’ 5a
Li=0 5h
I,w, + Lw, =0, 5¢

where we have used 6, = w,, §, = w..
Equation (5b) assures us that the spin is constant, as we expect for a
flywheel with good bearings. If we differentiate Eq. (5a), we obtain

1o, — Liyos = 0.

Substituting the result w, = — L.w,/I, from Eq. (5¢) gives
. L2

we + I—p—; w, = 0.

Ifwelety = L,/[, = w,I,/I,, this becomes

@z + Yiw, = 0.

We have the familiar equation for simple harmonic motion. The solu-
tion is
w, = A cos (vt + ¢), 6

where A and ¢ are arbitrary constants.
We can use Eqg. (5a) to find w.:

W I, .
L M
Substituting the result w, = —.l7vy sin (yt + ¢) from Eq. (6) gives
w, = l]lt - %’::17 sin (vt + ¢)

=ZIIJ—V—;lsin('yt+¢). 7

s
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We can integrate Egs. (6) and (7) to obtain

0. = Bsin(yt + ¢) + C 8a
1214
02=7t+Bcos(’yt+¢)+D, 8b

where B = 4 /v, and C, D are constants of integration.

The motion of the gyroscope depends on the constants B, ¢, C, and
D in Eqg. (8), and these depend on the initial conditions. We consider
three separate cases.

CASE 1. UNIFORM PRECESSION
If we take B =0, and C = D = 0, Eq. (8) gives

0. =0
¢

W — 9
L

s

6.

This corresponds to the case of uniform precession we treated in Sec.
7.3. The rate of precession is df./dt = IW /L, as in Eq. (7.2). |f the
gyroscope is moving in uniform precession at { = 0, it will continue to
do so.

CASE 2. TORQUE-FREE PRECESSION
If we “turn off’ gravity so that 1V is zero, then Eq. (8) gives, with
C=D-=0,

6. = Bsin (vt + ¢) 10
6. = Bcos (vt + o).

Il

The tip of the axle moves in a circle about the y axis. The amplitude
of the motion depends on the initial conditions. This is identical to the
torque-free precession discussed in Sec. 7.7.

CASE 3. NUTATION

Suppose that the axle is released from rest along the y axis at { =
The initial conditions at ¢ = 0 on the & motion are (6,)o = (d6./dt)o = 0.
From Eq. (8a) we obtain

|
o

Bsing +C =0
Bycos ¢ =0.

Assuming for the moment that B is not zero, we have ¢ = 7/2,C = —B.
Equation (8b) then becomes

w
02=Z—l-—Bsin'yt+D.
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From the initial conditions on the z motion, (6.)o = (df./dt)o = 0, we
obtain

D=0
mw
—B — =0
v+ I
or
17
B = W
vLs
Inserting these results in Eq. (8) gives
0. = l?/ (cos vyt — 1)
w i
0, = — (yt — sin yi).
L. (v nyt)

The motion described by Eq. (11) is illustrated in the sketch. As time
increases, the tip of the axle traces out a cycloidal path. The dipping
motion of the axle is called nutation. The motion is easy to see with a
well-made gyroscope. .wte that the initial motion of the axle is vertically
down; the gyro starts to fall when it is released. Eventually the nutation
dies out due to friction in the pivot, and the motion turns into uniform
precession, as shown in the second sketch. The axle is left with a slight
dip after the nutation is damped; this keeps the total angular momentum
about the z axis zero. The rotational energy of precession comes from
the fall of the center of mass. Other nutational motions are also possible,
depending on the initial conditions; the lower two sketches show two
possible cases. These can all be described by Eq. (8) by suitable choices
of the constants.

We made the approximation that §,<< 1, §,<< 1, but because of pre-
cession, 0, increases linearly with time, so that the approximation inevit-
ably breaks down. This is not a problem if we examine the motion for
one period of nutation. The nutational motion repeats itself whenever
vyt = 2. The period of the nutation is T = 2w /v. If 0, is small during
one period, then we can mentally start the problem over at the end of
the period with a new coordinate system having its y axis again along the
direction of the axle. The restriction on 0, is then that Q7' < 1, or

27r—Q<< 1.
Y

Our solution breaks down if the rate of precession becomes comparable
to the rate of nutation. More vividly, we require the gyroscope to nutate
many times as it precesses through a full turn.

In a toy gyroscope, friction is so large that it is practically impossible
to observe nutation. However, in the air suspension gyroscope, friction
is so small that nutation is easy to observe. The rotor of this gyroscope
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is a massive metal sphere which rests in a close fitting cup. The sphere
is suspended on a film of air which flows from an orifice at the bottom of
the cup. Torque is applied by the weight of a small mass on a rod pro-
truding radially from the sphere. The pictures below are photographs
of a stroboscopic light source reflected from a small bead on the end of
the rod. The three modes of precession are apparent; by studying the
distance between the dots you can discern the variation in speed of the
rod through the precession cycle.
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7.1 A thin hoop of mass M and radius R rolls without slipping about
the z axis. It is supported by an axle of length R through its center, as
shown. The hoop circles around the z axis with angular speed 2.

a. What is the instantaneous angular velocity w of the hoop?

b. What is the angular momentum L of the hoop? Is L parallel to ®?
(Note: the moment of inertia of a hoop for an axis along its diameter is
1MR2)

7.2 A flywheel of moment of inertia I, rotates with angular velocity wy
at the middle of an axle of length 2l. Each end of the axle is attached to
a support by a spring which is stretched to length [/ and provides ten-
sion T. You may assume that 7' remains constant for small displace-
ments of the axle. The supports are fixed to a table which rotates at
constant angular velocity, €, where € << wo. The center of mass of the
flywheel is directly over the center of rotation of the table. Neglect
gravity and assume that the motion is completely uniform so that nuta-
tional effects are absent. The problem is to find the direction of the
axle with respect to a straight line between the supports.
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7.3 A gyroscope wheel is at one end of an axle of length I. The other
end of the axle is suspended from a string of length L. The wheel is
set into motion so that it executes uniform precession in the horizontal
plane. The wheel has mass 1/ and moment of inertia about its center
of mass [,. Its spin angular velocity is w,. Neglect the mass of the
shaft and of the string.

Find the angle 3 that the string makes with the vertical. Assume that
B is so small that approximations like sin 8 = (3 are justified.

7.4 In an old-fashioned rolling mill, grain is ground by a disk-shaped
millstone which rolls in a circle on a flat surface driven by a vertical shaft.
Because of the stone’s angular momentum, the contact force with the
surface can be considerably greater than the weight of the wheel.
Assume that the millstone is a uniform disk of mass A/, radius b, and
width w, and that it rolls without slipping in a circle of radius B with angular
velocity . Find the contact force. Assume that the millstone is closely
fitted to the axle so that it cannot tip, and that w << B. Neglect friction.

Ans. clue. If Q2b = 2 g, the force is twice the weight

7.5 When an automobile rounds a curve at high speed, the loading
(weight distribution) on the wheels is markedly changed. For sufficiently
high speeds the loading on the inside wheels goes to zero, at which point
the car starts to roll over. This tendency can be avoided by mounting a
large spinning flywheel on the car.

a. In what direction should the flywheel be mounted, and what should
be the sense of rotation, to help equalize the loading? (Be sure that
your method works for the car turning in either direction.)

b. Show that for a disk-shaped flywheel of mass m and radius R, the
requirement for equal loading is that the angular velocity of the flywheel,
w, is related to the velocity of the car v by

ML
mR?

w =20

where J is the total mass of the car and flywheel, and L is the height of
the center of mass of the car (including the flywheel) above the road.
Assume that the road is unbanked.

7.6 If you start a coin rolling on a table with care, you can make it roll
in a circle. As you can see from the drawing, the coin ‘‘leans”
inward, with its axis tilted. The radius of the coin is b, the radius
of the circle it follows on the table is B, and its velocity is v. Assume
that there is no slipping. Find the angle ¢ that the axis makes with
the horizontal.

Ans. tan ¢ = 3v?/2gR
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7.7 A thin hoop of mass A and radius R is suspended from a string
through a point on the rim of the hoop. If the support is turned with
high angular velocity w, the hoop will spin as shown, with its plane nearly
horizontal and its center neatly on the axis of the support. The string
makes angle a with the vertical.

a. Find, approximately, the small angle 3 between the plane of the
hoop and the horizontal.

b. Find, approximately, the radius of the small circle traced out by
the center of mass about the vertical axis. (With skill you can demon-
strate this motion with a rope. It is a favorite cowboy lariat trick.)

7.8 A child’s hoop of mass M and radius b rolls in a straight line with
velocity v. Its top is given a light tap with a stick at right angles to the
direction of motion. The impulse of the blow is I.

a. Show that this results in a deflection of the line of rolling by angle
¢ = I/Mv, assuming that the gyroscope approximation holds and neg-
lecting friction with the ground.

b. Show that the gyroscope approximation is valid provided F << Mv?/b,
where F' is the peak applied force.

7.9 This problem involves investigating the effect of the angular momen-
tum of a bicycle's wheels on the stability of the bicycle and rider. Assume
that the center of mass of the bike and rider is height 2l above the ground.
Each wheel has mass m, radius [, and moment of inertia ml%. The bicycle
moves with velocity V in a circular path of radius EB. Show that it leans
through an angle given by

V2 m
t =—[(1+—)
an ¢ Rg( +M>

where M is the total mass.

The last term in parentheses would be absent if angular momentum
were neglected. Do you think that it is important? How important is
it for a bike without a rider?

7.10 Latitude can be measured with a gyro by mounting the gyro with
its axle horizontal and lying along the east-west axis.

a. Show that the gyro can remain stationary when its spin axis is
parallel to the polar axis and is at the latitude angle N\ with the horizontal.

b. If the gyro is released with the spin axis at a small angle to the
polar axis show that the gyro spin axis will oscillate about the polar axis

with a frequency w,,, = \/Ilwsfle/ll, where I, is the moment of inertia
of the gyro about its spin axis, I, is its moment of inertia about the fixed
horizontal axis, and Q. is the earth’s rotational angular velocity.

What value of w, is expected for a gyro rotating at 40,000 rpm, assum-
ing that it is a thin disk and that the mounting frame makes no contribu-
tion to the moment of inertia?
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7.11 A particle of mass m is located atx =2,y =0, z = 3.
a. Find its moments and products of inertia relative to the origin.

b. The particle undergoes pure rotation about the z axis through a
smallangle . Show that its moments of inertia are unchanged to firstorder
inaifaK1.
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NONINERTIAL SYSTEMS AND FICTITIOUS FORCES

8.1 Introduction

In discussing the principles of dynamics in Chap. 2, we stressed
that Newton’s second law F = ma holds true only in inertial coor-
dinate systems. We have so far avoided noninertial systems in
order not to obscure our goal of understanding the physical nature
of forces and accelerations. Since that goal has largely been
realized, in this chapter we turn to the use of noninertial systems.
Our purpose is twofold. By introducing noninertial systems we
can simplify many problems; from this point of view, the use
of noninertial systems represents one more computational tool.
However, consideration of noninertial systems enables us to
explore some of the conceptual difficulties of classical mechanics,
and the second goal of this chapter is to gain deeper insight into
Newton’s laws, the properties of space, and the meaning of
inertia.

We start by developing a formal procedure for relating observa-
tions in different inertial systems.

8.2 The Galilean Transformations

In this section we shall show that any coordinate system moving
uniformly with respect to an inertial system is also inertial. This
result is so transparent that it hardly warrants formal proof.
However, the argument will be helpful in the next section when
we analyze noninertial systems.

Suppose that two physicists, « and 3, set out to observe a series
of events such as the position of a body of mass m as a function
of time. Each has his own set of measuring instruments and each
works in his own laboratory. « has confirmed by separate exper-
iments that Newton’s laws hold accurately in his laboratory. His
reference frame is therefore inertial. How can he predict whether
or not §'s system is also inertial?

For simplicity, « and 8 agree to use cartesian coordinate systems
with identical scale units. In general, their coordinate systems do
not coincide. Leaving rotations for later, we suppose for the time
being that the systems are in relative motion but that correspond-
ing axes are parallel. Let the position of mass m be given by r,
in a's system, and rg in 8's system. If the origins of the two sys-
tems are displaced by S, as shown in the sketch, then

¥g = t, — S. 8.1

If physicist a sees the mass accelerating at rate a, = ¥,, he con-
cludes from Newton’s second law that there is a force on m given
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by
F, = ma,.

Physicist 8 observes m to be accelerating at rate ag, as if it were
acted on by a force

F,g = mag.

What is the relation between Fz and the true force F, measured
in an inertial system?

It is a simple matter to relate the accelerations in the two sys-
tems. Successive differentiation with respect to time of Eq. (8.1)
yields

Vﬁ=Va—v
az = a, — A. 8.2

If V = $ is constant, the relative motion is uniform and A = 0.
In this case az = ag, and

Fﬁ = mag = May
= F,.

The force is the same in both systems. The equations of motion
in a system moving uniformly with respect to an inertial system
are identical to those in the inertial system. It follows that all
systems translating uniformly relative to an inertial system are
inertial. This simple result leads to something of an enigma.
Although it would be appealing to single out a coordinate system
absolutely at rest, there is no dynamical way to distinguish one
inertial system from another. Nature provides no clue to abso-
lute rest.

We have tacitly made a number of plausible assumptions in
the above argument. In the first place, we have assumed that
both observers use the same scale for measuring distance. To
assure this, o and B must calibrate their scales with the same
standard of length. If « determines that the length of a certain
rod at rest in his system is L., we expect that 8 will measure the
same length. Thisisindeed the case if there is no motion between
the two systems. However, it is not generally true. [f 8 moves
parallel to the rod with uniform velocity », he will measure a length
Lg = Lo(1 — v?/c??, where ¢ is the velocity of light. This result
follows from the theory of special relativity. The contraction of
the moving rod, known as the Lorentz contraction, is discussed
in Sec. 12.3.
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A second assumption we have made is that time is the same in
both systems. That s, if « determines that the time between two
events is T,, then we assumed that 8 will observe the same inter-
val. Here again the assumption breaks down at high velocities.
As discussed in Sec. 13.3, B8 finds that the interval he measures is
Ts = T./(1 — v2/c%t.  Once again nature provides an unexpected
result.

The reason these results are so unexpected is that our notions
of space and time come chiefly from immediate contact with the
world around us, and this never involves velocities remotely near
the velocity of light. If we normally moved with speeds approach-
ing the velocity of light, we would take these results for granted.
As it is, even the highest ‘‘everyday’’ velocities are low compared
with the velocity of light. For instance, the velocity of an arti-
ficial satellite around the earth is about 8 km/s. In this case
v?/c? =~ 1079, and length and time are altered by only one part
in a billion.

A third assumption is that the observers agree on the value
of the mass. However, mass is defined by experiments which
involve both time and distance, and so this assumption must
also be examined. As mentioned in our discussion of momen-
tum, if an object at rest has mass m, the most useful quantity
corresponding to mass for an observer moving with velocity v is
m = my/(1 — v2/c)t.

Now that we are aware of some of the complexities, let us defer
consideration of special relativity until Chaps. 11 to 14 and for the
time being limit our discussion to situations where » << ¢. In this
case the classical ideas of space, time, and mass are valid to high
accuracy. The following equations then relate measurements
made by « and B, provided that their coordinate systems move
with uniform relative velocity V. We choose the origins of the
coordinate systems to coincide at ¢t = 0 so that S = Vi. Then
from Eq. (8.1) we have

rg =r, — Vi 8.3
tg = ta.

The time relation is generally assumed implicitly.

This set of relations, called transformations, gives the prescription
for transforming coordinates of an event from one coordinate sys-
tem to another. Equations (8.3) transform coordinates between
inertial systems and are known as the Galilean transformations.
Since force is unchanged by the Galilean transformations, observ-
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ers in different inertial systems obtain the same dynamical equa-
tions. It follows that the forms of the laws of physics are the
same in all inertial systems. Otherwise, different observers would
make different predictions; for instance, if one observer predicts
the collision of two particles, another observer might not. The
assertion that the forms of the laws of physics are the same in
all inertial systems is known as the principle of relativity. Although
the principle of relativity played only a minor role in the develop-
ment of classical mechanics, its role in Einstein’s theory of rela-
tivity is crucial. This is discussed further in Chap. 11, where it is
also shown that the Galilean transformations are not universally
valid but must be replaced by a more general transformation law,
the Lorentz transformation. However, the Galilean transforma-
tions are accurate for v << ¢, and we shall take them to be exact
in this chapter.

8.3 Uniformly Accelerating Systems

Next we turn our attention to the appearance of physical laws to
an observer in a system accelerating at rate A with respect to an
inertial system. To simplify notation we shall drop the subscripts
a and B and label quantities in noninertial systems by primes.
Thus, Eq. (8.2), ag = a, — A, becomes

a’=a—A,

where A is the acceleration of the primed system as measured in
the inertial system.
In the accelerating system the apparent force is

F' = ma’
= ma — mA.
ma is the true force F due to physical interactions. Hence,
F' = F — mA.
We can write this as
F' = F + Fict,

where

Fiice = —mA.
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F:ct is called a fictitious force.! The fictitious force experienced
in a uniformly accelerating system is uniform and proportional to
the mass, like a gravitational force. However, fictitious forces
originate in the acceleration of the coordinate system, notin inter-
action between bodies.

Here are two examples illustrating the use of fictitious forces.

Example 8.1 The Apparent Force of Gravity

A small weight of mass m hangs from a string in an automobile which
accelerates at rate A. What is the static angle of the string from the
vertical, and what is its tension?

We shall analyze the problem both in an inertial frame and in a frame
accelerating with the car.

Inertial system System accelerating with auto
l 0 AT T
|
|
m A
—
Acceleration = A Acceleration = 0
w w
TcosO—W=0 Tcos0—-W=0
T sin 6 = MA Tsinf~Fg, =0
ano=A_4
an w g Ffict =-MA
T=M@E?+A%)112 tan0=§

T = Mg? + 422

From the point of view of a passenger in the accelerating car, the ficti-
tious force acts like a horizontal gravitational force. The effective gravi-
tational force is' the vector sum of the real and fictitious forces. How
would a helium-filled balloon held on a string in the accelerating car
behave?

1Sometimes Fyct is called an inertial force. However, the term fictitious force
more clearly emphasizes that Fict does not arise from physical interactions.
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The fictitious force in a uniformly accelerating system behaves
exactly like a constant gravitational force; the fictitious force is
constant and is proportional to the mass. The fictitious force
on an extended body therefore acts at the center of mass.

Cylinder on an Accelerating Plank

A cylinder of mass M and radius R rolls without slipping on a plank
which is accelerated at the rate A. Find the acceleration of the cylinder.

The force diagram for the horizontal force on the cylinder as viewed
in a system accelerating with the plank is shown in the sketch. a’is the
acceleration of the cylinder as observed in a system fixed to the plank.
f is the friction force, and Fy,, = M A with the direction shown.

The equations of motion in the system fixed to the accelerating plank
are
f— Ffict = ]l/-[a,

Rf = '_Ioa’.
The cylinder rolls on the plank without slipping, so
'R = a'.
These yield
al

Ma' = _IOZ—Z_Z = Frit
_ Fﬁct .

M + I,/R?
Since Iy = MR?/2, and Fy,, = MA, we have

o = —%A.

The acceleration of the cylinder in an inertial system is
a=A4A+ad

=34,

Example 8.1 and 8.2 can be worked with about the same ease
in either an inertial or an accelerating system. Here is a problem

which is rather complicated to solve in an inertial system (try it),
but which is almost trivial in an accelerating system.

Pendulum in an Accelerating Car

Consider again the car and weight on a string of Example 8.1, but now
assume that the car is at rest with the weight hanging vertically. The
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car suddenly accelerates at rate A. The problem is to find the maxi-
mum angle ¢ through which the weight swings. ¢ is larger than the
equilibrium position due to the sudden acceleration.

+ Gravity
Apparent

vertical

In a system accelerating with the car, the bob behaves like a pendulum
in a gravitational field in which ‘“down’’ is at an angle ¢, from the true
vertical. From Example 8.1, ¢, = arctan (4/g). The pendulum is ini-
tially at rest, so that it swings back and forth with amplitude ¢, about the
apparent vertical direction. Hence, ¢ = 2¢o = 2 arctan (4 /qg).

8.4 The Principle of Equivalence

The laws of physics in a uniformly accelerating system are identical
to those in an inertial system provided that we introduce a fictitious
force on each particle, Fs.s = —mA. Fiey is indistinguishable
from the force due to a uniform gravitational field g = —A; both
the gravitational force and the fictitious force are constant forces
proportional to the mass. In a local gravitational field g, a free
particle of mass m experiences a force F = mg. Consider the
same particle in a noninertial system uniformly accelerating at
rate A = —g, with no gravitational field nor any other interac-
tion. The apparent force is Fseo = —mA = mg, as before. Is
there any way to distinguish physically between these different
situations?

The significance of this question was first pointed out by Ein-
stein, who illustrated the problem with the following ‘‘gedanken’
experiment. (A gedanken, or thought, experiment is meant to be
thought about rather than carried out.)

A man is holding an apple in an elevator at rest in a gravita-
tional field g. He lets go of the apple, and it falls with a down-
ward acceleration a = g. Now consider the same man in the
same elevator, but let the elevator be in free space accelerating
upward at rate a = g. The man again lets go of the apple, and
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it again appears to him to accelerate down at rate g. From his
point of view the two situations are identical. He cannot dis-
tinguish between acceleration of the elevator and a gravitational
field.

The point becomes even more apparent in the case of the ele-
vator freely falling in the gravitational field. The elevator and all
its contents accelerate downward at rate ¢g. If the man releases
the apple, it will float as if the elevator were motionless in free
space. Einstein pointed out that the downward acceleration of
the elevator exactly cancels the local gravitational field. From the
point of view of an observer in the elevator, there is no way to
determine whether the elevator is in free space or whether it is
falling in a gravitational field.

This apparently simple idea, known as the principle of equiv-
alence, underlies Einstein’s general theory of relativity, and all
other theories of gravitation. We summarize the principle of
equivalence as follows: there is no way to distinguish locally
between a uniform gravitational acceleration g and an accelera-
tion of the coordinate system A = —g. By saying that there is
no way to distinguish locally, we mean that there is no way to dis-
tinguish from within a sufficiently confined system. The reason
that Einstein put his observer in an elevator was to define such
an enclosed system. For instance, if you are in an elevator and
observe that free objects accelerate toward the floor at rate a,
there are two possible explanations:

1. There is a gravitational field down, ¢ = a, and the elevator is
at rest (or moving uniformly) in the field.

2. There is no gravitational field, but the elevator is accelerating
up at rate a.

To distinguish between these alternatives, you must look out
of the elevator. Suppose, for instance, that you see an apple
suddenly drop from a nearby tree and fall down with acceleration
a. The most likely explanation is that you and the tree are at
rest in a downward gravitational field of magnitude ¢ = a. How-
ever, it is conceivable that your elevator and the tree are both at
rest on a giant elevator which is accelerating up at rate a.

To choose between these alternatives you must look farther off.
If you see that you have an upward acceleration a relative to the
fixed stars, that is, if the stars appear to accelerate down at rate
a, the only possible explanation is that you are in a noninertial
system; your elevator and the tree are actually accelerating up.
The alternative is the impossible conclusion that you are at rest
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in a gravitational field which extends uniformly through all of
space. But such fields do not exist; real forces arise from inter-
actions between real bodies, and for sufficiently large separations
the forces always decrease. Hence it is most unphysical to invoke
a uniform gravitational field extending throughout space.

This, then, is the difference between a gravitational field and
an accelerating coordinate system. Real fields are local; at large
distances they decrease. An accelerating coordinate system is
nonlocal; the acceleration extends uniformly throughout space.
Only for small systems are the two indistinguishable.

Although these ideas may sound somewhat abstract, the next
two examples show that they have direct physical consequences.

The Driving Force of the Tides

The earth is in free fall toward the sun, and according to the principle
of equivalence it should be impossible to observe the sun's gravitational
force in an earthbound system. However, the equivalence principle
applies only to local systems. The earth is so large that appreciable
nonlocal effects like the tides can be observed. In this example we shall
discuss the origin of the tides to see what is meant by a nonlocal effect.

The tides arise because of variations in the apparent gravitational field
of the sun and the moon at different points on the earth’'s surface.
Although the moon’s effect is larger than the sun’s, we shall consider
only the sun for purposes of illustration.

The gravitational field of the sun at the center of the earth is

n
Gy = GM, —>
r2

s

where 1, is the sun’s mass, 7, is the distance between the center of the
sun and the center of the earth, and n is the unit vector from the earth
toward the sun. The earth accelerates toward the sun at rate A = Gy.
If G(r) is the gravitational field of the sun at some point r on the earth,
where the origin of r is the center of the earth, then the force on mass
m atris
F = mG(r).
The apparent force to an earthbound observer is
F' = F — mA = m[G(r) — G
The apparent field is
FI
m
G(r) — G,.

G'(n

I
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The drawing above shows the true field G(r) at different points on the
earth's surface. (The variations are exaggerated.) @, is larger than G,
since a is closer to the sun than the center of the earth. Similarly, G. is
less than (4. The magnitudes of G, and G, are approximately the same
as the magnitude of Gy, but their directions are slightly different.
b The apparent field G’ = G — Gy is shown in the drawing at left. We
now evaluate G’ at each of the points indicated.

1. G, AND G/

G/, G,
The distance from a to the center of the sun is r, — K, where R, is the
earth's radius. The magnitude of the sun’s field at a is
GM,
d Go= —%%
(ry — R.)?

G, is parallel to G,. The magnitude of the apparent field at a is

<
I

Ga - GO
GM, GM,

h (rs — Re)2 7,2

- Q{[; _ 1]
r? [1 - (RC/T,,)]z |

Since R./r; = 6.4 X 10% km/1.5 X 108 km = 4.3 X 107°< 1, we have

—2
-6 2"
r!

=Go[1+z&+ . —1]
Ts

- 26, %,
Ts

where we have neglected terms of order (E./r,)? and higher.



350

3 | i [ [
// \\ Ts

é
GO
b
d

{

Example 8.5

To the -, V20077

sun

b

e
’

Gb
c

NONINERTIAL SYSTEMS AND FICTITIOUS FORCES

The analysis at ¢ is similar, except that the distance to the sun is
rs + R, instead of r, — R.. We obtain

G; = —2G, &

Ts
Note that G, and G: point radially out from the earth.
2. G; AND G

Points b and d are, to excellent approximation, the same distance from
the sun as the center of the earth. However, G, is not parallel to Gy; the
angle between them is o = R,/r, = 4.3 X 1075. To this approximation

Gg = Goa
¢ R
ra

By symmetry, G is equal and opposite to G,’,. Both G,; and G,’i point
toward the center of the earth.

The sketch shows G’(r) at various points on the earth’s surface. This
diagram is the starting point for analyzing the tides. The forces at a
and ¢ tend to lift the oceans, and the forces at b and d tend to depress
them. |If the earth were uniformly covered with water, the tangential
force components would cause the two tidal bulges to sweep around the
globe with the sun. This picture explains the twice daily ebb and flood
of the tides, but the actual motions depend in a complicated way on the
response of the oceans as the earth rotates, and on features of local
topography.

We can estimate the magnitude of tidal effects quite easily, as the next
example shows.

Equilibrium Height of the Tide

The following argument is based on a model devised by Newton. Pre-
tend that two wells full of water run from the surface of the earth to the
center, where they join. One is along the earth-sun axis and the other
is perpendicular. For equilibrium, the pressures at the bottom of the
wells must be identical.

The pressure due to a short column of water of height dr is pg(r)dr,
where p is the density and ¢g(r) is the effective gravitational field at r.
The condition for equilibrium is

h he
A pgi(r) dr=ﬁ) pga(r) dr.

hy and h, are the distances from the center of the earth to the surface
of the respective water columns. |If we assume that the water is incom-
pressible, so that p is constant, then the equilibrium condition becomes

hi ha
ﬂ) gi(r) dr = /0 gao(r) dr.
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The problem is to calculate the difference h; — hy = Ahs, the height of
the tide due to the sun. We shall assume that the earth is spherical
and neglect effects due to its rotation.

The effective field toward the center of the earth along column 1 is
gu(r) = g(r) — G;(r), where ¢(r) is the gravitational field of the earth and
G{(r) is the effective field of the sun along column 1. (The negative sign
indicates that G{(r) is directed radially out.) In the last example we
evaluated Gy(R.) = Q. = 2GM,R,./rs. The effective field along column
1 is obtained by substituting r for B,. Hence,

2GMr

7

Gi(r) =

= 2Cr,

where C = GM,/rd.
Putting these together, we obtain

() = G(r) — 2Cr.
By the same reasoning we obtain

go(r) = g(r) + Ga(r)
g(r) + Cr.

The condition for equilibrium is

/Ohl [g(r) — 2Cr]dr = Lhz [g(r) + Cr] dr,

or, rearranging,
k1 he ha ha
/; g(r)ydr — ﬂ) g(r) dr = ﬁ) 2Cr dr + /0 Cr dr.

R
We can combine the integrals on the left hand side to give /h : g(r) dr.
1

Since h; and A, are close to the earth’s radius, g(r) can be taken as con-
stant in the integral. g(r) = g(B.) = g, the acceleration due to gravity at
the earth’s surface. The integrals on the left become g(h; — hs2) = g Ah,.
The integrals on the right can be combined by taking h, = h, = R,, and

R,
they yield /;) 3Cr dr = $CR.2. The final result is
g Ak, = 3CR 2.
By using g = GM /R C = GM,/r?, we find

3
Any = 3 M (Iﬁ> R..

2 M, \rs
From the numerical values
M, =199 X 103 g rs = 1.49 X 1013 cm

M, =598 X107 g R, =6.37 X 108 cm,
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we obtain
Ahs = 24.0 cm.

The identical argument for the moon gives

3
A, = 2 Mn (BeY'
2M, \rn

Inserting M,, = 7.34 X 10%% g, r,, = 3.84 X 10!° cm, we obtain Ak, =
53.5 cm. We see that the moon’s effect is about twice as large as the
sun’s, even though the sun’s gravitational field at the earth is about
200 times stronger than the moon’s. The reason is that the tidal force
depends on the gradient of the gravitational field. The moon is so close
that its field varies considerably across the earth, whereas the field of
the distant sun is more nearly constant.

The strongest tides, called the spring tides, occur at the new and full
moon when the moon and sun act together. Midway between, at the
quarters of the moon, occur the weak neap tides. The ratio of the
driving forces in these two cases is

Ahspring - Ahm + Ah, —

~ 3.
Ahnesy  Ahm — Ahy

The tides offer convincing evidence that the earth is in free fail toward
the sun. If the earth were attracted by the sun but not in free fall,
there would be only a single tide, whereas free fall results in two tides
a day, as the sketches illustrate. The fact that we can sense the sun’'s
gravitational field from a body in free fall does not contradict the prin-
ciple of equivalence. The height of the tide depends on the ratio of the
earth’'s radius to the sun’s distance, R./r,. However, for a system to
be local with respect to a gravitational field, the variation of the field must
be negligible over the dimensions of the system. The earth would be
a local system if R, were negligible compared with 7, but then there would
be no tides. Hence, the tides demonstrate that the earth is too large
to constitute a local system in the sun’s field.

There have been a number of experimental investigations of the
principle of equivalence, since in spite of its apparent simplicity,
far-reaching conclusions follow from it. For example, the principle
of equivalence demands that gravitational force be strictly pro-
portional to inertial mass. An alternative statement is that the
ratio of gravitational mass to inertial mass must be the same for
all matter, where the gravitational mass is the mass which enters
the gravitational force equation and the inertial mass is the mass
which appears in Newton’s second law. Hence, if an object with
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gravitational mass M,, and inertial mass M;, interacts with an
object of gravitational mass M ,, we have

 GM oM

F= ~

Since the acceleration is F/M;,,

a=_ S (M‘")F 8.4
N r2 Min ) ’

The equivalence principle requires M,./M;, to be the same for
all objects, since otherwise it would be possible to distinguish
locally between a gravitational field and an acceleration. For
instance, suppose that for object A, M,./M;, is twice as large as
for object B. If we release both objects in an Einstein elevator
and they fall with the same acceleration, the only possible con-
clusion is that the elevator is actually accelerating up. On the
other hand, if A falls with twice the acceleration of B, we know
that the acceleration must be due to a gravitational field. The
upward acceleration of the elevator would be distinguishable from
a downward gravitational field, in defiance of the principle of
equivalence.

The ratio M,./M;, is taken to be 1 in Newton’s law of gravita-
tion. Any other choice for the ratio would be reflected in a dif-
ferent value for G, since experimentally the only requirement is
that G(M ./ M;,) = 6.67 X 10711 N-m?2/kg?.

Newton investigated the equivalence of inertial and gravitational
mass by studying the period of a pendulum with interchangeable
bobs. The equation of motion for the bob in the small angle
approximation is

Minld 4+ Mgg6 = 0.
The period of the pendulum is

_27r

w
SN
g VMg
Newton's experiment consisted of looking for a variation in T

using bobs of different composition. He found no such change
and, from an estimate of the sensitivity of the method, concluded

T
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that M,,/M;, is constant to better than one part in a thousand
for common materials.

The most compelling evidence for the principle of equivalence
comes from an experiment devised by the Hungarian physicist
Baron Roland von Eo6tvos at the turn of the century. (The experi-
ments were completed in 1908 but the results were not published
until 1922, three years after von Edtvos’ death.) The method and
technique of von E6tvos’ experiment were refined by R. H. Dicke
and his collaborators at Princeton University, and it is this work,
completed in 1963, which we shall now outline.!

Consider a torsion balance consisting of two masses 4 and B
of different composition at each end of a bar which hangs from
a thin fiber so that it can rotate only about the vertical axis. The
masses are attracted by the earth and also by the sun. The
gravitational force due to the earth is vertical and causes no rota-
tion of the balance, but as we now show, the sun’s attraction will
cause a rotation if the principle of equivalence is violated.

Assume that the sun is on the horizon, as shown in the sketch,
and that the horizontal bar is perpendicular to the sun-earth
axis. According to Eq. (8.4) the accelerations of the masses due
to the sun are

_ GM, [Mgr(m]

ay

7‘,;2 Mm(A)
o = GM. [Mgr(B)}
T e | MuB) [

where M, is the gravitational mass of the sun, and r, is the dis-
tance between sun and earth. The acceleration of the masses
in a coordinate system fixed to the earth are

’
Ay = a4 — Qo

’
Qg = ap — Qo

where a is the acceleration of the earth toward the sun. (Accel-
eration due to the rotation of the earth plays no role and we
neglect it.)

If the principle of equivalence is obeyed, aﬁi = a'B and the bar
has no tendency to rotate about the fiber. However, if the two
masses 4 and B have different ratios of gravitational to inertial
mass, then one will accelerate more than the other. The balance

1 An account of the experiment is given in an article by R. H. Dicke in Scientific
American, vol. 205, no. 84, December, 1961.
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will rotate until the restoring torque of the suspension fiber brings
it to rest. As the earth rotates, the apparent direction of the
sun changes; the equilibrium position of the balance moves with
a 24-h period.

Dicke's apparatus was capable of detecting the deflection
caused by a variation of 1 part in 10! in the ratio of gravitational
to inertial mass, but no effect was found to this accuracy.

The principle of equivalence is generally regarded as a funda-
mental law of physics. We have used it to discuss the ratio of
gravitational to inertial mass. Surprisingly enough, it can also be
used to show that clocks run at different rates in different gravi-
tational fields. A simple argument showing how the principle of
equivalence forces us to give up the classical notion of time is
presented in Note 8.1.

8.5 Physics in a Rotating Coordinate System

The transformation from an inertial coordinate system to a rota-
ting system is fundamentally different from the transformation
to a translating system. A coordinate system translating uni-
formly relative to an inertial system is also inertial; the transforma-
tion leaves the laws of motion unaffected. I[n contrast, a uni-
formly rotating system is intrinsically noninertial. Rotational
motion is accelerating motion, and the laws of physics always
involve fictitious forces when referred to a rotating reference
frame. The fictitious forces do not have the simple form of a
uniform gravitational field, as in the case of a uniformly acceler-
ating system, but involve several terms, including one which is
velocity dependent. However, in spite of these complications,
rotating coordinate systems can be very helpful. In certain cases
the fictitious forces actually simplify the form of the equations of
motion. In other cases it is more natural to introduce the ficti-
tious forces than to describe the motion with inertial coordinates.
A good example is the physics of airflow over the surface of the
earth. It is easier to explain the rotational motion of weather
systems in terms of fictitious forces than to use inertial coordinates
which must then be related to coordinates on the rotating earth.

If a particle of mass m is accelerating at rate a with respect to
inertial coordinates and at rate a,,; with respect to a rotating coor-
dinate system, then the equation of motion in the inertial system
is

F = ma.
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We would like to write the equation of motion in the rotating sys-
tem as

Frot = ma;oy.
If the accelerations of m in the two systems are related by
a = ay + A,
where A is the relative acceleration, then
Fiot = m(a — A)
= F + Ficts

where Fii; = —mA. So far the argument is identical to that in
Sec. 8.3. Our task now is to find A for a rotating system.

One way of evaluating A is to find the transformation connect-
ing the inertial and rotating coordinates and then to differentiate.
However, there is a much simpler and more general method, which
consists of finding a transformation rule relating the time deriva-
tives of any vector in inertial and rotating coordinates. In order
to motivate the derivation, we proceed by first finding the relation
between the velocity of a particle measured in an inertial system,
Vin, and the velocity measured in a rotating system, v,ot.

Time Derivatives and Rotating Coordinates

We are interested in pure rotation without translation, and so we
consider a rotating system ', y’, 2’ whose origin coincides with
the origin of an inertial system z, y, 2. Suppose, for the sake of
the argument, that the 2/, ¢, 2’ system is rotating so that the z
and 2’ axes always coincide. Thus, the angular velocity of the
rotating system, Q, lies along the z axis. Furthermore, let the «
and z’ axes coincide instantaneously at time ¢t. Imagine now that
a particle has position vector r(f) in the zz plane (and 2’2’ plane)
at time ¢.

A
v
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At time { + At, the position vector is r(t + At), and, from the
figure at left below the displacement of the particle in the inertial
system is

Ar = Kt + At) — r(Q).

The situation is different for an observer in the rotating coordinate
system. He also notes the same final position vector r(t + Af),
but in calculating the displacement he remembers that the initial
position vector in his coordinate system r'(f) was in the 2’2’ plane.
The displacement he measures relative to his coordinates is
Ar' = r(t + At) — r'(t), as in the figure at right above however, the
a'z’ plane is now rotated away from its earlier position and, as
we see from the drawing at left, Ar and Ar’ are not the same

Ar = Ar' 4 ¥'(t) — r(®).

Consequently, the velocity is different in the two frames.
Since r'(f) and r(t) differ only by a pure rotation, we can use
the result of Sec. 7.2 to write

F{t) — rt) = (Q X r) At

Hence,
Ar _ Ar' Laxr
At At xr.

Taking the limit At — 0 yields
Vin = Vrot + Q Xr. 8.5

It is important to realize that Eq. (8.5) is a general vector relation;
the proof did not employ the special arrangement of axes we used
to illustrate the derivation.

An alternative way to write Eq. (8.5) is
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<ﬂ —(ﬂ +Qxr 8.6
dtin_ dtrot xr '

Since our proof used only the geometric properties of r, Eq. (8.6)
can immediately be generalized for any vector B, as the sketch
indicates.

dB daB
(E);n = (E)mt + Q X B. 8.7

When applying Eq. (8.7), keep in mind that B is instantaneously
the same in both systems; it is only the time rates of change which
differ. Note 8.2 presents an alternative derivation of Eq. (8.7).

Acceleration Relative to Rotating Coordinates

We can use Eq. (8.7) to relate the acceleration observed in a rota-
ting system, a,o; = (dVrot/d):0t, t0 the acceleration in an inertial
system, aj, = (dvin/d)in. Applying Eq. (8.7) to v, gives

e (%), - (), o
" dt in B dt rot "

Using

Vinzvrot'*‘gxr

we have

d
ai, = [Jt(vm+9xr)] + Q X Vot + Q X (Q X I).

rot

We shall assume that Q is constant, since this is the case generally
needed in practice. Hence

dr
arot+Qx<_> +QXVroe+QX(9XI’),
rot

A = d
or
Qin = Qrot + 2Q X Vrot + Q X (Q X r). 8.8

Let us examine the various contributions to a;, in Eq. (8.8).
The term a,.; is simply the acceleration measured in the rotating
coordinate system; there is nothing mysterious here. For exam-
ple, if we measure the acceleration of a car or plane in a coordinate
system fixed to the rotating earth, we are measuring aot.

To see the origin of the term Q X (Q X r), note first that Q X r
is perpendicular to the plane of Q and r and has magnitude Qp,
where p is the perpendicular distance from the axis of rotation
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to the tip of r. Hence Q X (Q X r) is directed radially inward
toward the axis of rotation and has magnitude Q2. It is a cen-
tripetal acceleration, arising because every point at rest in the
rotating system is actually moving in a circular path in inertial
space.

The term 2Q X v, is the general vector expression for the
Coriolis acceleration in three dimensions. If v, is resolved into
components vy, and Vrot parallel and perpendicular to Q, res-
pectively, only v.,;, contributes to 2Q X v.:. Hence, the coriolis
acceleration is perpendicular to Q. Here is how it arises:

The radial component p of Viot, contributes 2Qp in the tangential
direction to a;,. This is simply the Coriolis term we found in Sec.
1.9 for motion in inertial space with angular velocity @ and radial
velocity 6. The tangential component p6’ of vy, contributes 2Qp6’
toward the rotation axis. To see the origin of this term, note that
in inertial space the instantaneous angular velocity is § = 6’ + Q
and the centripetal acceleration term in ai, is

o6 + D?
= pf'? + 2Qp8" + pQ2.

p6?

It

The three terms on the right correspond to the three terms on
the right of Eq. (8.8). pf'% is part of a,., 2906’ follows from
2Q X V.o; as we have shown, and pQ? comes from Q X (Q X r).

The Apparent Force in a Rotating Coordinate System
From Eq. (8.8) we have

Arot = @in — 2Q X Vrop — Q X (Q X I).

The force observed in the rotating system is

Fiot = Mae, = Mmai, — M[2Q X Vit + Q X (Q X )]

= F + Fiicts
where the fictitious force is
Fiict = —2mQ X Vioy — mQ X (Q X 1).

The first term on the right is called the Coriolis force, and the
second term, which points outward from the rotation axis, is called
the centrifugal force.

The Coriolis and centrifugal forces are nonphysical; they arise
from kinematics and are not due to physical interactions. For
instance, the centrifugal force actually increases with p, whereas
real forces always decrease with distance. Nevertheless, the
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Coriolis and centrifugal forces seem quite real to an observer in
a rotating frame. When we drive a car too fast around a curve,
it skids outward as if pushed by the centrifugal force. From the
standpoint of an observer in an inertial frame, however, what has
happened is that the sideward force exerted by the road on the
tires is not adequate to keep the car turning with the road.

There is a natural human tendency to describe rotational motion
with a rotating system. For instance, if we whirl a rock on a
string, we instinctively say that centrifugal force is pulling the rock
outward. In a coordinate system rotating with the rock, this is
correct; the rock is stationary and the centrifugal force is in
balance with the tension in the string. In an inertial system
there is no centrifugal force; the rock is accelerating radially due
to the force exerted by the string. Either system is valid for
analyzing the problem. However, it is essential not to confuse
the systems by trying to use fictitious forces in inertial frames.

Here are some examples to illustrate the use of rotating
coordinates.

Surface of a Rotating Liquid

A bucket of water spins with angular speed w. What shape does the
water's surface assume?

In a coordinate system rotating with the bucket, the problem is purely
static. Consider the force on a small volume of water of mass m at the
surface of the liquid. For equilibrium, the total force on m must be
zero. The forces are the contact force Fy, the weight W, and the ficti-
tious force Fy., Which is radial.

Focos ¢ — W =0
—Fosin ¢ + Fey = 0,

where Fg.. = mQir = mw?r, since @ = w for a coordinate system rotating
with the bucket.

A
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Solving these equations for ¢ yields

w?r
¢ = arctan —-

Unlike solids, liquids cannot exert a static force tangential to the sur-
face. Hence F,, the force on m due to the neighboring liquid, must
be perpendicular to the surface. The slope of the surface at any point
is therefore

(—1—Z=tan¢
dr

_ e
N

We can integrate this relation to find the equation of the surface z = f(r).
We have

2
/dz=w—/rdr
g

4 =:—7'2,

g

where we have taken z = 0 on the axis at the surface of the liquid. The
surface is a paraboloid of revolution.

The Coriolis Force

A bead slides without friction on a rigid wire rotating at constant angular
speed w. The problem is to find the force exerted by the wire on the
bead.

In a coordinate system rotating with the wire the motion is purely
radial. The sketch shows the force diagram in the rotating system.
F...¢ is the centrifugal force and Fg, is the Coriolis force. Since the
wire is frictionless, the contact force N is normal to the wire. (We neglect
gravity.) In the rotating system the equations of motion are

Fcent = mr
N - FCor = 0.

Using F..., = mw?r, the first equation gives
mir — mw? =0,

which has the solution

r = Aevt + Be ¢,

where A and B are constants depending on the initial conditions.
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The tangential equation of motion, which expresses the fact that there
is no tangential acceleration in the rotating system, gives

N = Fcor = 2miw
2mw(Ae®t — Bevt).

To complete the problem, we must be given the initial conditions which
specify A and B.

Deflection of a Falling Mass

Because of the Coriolis force, falling objects on the earth are deflected
horizontally. For instance, a mass dropped from a tower lands to the
east of a plumb line from the release point. In this example we shall
calculate the deflection for a mass m dropped from a tower of height &
at the equator.

In the coordinate system 7, 6 fixed to the earth (with the tangeniial
direction toward the east) the apparent force on m is

F = —mgf — 2mQ X Vi — mQ X (Q X r).
Iy = —2mrSl.
The gravitational and centrifugal forces are radial, and if m is dropped

from rest, the Coriolis force is in the equatorial plane. Thus the motion
of m is confined to the equatorial piane, and we have

Vior = 7T + 768,

Using Q X vy, = 970 — 7Q6F, and Q X (Q X r) = — Q¥+, we obtain
F, = —mg + 2mQbr + mQ2r,
Fg = —Zmi'Q.

The radial equation of motion is
mi — mr6? = —mg -+ 2mQbr + mQ?r.

To an excellent approximation, m falls vertically and §<< Q. We can
therefore omit the terms mrf? and 2mQfr in comparison with mQ?r.
Thus

= —g + Q%. 1
The tangential equation of motion is

mrd + 2mif = —2miQQ.

To the same approximation § <<  we have

ré = —2Q. 2



SEC. 8.5 PHYSICS IN A ROTATING COORDINATE SYSTEM 363

During the fall, r changes only slightly, from R, + A to R,, where R, is
the radius of the earth, and we can take ¢ to be constant and r = E..
Equation (1) becomes

= —g+ QR,

= _g’y
where ¢’ = g — (2R, is the acceleration due to the gravitational force
minus a centrifugal term. ¢’ is the apparent acceleration due to gravity,

and since this is customarily denoted by g, we shall henceforth drop the
prime. The solution of the radial equation of motion # = —g is

7 = —gt
r = ro — Sqt2 3

If we insert 7 = —gt in the tangential equation of motion, Eq. (2), we
have

rd = 2giQ

or

where we have used r =~ R,. Hence

and

140
§=-2", 4
3R,

The horizontal deflection of m is y =~ R.0 or

Il

y = Fgus.

The time T to fall distance A is given by

r— 7T = —}L
= —1gT?
so that
2h 1 [2n\}
T = 2h and y=—g9<—h>~
g 3 g

For a tower 50 m high,
y = 0.77 cm.

4 is positive, and the deflection is toward the east.
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Motion on the Rotating Earth

A surprising effect of the Coriolis force is that it turns straight line motion
on a rotating sphere into circular motion. As we shall show in this exam-
ple, for a velocity v tangential to the sphere (like the velocity of a wind
over the earth’s surface) the horizontal component of the Coriolis force
is perpendicular to v and its magnitude is independent of the direction
of v.

Consider a particle of mass m moving with velocity v at latitude A on
the surface of a sphere. The sphere is rotating with angular velocity
Q. |If we decompose Q into a vertical part Qy and a horizontal part
Qpy, the Coriolis force is

F=—-2mQXv
—2m(Qy X Vv + Qy X V).

Qy and v are horizontal, so that Qx X v is vertical. Thus the horizontal
Coriolis force, Fy, arises solely from the term Qy X v. Qy is perpen-
dicular to v and Qy X v has magnitude vQy, independent of the direction
of v, as we wished to prove.

We can write the result in a more explicit form. If F is a unit vector
perpendicular to the surface at latitude N\, Qy =  sin \f and

Fy = —2mQsin A\F X v.
The magnitude of Fy is
Fg = 2mv§d sin \.

Fy is always perpendicular to v, and in the absence of other horizontal
forces it would produce circular motion, clockwise in the northern hemi-
sphere and counterclockwise in the southern. Air flow on the earth is
strongly influenced by the Coriolis force and without it stable circular
weather patterns could not form. However, to understand the dynamics
of weather systems we must also include other forces, as the next exam-
ple discusses.

Weather Systems

Imagine that a region of low pressure occurs in the atmosphere, perhaps
because of differential heating of the air. The closed curves in the sketch
represent lines of constant pressure, or isobars. There is a force on
each element of air due to the pressure gradient, and in the absence of
other forces winds would blow inward, quickly equalizing the pressure
difference.

However, the wind pattern is markedly altered by the Coriolis force.
As the air begins to flow inward, it is deflected sideways by the Coriolis
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force, as shown in figure a. (The drawing is for the northern hemisphere.)
The result is that the wind circulates counterclockwise about the low along
the isobars, as in the sketch at left. Similarly, wind circulates clockwise
about regions of high pressure in the northern hemisphere. Since the
Coriolis force is essentially zero near the equator, circular weather systems
cannot form there and the weather tends to be uniform.
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In order to analyze the motion, consider the forces on a parcel of air
which is rotating about a low. The pressure force on the face along
the isobar P, is P,S, where S is the area of the inner face, as shown in
the sketch. The force on the outer face is (P; + AP)S, and the net
pressure force is (AP)S inward. The Coriolis force is 2mv{ sin \, where
m is the mass of the parcel and v its velocity. The air is rotating counter-
clockwise about the low, so that the Coriolis force is outward. Hence,
the radial equation of motion for steady circular flow is
mu?

— = (AP)S — 2mvQ sin .
r

The volume of the parcel is Ar S, where Ar is the distance between the
isobars, and the mass is w Ar S, where w is the density of air, assumed
constant. Inserting this in the equation of motion and taking the limit
Ar — 0 yields

v? 1dP

- == — — 20 sin A. 1
r w dr

Air masses do not rotate as rigid bodies. Near the center of the low,
where the pressure gradient dP/dr is large, wind velocities are highest.
Far from the center, v2/r is small and can be neglected. Equation (1)
predicts that far from the center the wind speed is

» = 1 1dP

2Qsin A w dr
The density of air at sea level is 1.3 kg/m3 and atmospheric pressure is
P,, = 108 N/m2. dP/dr can be estimated by looking at a weather map.
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Far from a high or low, a typical gradient is 3 millibars over 100 km =~
3 X 1072 N/m?, and at latitude 45° Eq. (2) gives

v=2m/s
= 50 mi/h.

Near the ground this speed is reduced by friction with the land, but at
higher altitudes Eq. (2) can be applied with good accuracy.

A hurricane is an intense compact low in which the pressure gradient
can be as high as 30 X 1073 N/m3. Hurricane winds are so strong that
the v?/r term in Eq. (1) cannot be neglected. Solving Eq. (1) for v we
find

\/(rQsm )\)2+————rﬂsm)\ 3

At a distance 100 km from the eye of a hurricane at latitude 20°, Eq. (3)
predicts a wind speed of 45 m/s = 100 mi/h for a pressure gradient of
30 X 1073 N/m3. This is in reasonable agreement with weather observa-
tions. At larger radii, the wind speed drops because of a decrease in
the pressure gradient.

P DN There is an interesting difference between lows and highs. In a low,
,/ //——-*~\\ \\\ Fe the pressure force is inward and the Coriolis force is outward, whereas
" 1/ ‘/"'\\\ \)\/@/\\' in a high, the directions of the forces are reversed. The radial equation
\\ \\\\\l-iw ’\)FP\\ \\ of motion for air circulating around a high is
‘\\ \\\ - /‘ II v? dP

AL =7 4 ——ZUQsm)\—— — 4
% S - r dr

Solving Eq. (4) for v yields

’,,/”‘ -..\\\ - = rQsin A — \/(TQ sin \)? — — (fi_l: 5
/// —_—— \\ P
- ra \
,’1 Ix”(ﬁéh“\‘ Fe \\, \\ We see from Eq. 5) tha.t if 1/w|dP/dr| > r(Q2sin N\)?, the high ca.mnot
//\‘\' ==’ / } form; the Coriolis force is too weak to supply the needed centripetal
ar \\_\ Teme——- ~—=7 ,’ acceleration against the large outward pressure force. For this reason,
dr \\\\‘ __,/ storms like hurricanes are always low pressure systems; the strong inward

pressure force helps hold a low together.

The Foucault pendulum provides one of the most dramatic
demonstrations that the earth is a noninertial system. The pen-
dulum is simply a heavy bob hanging from a long wire mounted
to swing freely in any direction. As the pendulum swings back
and forth, the plane of motion precesses slowly about the vertical,
taking about a day and a half for a complete rotation in the mid-
latitudes. The precession is a result of the earth’s rotation.
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The plane of motion tends to stay fixed in inertial space while the
earth rotates beneath it.

In the 1850s Foucault hung a pendulum 67 m long from the
dome of the Pantheon in Paris. The bob precessed almost a
centimeter on each swing, and it presented the first direct evi-
dence that the earth is indeed rotating. The pendulum became
the rage of Paris.

The next example uses our analysis of the Coriolis force to
calculate the motion of the Foucault pendulum in a simple way.

The Foucault Pendulum

Consider a pendulum of mass m which is swinging with frequency v =

V g/l, where [ is the length of the pendulum. If we describe the posi-
tion of the pendulum’s bob in the horizontal plane by coordinates r, 6,
then

r = rosin vt,

where 7 is the amplitude of the motion. In the absence of the Coriolis
force, there are no tangential forces and 0 is constant.
The horizontal Coriolis force Fgg is

For = —2mSQ sin \#0.

Hence, the tangential equation of motion, magy = Fcg, becomes
m(r + 27f) = —2mQ sin \ ¢
or )

rf 4 270 = —2Q sin \ 7.

The simplest solution to this equation is found by taking § = constant.
In this case the term 78 vanishes, and we have

# = —Qsin A,

The pendulum precesses uniformly in a clockwise direction. The time
for the plane of oscillation to rotate once is

2
Qsin A
24 h
sin A

Thus, at a latitude of 45°, the Foucault pendulum rotates once in 34 h.
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At the North Pole the period of precession is 24 h; the pendulum rotates
clockwise with respect to the earth at the same rate as the earth rotates
counterclockwise. With respect to inertial space the plane of motion
remains fixed.

In addition to its dramatic display of the earth’s rotation, the
Foucault pendulum embodies a profound mystery. Consider, for
instance, a Foucault pendulum at the North Pole. The precession
is obviously an artifact; the plane of motion stays fixed while the
earth rotates beneath it. The plane of the pendulum remains
fixed relative to the fixed stars. Why should this be? How does
the pendulum “know’ that it must swing in a plane which is sta-
tionary relative to the fixed stars instead of, say, in a plane which
rotates at some uniform rate?

This question puzzled Newton, who described it in terms of the
following experiment: if a bucket contains water at rest, the sur-
face of the water is flat. If the bucket is set spinning at a steady
rate, the water at first lags behind, but gradually, as the water’s
rotational speed increases, the surface takes on the form of the
parabola of revolution discussed in Example 8.6. If the bucket is
suddenly stopped, the concavity of the water’s surface persists
for some time. It is evidently not motion relative to the bucket
that is important in determining the shape of the liquid surface.
So long as the water rotates, the surface is depressed. Newton
concluded that rotational motion is absolute, since by observing
the water’s surface it is possible to detect rotation without refer-
ence to outside objects.

From one point of view there is really no paradox to the absolute
nature of rotational motion. The principle of galilean invariance
asserts that there is no way to detect locally the uniform transla-
tional motion of a system. However, this does not limit our ability
to detect the acceleration of a system. A rotating system accel-
erates in a most nonuniform way. At every point the accelera-
tion is directed toward the axis of rotation; the acceleration points
out the axis. Our ability to detect such an acceleration in no way
contradicts galilean invariance.

Nevertheless, there is an engima. Both the rotating bucket
and the Foucault pendulum maintain their motion relative to the
fixed stars. How do the fixed stars determine an inertial system?
What prevents the plane of the pendulum from rotating with
respect to the fixed stars? Why is the surface of the water in
the rotating bucket flat only when the bucket is at rest with respect
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to the fixed stars? Ernst Mach, who in 1883 wrote the first incisive
critique of newtonian physics, put the matter this way. Suppose
that we keep a bucket of water fixed and rotate all the stars.
Physically there is no way to distinguish this from the original
case where the bucket is rotated, and we expect the surface of
the water to again assume a parabolic shape. Apparently the
motion of the water in the bucket depends on the motion of matter
far off in the universe. To put it more dramatically, suppose that
we eliminate the stars, one by one, until only our bucket remains.
What will happen now if we rotate the bucket? There is no way
for us to predict the motion of the water in the bucket—the
inertial properties of space might be totally different. We have
a most peculiar situation. The local properties of space depend
on far-off matter, yet when we rotate the water, the surface
immediately starts to deflect. There is no time for signals to
travel to the distant stars and return. How does the water in
the bucket ‘“know’’ what the rest of the universe is doing?

The principle that the inertial properties of space depend on
the existence of far-off matter is known as Mach’s principle.
The principle is accepted by many physicists, but it can lead to
strange conclusions. For instance, there is no reason to believe
that matter in the universe is uniformly distributed around the
earth; the solar system is located well out in the limb of our gaiaxy,
and matter in our galaxy is concentrated predominantly in a very
thin plane. If inertia is due to far-off matter, then we might well
expect it to be different in different directions so that the value
of mass would depend on the direction of acceleration. No such
effects have ever been observed. Inertia remains a mystery.

The Equivalence Principle and the Gravitational Red Shift

Radiating atoms emit light at only certain characteristic wavelengths.
If light from atoms in the strong gravitational field of dense stars is
analyzed spectroscopically, the characteristic wavelengths are observed
to be slightly increased, shifted toward the red. We can visualize atoms
as clocks which “‘tick’” at characteristic frequencies. The shift toward
longer wavelengths, known as the gravitational red shift, corresponds
to a slowing of the clocks. The gravitational red shift implies that clocks
in a gravitational field appear to run slow when viewed from outside the
field. As we shall show, the origin of the effect lies in the nature of space,
time, and gravity, not in the trivial effect of gravity on mechanical
clocks.
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It is rather startling to see how the equivalence principle, which is so
simple and nonmathematical, leads directly to a connection between
space, time, and gravity. To show the connection we must use an ele-
mentary result from the theory of relativity; it is impossible to transmit
information faster than the velocity of light, ¢ = 3 X 108 m/s. However,
this is the only relativistic idea needed; aside from this, our argument is
completely classical.

Consider two scientists, 4 and B, separated by distance L as shown
in sketch (a). A has a clock and a light which he flashes at intervals
separated by time T4. The signals are received by B, who notes the
interval between pulses, T, with his own clock. A plot of vertical dis-
tance versus time is shown for two light pulses in (b). The pulses are
delayed by the transit time, L/c, but the interval T'p is the same as T4.
Hence, if A transmits the pulses at, say, 1-s intervals, sothat 74 = 15,
then B's clock will read 1 s between the arrival of successive pulses.

Now consider the situation if both observers move upward uniformly
with speed v, as shown in sketch (¢). Although both scientists move
during the time interval, they move equally, and we still have Tz = T4.

The situation is entirely different if both observers are accelerating
upward at uniform rate a as shown in sketch (d). A4 and B start from
rest, and the graph of distance versus time is a parabola. Since 4 and
B have the same acceleration, the curves are parallel, separated by dis-
tance L at each instant. It is apparent from the sketch that T > T4,
since the second pulse travels farther than the first and has a longer
transit time. The effect is purely kinematical.

Now, by the principle of equivalence, A and B cannot distinguish
between their upward accelerating system and a system at rest in a
downward gravitational field with magnitude g = a. Thus, if the experi-
ment is repeated in a system at rest in a gravitational field, the equiva-
lence principle requires that Tz > T4, as before. If T4 =1s, B will
observe an interval greater than 1 s between successive pulses. B will
conclude that A’s clock is running slow. This is the origin of the gravita-
tional red shift.

By applying the argument quantitatively, the follewing approximate
result is readily obtained:

where it is assumed that AT /T < 1.

On earth the gravitational red shift is AT/T = 10716 L, where L is in
meters. In spite of its small size, the effect has been measured and
confirmed to an accuracy of 1 percent. The experiment was done by
Pound, Rebka, and Snyder at Harvard University. The ‘*‘clock’’ was the
frequency of a gamma ray, and by using a technique known as Mdssbauer
absorption they were able to measure accurately the gravitational red
shift due to a vertical displacement of 256 m.
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Rotating Coordinate Transformation

In this note we present an analytical derivation of Eq. (8.7) relating the
time derivative of any vector B as observed in a rotating coordinate sys-
tem to the time derivative observed in an inertial system. If the system
x’, y', 2 rotates at rate Q with respect to the inertial system z, y, 2, we
shall prove that the time derivatives in the two systems of any vector B
are related by

dB dB
— =|— Q B. 1
(dt > < ai ) rax

Consider an inertial coordinate system z, y, 2z and a coordinate system
2/, y’', 2’ which rotates with respect to the inertial system at angular
velocity . The origins coincide. We can describe an arbitrary vector
B by components along base vectors of either coordinate system. Thus,
we have

B = B,i + B,j + B.k 2
or, alternatively,

B = B.i’ + B,j’ + Bk, 3

a

where 1, j, k are the base vectors along the inertial axes and 1/, j’, k' are
the base vectors along the rotating axes.

We now find an expression for the time derivative of B in each coor-
dinate system. By differentiating Eq. (2) we have

dB d -

— ) = — (B.i + B,j + B.k).
(dt) dt( ) K)
The z, y, z system is inertial so that i, j, and k are fixed in space. We
have
dB _dB, | dB,.  dB..

k, 4
- a Talta

which is the familiar expression for the time derivative of a vector in
cartesian coordinates. We designate this expression by (dB/dt);,.
If we differentiate Eq. (3) we obtain
B dB! dB! dB. . di’ dj’ dk’
— ) ==V + =y + ==k ) + B;—I+B;-l -{—B;— -5
dt dt dt dt dt dt dt

The first term is the time derivative of B with respect to the z'y’z’

axes; this is the rate of change of B which would be measured by an
observer in the rotating system, (dB/dt)., To evaluate the second
term, note that since i’ is a unit vector, it can change only in direction,
not in magnitude; thus i’ undergoes pure rotation. In Sec. 7.2 we found
that the time derivative of a vector r of constant magnitude rotating with
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angular velocity @ is dr/dt = @ X r. We can use this result to evaluate

di’/dt. Letrlie along the 2’ axis and have unit magnitude:r = i’. Hence
di’

—=—Qxi.

dt

Similarly,

dj’ dk’

—"—Qx" and — =Q Xk

dt dt

The second term in Eqg. (5) becomes

BQ X 1) + B(Q X ) + BAQ X K) = @ X (Bii' + B,j’ + Bk
= Q X B.
Equation (5) becomes

daB dB
2) = (£ Q X B, 6
( dt >in ( dt )rot + x

which is the desired result.

Since B is an arbitrary vector, this result is quite general; it can be
applied to any vector we choose. It is important to be clear on the
meaning of Eq. (6). The vector B itself is the same in both the inertial
and the rotating coordinate systems. (For this reason there is no sub-
script to B in the term X B.) Itis only the time derivative of B which
depends on the coordinate system. For instance, a vector which is con-
stant in one system will change with time in the other.

8.1 A uniform thin rod of length L and mass A is pivoted at one end.
The pivot is attached to the top of a car accelerating at rate 4, as shown.

a. What is the equilibrium value of the angle 6 between the rod and
the top of the car?

b. Suppose that the rod is displaced a small angle ¢ from equilibrium.
What is its motion for small ¢?

L

Z

8.2 A truck at rest has one door fully open, as shown. The truck accel-
erates forward at constant rate A, and the door begins to swing shut.



PROBLEMS 373

The door is uniform and solid, has total mass A/, height A, and width w.
Neglect air resistance.

a. Find the instantaneous angular velocity of the door about its hinges
when it has swung through 90°.

b. Find the horizontal force on the door when it has swung through
90°.

8.3 Apendulum isatrestwith its bob pointing toward the center of the earth.
The support of the pendulum starts to move horizontally with uniform accel-
eration a, and the pendulum starts to swing. Find the angular acceleration
a' of the pendulum. Find the period of the pendulum for which the bob con-
tinues to point toward the center of the earth. Neglect rotation of the earth.
This is the principle of a device known as a Schuler pendulum which is
used to suspend the gyroscope stage in inertial guidance systems.)

Ans. clue. T = 13 h

8.4 The center of mass of a 3,200-Ib car is midway between the wheels
and 2 ft above the ground. The wheels are 8 ft apart.

a. What is the minimum acceleration 4 of the car so that the front
wheels just begin to lift off the ground?

b. If the car decelerates at rate g, what is the normal force on the
front wheels and on the rear wheels?

8.5 Many applications for gyroscopes have been found in navigational
systems. For instance, gyroscopes can be used to measure accelera-
tion. Consider a gyroscope spinning at high speed w;. The gyroscope
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is attached to a vehicle by a universal pivot P. If the vehicle accelerates
in the direction perpendicular to the spin axis at rate a, then the gyro-
scope will precess about the acceleration axis, as shown in the sketch.
The total angle of precession, 0, is measured. Show that if the system
starts from rest, the final velocity of the vehicle is given by

I sw,

6,
Ml

where [,w, is the gyroscope's spin angular momentum, J{ is the total
mass of the pivoted portion of the gyroscope, and [ is the distance from
the pivot to the center of mass. (Such a system is called an integrating
gyro, since it automatically integrates the acceleration to give the velocity.)

Acceleration

8.6 A top of mass M spins with angular speed wg about its axis, as shown.
The moment of inertia of the top about the spin axis is Iy, and the center
of mass of the top is a distance [ from the point. The axis is inclined at
angle ¢ with respect to the vertical, and the top is undergoing uniform
precession. Gravity is directed downward. The top is in an elevator,
with its tip held to the elevator floor by a frictionless pivot. Find the
rate of precession, 2, clearly indicating its direction, in each of the follow-
ing cases:
a. The elevator at rest

b. The elevator accelerating down at rate 2g




PROBLEMS 375

8.7 Find the difference in the apparent acceleration of gravity at the equator
and the poles, assuming that the earth is spherical.

8.8 Derive the familiar expression for velocity in plane polar coordinates,
v = it + 760, by examining the motion of a particle in a rotating coor-
dinate system in which the velocity is instantaneously radial.

8.9 A 400-ton train runs south at a speed of 60 mi/h at a latitude of 60°
north.

a. What is the horizontal force on the tracks?

b. What is the direction of the force?
Ans. (a) Approximately 300 Ib

8.10 The acceleration due to gravity measured in an earthbound coor-
dinate system is denoted by g. However, because of the earth's rota-
tion, g differs from the true acceleration due to gravity, go. Assuming
that the earth is perfectly round, with radius B, and angular velocity €2,
find g as a function of latitude N. (Assuming the earth to be round is
actually not justified—the contributions to the variation of g with latitude
due to the polar flattening is comparable to the effect calculated here.)

Ans. g = go[l — (2x — x2) cos? \]}, where = = R.2.%/go
8.11 A high speed hydrofoil races across the ocean at the equator at a
speed of 200 mi/h. Let the acceleration of gravity for an observer at
rest on the earth be g. Find the fractional change in gravity, Ag/g,
measured by a passenger on the hydrofoil when the hydrofoil heads in
the following directions:

a. East
b. West
c. South
d. North

8.12 A pendulum is rigidly fixed to an axle held by two supports so that
it can swing only in a plane perpendicular to the axle. The pendulum
consists of a mass A/ attached to a massless rod of length [. The sup-
ports are mo inted on a platform which rotates with constant angular
velocity €. Find the pendulum's frequency assuming that the amplitude
is small.
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9.1 Introduction

It was Newton’s fascination with planetary motion that led him
to formulate his laws of motion and the law of universal gravita-
tion. His success in explaining Kepler’s empirical laws of plane-
tary motion was an overwhelming argument in favor of the new
mechanics and marked the beginning of modern mathematical
physics. Planetary motion and the more general problem of
motion under a central force continue to play an important role
in most branches of physics and turn up in such topics as particle
scattering, atomic structure, and space navigation.

In this chapter we apply newtonian physics to the general prob-
lem of central force motion. We shall start by looking at some of
the general features of a system of two particles interacting with
a central force f(r)f, where f(r) is any function of the distance r
between the particles and ¥ is a unit vector along the line of cen-
ters. After making a simple change of coordinates, we shall show
how to find a complete solution by using the conservation laws of
angular momentum and energy. Finally, we shall apply these
results to the case of planetary motion, f(r) « 1/r2, and show how
they predict Kepler’'s empirical laws.

9.2 Central Force Motion as a One Body Problem

Consider an isolated system consisting of two particles interacting
under a central force f(r). The masses of the particles are m;
and m, and their position vectors are r; and r,. We have

r=r—r;

r =l 9.1
= |r; — 1.

The equations of motion are

mif; = f(T)F 9.2a

The force is attractive for f(r) < 0 and repulsive for f(r) > 0.
Equations (9.2a and b) are coupled together by r; the behavior of
r; and r, depends onr = r; — r,. We shall show that the prob-
lem is easier to handle if we replace r; and ry by ¥ = r; — ¥, and
the center of mass vector R = (mir1 + mars)/(m1 + mz). The
equation of motion for Ris trivial since there are no external forces.
The equation for r turns out to be like the equation of motion of a
single particle and has a straightforward solution.
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The equation of motion for R is
R=0
which has the simple solution
R = R, 4 Vi. 9.3

The constant vectors Ry and V depend on the choice of coordinate
system and the initial conditions. |If we are clever enough to
take the origin at the center of mass, Ry = 0 and V = 0.

To find the equation of motion for r we divide Eq. (9.2a) by m,
and Eq. (9.2b) by m, and subtract. This gives

s _<i+i) -
f— ¥ = m feryr

or

(%) (i — ¥2) = SR

Denoting mimy/(mi + m,) by u, the reduced mass, and using
1 — ¥o = F, we have

uf = f(r)r. 9.4

Equation (9.4) is identical to the equation of motion for a par-
ticle of mass u acted on by a force f(r)r; no trace of the two par-
ticle problem remains. The two particle problem has been trans-
formed to a one particle problem. (Unfortunately, the method
cannot be generalized. There is no way to reduce the equations
of motion for three or more particles to equivalent one body equa-
tions, and for this reason the exact solution of the three body
problem is unknown.)

The problem now is to find r as a function of time from Eq.
(9.4). Once we know r, we can easily find r; and r, by using the
relations

¥ =1r; —rg 9.5a
R = mary + maty 9.5b
my + ma
Solving for r; and r; gives
Mo
rr =R+ (————) Y 9.6a
! mi + My

9

my
my + my
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mqt/(my + me) and —mqr/(m; + m,) are the position vectors of
my and m, relative to the center of mass, as the sketch shows.

The complete solution of u¥ = f(r) ¥ depends on the particular
form of f(r). However, a number of the properties of central
force motion hold true in general regardless of the form of f(r),
and we turn next to investigate these.

9.3 General Properties of Central Force Motion

The equation u¥ = f(r) ¥ is a vector equation, and although only
a single particle is involved, there are three components to be
considered. In this section we shall see how to use the conserva-
tion laws to find some general properties of the solution and to
reduce the equation to an equation in a single scalar variable.

The Motion Is Confined to a Plane

The central force f(r) ¥ is along r and can exert no torque on the
reduced mass u. Hence, the angular momentum L of u is con-
stant. It is easy to show that this implies that the motion of u
is confined to a plane. Since L = r x uv, wherev = ¥, ris always
perpendicular to L by the properties of the cross product. How-
ever, L is fixed in space, and it follows that r can only move in the
plane perpendicular to L through the origin.

Since the motion is confined to a plane, we can, without loss of
generality, choose our coordinate system so that the motion is
in the zy plane. Introducing polar coordinates, the equation of
motion uf = f(r) ¥ becomes

w(# — ré?) = f(r) 9.7a
w(rd + 2i6) = 0. 9.7b

The Energy and Angular Momentum Are Constants of the Motion

We have reduced the problem to two dimensions by using the fact

that the direction of L is constant. There are two other important

constants of central force motion: the magnitude of the angular

momentum |L| = [, and the total energy E. Using [ and I, we

can solve the problem of central force motion more easily and with

greater physical insight than by working with Egs. (9.7a¢ and b).
The angular momentum of u has magnitude

l = prveg = ur?é. 9.8a
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The total energy of u is

E = tw? + U@)

3u(? + r26%) + U(r), 9.8b
where the potential energy U(r) is given by

U(r) — UGra) = — / ) dr.

The constant U(r,) is not physically significant and so we can
leave r, unspecified; adding a constant to the energy has no effect
on the motion.

We can eliminate § from Eq. (9.8b) by using Eq. (9.8a). The
result is

Il

E 1 '2+1l2+U 9.9
) = - ui*+ - — . .
o # 2 (@)

This looks like the equation of motion of a particle moving in one
dimension; all reference to 6 is gone. We can press the parallel
further by introducing

17
Uen(r) = 2t + U(), 9.10
so that
E = %#7“2 + Ueff(V)- 9.11

U« is called the effective potential energy. Often it is referred

to simply as the effective potential vy differs from the true

potential U(r) by the term [2/2ur?, called the centrifugal potential.
The formal solution of Eq. (9.11) is

dr 2
i '\/;(E — Uet) 9.12

or
r dr _
ro V@/u)E — Uer)

Equation (9.13) gives us r as a function of ¢, although the integral

may have to be done numerically in some cases. To find 8 as a

function of ¢, we can use the solution for » in Eq. (9.8a):

do l

it

Since r is known as a function of ¢ from Eq. (9.13), it is possible

to integrate to find 6:

t
l
06— 6, = — dt. 9.15
to M7

t— o 9.13

9.14
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Often we are interested in the path of the particle, which means
knowing r as a function of 6 rather than as a function of time.
We call 7(8) the orbit of the particle. (The term is used even if
the trajectory does not close on itself.) Dividing Eq. (9.14) by
Eq. (9.12) gives

a _ L 1 .
dr w? NV (@R/u)E — Uen)

This completes the formal solution of the central force problem.
We can obtain »(f), 6(t), or r(f) as we please; all we need to do is
evaluate the appropriate integrals.

You may have noticed that we found the solution without using
the equations of motion, Egs. (9.7¢ and b). Actually, we did
use them, but in a disguised form. For instance, differentiating
I = ur?6 with respect to time gives 0 = ur2d + 2rié or

w(ré + 2#6) = 0,

which is identical to the tangential equation of motion, Eq. (9.7b).
Similarly, differentiation of the energy equation with respect to
time gives the radial equation of motion, Eq. (9.7a).

9.16

The Law of Equal Areas

We have already shown in Example 6.3 that for any central force,
r sweeps out equal areas in equal times. This general property
of central force motion is a direct consequence of the fact that the
angular momentum is constant.

9.4 Finding the Motion in Real Problems

In order to apply the solution for the motion which we found in
the last section, we need to relate the position vectors of m; and
me to r and evaluate [ and E.

From Egs. (9.6a and b) the position vectors of m; and m, rela-
tive to the center of mass are

’ Me

tp=—"r 9.17a
mi + Mme
r, = — L 9.17b
my + Mme

r; and r; lie along r. They remain back to back in the plane of
motion. Hence, m; and m, move about their center of mass in
the fixed plane, separated by distance r.
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In many problems, like the motion of a planet around the sun,

the masses of the two particles are very different. If my > my,
Egs. (9.17a and b) become
e
r, =~ 0.
The reduced mass u is approximately m,, and the center of mass
lies at m,. In this case the more massive particle is essentially
fixed at the origin, and there is no important difference between
the actual two particle problem and the equivalent one particle
problem.

In the one particle problem the angular momentum is
L =purxv.

It is easy to show that L is simply the angular momentum of m;
and m, about the center of mass, L..

L, = mir; X Vi + mary, X vy,

where vi = ¥ and v, = ¥,. Using Egs. (9.17a and b) we have

myms mime

b i X T X
= pr X (Vi — Vy)
= ur XV
= L.

Similarly, the total energy E is the energy of m; and m, relative
to their center of mass, FE..

E, = 3mi(vy - v) + Ema(vy - vy) -+ UE).

From Egs. (9.16a and b), we have mavy = pv and mgv; = —puv.
Hence,

E. = $uv - (vi — v3) + U(r)
= 3u(v-v) + U@)
= K.

9.5 The Energy Equation and Energy Diagrams

In Sec. 9.3 we found two equivalent ways of writing E, the total
energy in the center of mass system. According to Eq. (9.8b),

E = 3w?* + U®),
and according to Eq. (9.11),
E = 21_’”-.2 + Uerf(T)-
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We generally need to use both these forms in analyzing central
force motion. The first form, 3uv? + U(7), is handy for evaluating
E; all we need to know is the relative speed and position at some
instant. However, v? = 72 + (r§)?, and this dependence on two
coordinates, r and 6, makes it difficult to visualize the motion.
In contrast, the second form, $u7? + U.u(r) depends on the single
coordinate r. In fact, it is identical to the equation for the energy
of a particle of mass u constrained to move along a straight line
with kinetic energy 3ui? and potential energy U.:(r). The coor-
dinate 6 is completely suppressed—the kinetic energy associated
with the tangential motion, $u(r6)? is accounted for in the effective
potential by the relations

PV

Fu(re)? = e
l2

Ueff(’l') =5 + U(T)
2ur

The equation
E = jui* + Uenl(r)

involves only the radial motion. Consequently, we can use the
energy diagram technique developed in Chap. 4 to find the
qualitative features of the radial motion.

To see how the method works, let's start by looking at a very
simple system, two noninteracting particles.

Noninteracting Particles

Two noninteracting particles m; and m, move toward each other with
velocities v, and v,. Their paths are offset by distance b, as shown in
the sketch. Let us investigate the equivalent one body description of
this system.

The relative velocity is

V0=i’
=i’1'"i'2
=V; — Va.

Vo is constant since v, and v, are constant. The energy of the system
relative to the center of mass is

E = 3uve? + U@r) = Suve?,

since U(r) = 0 for noninteracting particles.
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In order to draw the energy diagram we need to find the effective
potential
2 2

l
Uery = —-
2ur? +Uon 2ur?

We could evaluate [ by direct computation, but it is simpler to use the
relation

Ueff =

12
E = 91‘#7"2 + -
2ur?
= '21"#7}02-
When m; and m, pass each other, r = b and# = 0. Hence

12

= 1 2
= o2,
2ub 2MYo
I = b,
and

b2
Uett = ‘é‘,lllvo2 -
7:2

The energy diagram is shown in the sketch. The kinetic energy asso-
ciated with radial motion is

K = }ui?
=E — U
K is never negative so that the motion is restricted to regions where

E — U > 0. Initially r is very large. As the particles approach, the
kinetic energy decreases, vanishing at the turning point r, where the
radial velocity is zero and the motion is purely tangential. At the turn-
ing point E = U.u(r,), which gives

1 1 b

TMV® = Zuvo? =
T

or

re = b

as we expect, since r; is the distance of closest approach of the particles.
Once the turning point is passed, r increases and the particles separate.
In our one dimensional picture, the particle u ‘‘bounces off'’ the barrier
of the effective potential.

Now let us apply energy diagrams to the meatier problem of
planetary motion. For the attractive gravitational force,

Gmm
sy = - s
’
Gm;mg.

r



386

CENTRAL FORCE MOTION

(By the usual convention, we take U(wx) = 0.) The effective
potential energy is

Gmﬂ’nz ZZ
Ueff = - 2'
r 2ur
B 2
E’ \ 2ur?
= \
\
\
\
\
Uest \\
\ N Case 1: E>0
\ :
\\
NS
\\\\
0 Case2: E=0 ,
\ Case 3: E<0
—
///”
Case 4: E=FE_. -
mm//
PR
-~
-
//
" Gmym,
2 Ty
/
/
/
/

If I £ 0, the repulsive centrifugal potential 12/(2ur?) dominates at
small r, whereas the attractive gravitational potential —Gmm,/r
dominates at large ». The drawing shows the energy diagram with
various values of the total energy. The kinetic energy of radial
motion is K = E — U, and the motion is restricted to regions
where K > 0. The nature of the motion is determined by the
total energy. Here are the various possibilities:

1. E > 0: r is unbounded for large values but must exceed a
certain minimum if [ > 0. The particles are kept apart by the
“‘centrifugal barrier.”

2. I = 0: Thisis qualitatively similar to case 1 but on the boundary
between unbounded and bounded motion.

3. E < 0: The motion is bounded for both large and small ». The
two particles form a bound system.
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4, I = Eni: r is restricted to one value. The particles stay a
constant distance from one another.

In the next section we shall find that case 1 corresponds to motion
in a hyperbola; case 2, to a parabola; case 3, to an ellipse; and
case 4, to a circle.

There is one other possibility, I = 0. In this case the particles
move along a straight line on a collision course, since when [ is
zero there is no centrifugal barrier to hold them apart.

Example 9.2 The Capture of Comets

Suppose that a comet with £ > 0 drifts into the solar system. From
our discussion of the energy diagram for motion under a gravitational
force, the comet will approach the sun and then swing away, never to
~()— return. In order for the comet to become a member of the solar sys-
N tem, its energy would have to be reduced to a negative value. However,
the gravitational force is conservative and the comet’s total energy cannot
change.
The situation is quite different if more than two bodies are involved.
For instance, if the comet is deflected by a massive planet like Jupiter,
it can transfer energy to the planet and so become trapped in the solar
v system.
J“szr_’_7/— Suppose that a comet is heading outward from the sun toward the
/  orbit of Jupiter, as shown in the sketch. Let the velocity of the comet
before it starts to interact appreciably with Jupiter be v;, and let Jupiter’s
velocity be V. For simplicity we shall assume that the orbits are not
appreciably deflected by the sun during the time of interaction.
In the comet-Jupiter center of mass system Jupiter is essentially at
rest, and the center of mass velocity of the comet is v;,, = v; — V, as
shown in figure a.

—V

Comet

(@)

In the center of mass system the path of the comet is deflected, but

the final speed is equal to the initial speed »;,.. Hence, the interaction

merely rotates v;, through some angle ©® to a new direction Vs, as shown
in Fig. b. The final velocity in the space fixed system is

vy = vz + V.
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Figure ¢ shows v, and, for comparison, v;. For the deflection shown,
vy < v;, and the comet’s energy has decreased. Conversely, if the deflec-
tion is in the opposite direction, interaction with Jupiter would increase
the energy, possibly freeing a bound comet from the solar system. A
large proportion of known comets have energies close to zero, so close
that it is often difficult to determine from observations whether the orbit
is elliptic (# < 0) or hyperbolic (£ > 0). The interaction of a comet
with Jupiter is therefore often sufficient to change the orbit from unbound
to bound, or vice versa.

This mechanism for picking up energy from a planet can be used to
accelerate an interplanetary spacecraft. By picking the orbit cleverly,
the spacecraft can ‘*hop’’ from planet to planet with a great saving in
fuel.

The process we have described may seem to contradict the idea that
the gravitational force is strictly conservative. Only gravity acts on the
comet and yet its total energy can change. The reason is that the
comet experiences a time-dependent gravitational force, and time-
dependent forces are intrinsically nonconservative. Nevertheless, the
total energy of the entire system is conserved, as we expect.

Perturbed Circular Orbit

A satellite of mass m orbits the earth in a circle of radius 7. One of its
engines is fired briefly toward the center of the earth, changing the
energy of the satellite but not its angular momentum. The problem is
to find the new orbit.

The energy diagram shows the initial energy E; and the final energy
E;. Note that firing the engine radially does not change the effective
potential because [ is not altered. Since the earth’'s mass M, is much
greater than m, the reduced mass is nearly m and the earth is effectively
fixed.

If E;is not much greater than E;, the energy diagram shows that r
never differs much from ro. Rather than solve the planetary motion
problem exactly, as we shall do in the next section, we instead approxi-
mate Ug(r) in the neighborhood of ry by a parabolic potential. As we
know from our analysis of small oscillations of a particle about equilib-
rium, Sec. 4.10, the resulting radial motion of the satellite will be simple
harmonic motion about r, to good accuracy.

The effective potential is, with ¢ = GmM,,

12
Uty = = S+

r 2mr?

The minimum of U,y is at r = ro. Since the slope is zero there, we have
AU
dr |Iro

c_ v

o2 mred

’
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which gives
| = \/mCTo- 1

(This result can also be found by applying Newton’s second law to circular
motion.) As we recall from Sec. 4.10, the frequency of oscillation of the
system, which we shall denote by S, is

G
m
where
2
k= d Ueff 2
dr? Iro
This is readily evaluated to yield
l
B = C = . 3
’I'n?'o3 m7'02
Hence, the radial position is given by
r =19+ A sin Gt 4

We have omitted the term B cos 3t in order to satisfy the initial condi-
tion r(0) = ro. Although we could calculate the amplitude A in terms
of Ey, we shall not bother with the algebra here except to note that
A < ry for E; nearly equal to E,.

To find the new orbit, we must eliminate { and express r as a function
of 6. For the circular orbit,

6 = s or 5

e=< l )t. 6
77’L7‘o2

Equation (5) is accurate enough for our purposes, even though the radius
oscillates slightly after the engine is fired; ¢ occurs only in a small correc-
tion term to r in Eq. (4), and we are neglecting terms of order A and
higher.

From Egs. (1) and (5) we see that the frequency of rotation of the
satellite around the earth is

l _ \/mC’ro:\/Z

mro? mro?

mro‘"
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Surprisingly, the frequency of rotation is identical to the frequency of
radial oscillation. If we substitute Eq. (7) in Eq. (4), we obtain

r =19+ A sin 0. 8

The new orbit is shown as the solid line in the sketch. The orbit looks
almost circular, but it is no longer centered on the earth.

As we shall show in Sec. 9.6, the exact orbit for £ = Ey is an ellipse
with the equation

To

"I rsing
It A /ro K1,

To

T T A/roysind

= ro(l —i—ésin 0)
To

ro + A sin 6.

I

To first order in A, Eq. (8) is the equation of an ellipse. However, the
exact calculation is harder to derive (and to digest) than is the approxi-
mate result we found by using the energy diagram.

9.6 Planetary Motion

Let us now solve the main problem of the chapter—finding the
orbit for the gravitational interaction
Mm C

—_

Ur) = —G—
r
where M is the mass of the sun and m is the mass of a planet.
Alternatively, M could be the mass of a planet and m the mass of
a satellite. Before proceeding with the calculation, it might be
useful to consider whether or not this is a realistic description of
the interaction of the sun and a planet. If both bodies were
homogeneous spheres, they would interact like point particles as
we saw in Note 2.1, and our formula would be exact. However,
most of the members of the solar system are neither perfectly
homogeneous nor perfectly spherical. For example, satellites
around the moon are perturbed by mass concentrations (‘‘mas-
cons”) in the moon, and the planet Mercury may be slightly
perturbed by an equatorial bulge of the sun. Furthermore, the
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solar system is by no means a two body system. Each planet is
attracted by all the other planets as well as by the sun.

Fortunately, none of these effects is particularly large. Most
of the mass of the solar system is in the sun, so that the attrac-
tion of the planets for each other is quite feeble. The largest
interaction is between Jupiter and Saturn. The effect of this
perturbation is chiefly to change the speed of each planet, so that
the law of equal areas no longer holds exactly. However, the
perturbation never shifts Jupiter by more than a few minutes of
arc from its expected position (one minute of arc is approximately
equal to one-thirtieth the moon’s diameter as seen from the earth).
In practice, one first calculates planetary orbits neglecting the
other planets and then calculates small corrections to the orbits
due to their presence. Such a procedure is called a perturba-
tion method. (The transuranic planets were actually discovered
by their small perturbing effects on the orbits of the known outer
planets.) Furthermore, if a body is not quite homogeneous or
spherically symmetric, its gravitational field can be shown to have
terms depending on 1/73, 1/r4, etc., in addition to the main 1/r2
term. The coefficients depend on the size of the body com-
pared with r; over the span of the solar system the higher order
terms become negligible, although they may be important for a
nearby satellite.

Returning to our idealized planetary motion problem U(r) =
— C/r, we find that the equation for the orbit Eq. (9.16) becomes,
using indefinite integrals,

dr
6—6=1 / rQuErt + 2uCr — 1Y

where 6, is a constant of integration. The integral over 7 is listed
in tables of integrals. The result is

. ( wCr — 2
? — 6y = arcsin ___—)
r V uC* + 2uEl

or
uCr — 12 = r V p2C? + 2uEl? sin (6 — 6,).
Solving for r,

_ (1/uC) 015
r = — T . .
1 — V1 + QEE/uC? sin (6 — 65)
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The usual convention is to take 6, = —x/2 and to introduce the
parameters
22
= — 9.19
To p,C
2E1?
= 4/1 . 9.20
€ \/ + .

Physically, ry is the radius of the circular orbit corresponding to
the given values of [, u, and C. The dimensionless parameter e,
called the eccentricity, characterizes the shape of the orbit, as
we shall see. With these replacements, Eq. (9.18) becomes

To

- ° 9.21
1l —ecosé

r

Equation (9.21) looks more familiar in cartesian coordinates
x =rcosf,y =rsinf. Rewritingitinthe formr — ercos § = r,
we have

\/xz+y2—ex=ro

or
(1 — e¥x — 2rpex + y2 = ro% 9.22
Here are the possibilities:

1. € > 1: The coefficients of z? and y? are unequal and opposite
in sign; the equation has the form y? — Ax? — Bz = constant,
which is the equation of a hyperbola. From Eq. (9.20), e > 1
whenever £ > 0.

2. ¢ = 1: Eq. (9.22) becomes

<

2 7o

zﬁ
l
I
|

nN
S
=)
N

This is the equation of a parabola. ¢ = 1 when E = 0.

3. 0 < e < 1: The coefficients of 2% and y? are unequal but of the
same sign; the equation has the form y? 4+ 4a? — Bz = constant,
which is the equation of an ellipse. The term linear in z means
that the geometric center of the ellipse is not at the origin of coor-
dinates. As proved in Note 9.1, one focus of the ellipse is at the
origin. For e < 1, the allowed values of FE are

—é?SE<O.
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When E = —uC?/212, ¢ = 0 and the equation of the orbit becomes
z? + y? = ro?% the ellipse degenerates to a circle.

Hyperbolic Orbits

In order to use the orbit equation we must be able to express the orbit
in terms of experimentally accessible parameters. For example, if the
orbit is unbound, we might know the energy and the initial trajectory.

In this example we shall show how to relate some experimental para-
meters to the trajectory for the case of a hyperbolic orbit. The results
could apply to the motion of a comet about the sun, or to the trajectory
of a charged particle scattering off an atomic nucleus.

Let the speed of u be vy when u is far from the origin, and let the initial
path pass the origin at distance b, as shown. b is commonly called the
impact parameter. The angular momentum [ and energy E are

l = [M)ob
E = i‘lwoz-
For an inverse square force, U(r) = —C/r and the equation of the
orbit is
To
= ——
1 — ecos @
where
12 uvotb?
To = — =
uC C
_ 2Eb?
C
and
2E1?
€= ,\/1 +
uC?

2Eb\?

= ./1 7).

\/+<0>
When 0 = m, r = ry,,

To
1+ e
2Eb2/C .
T 14 V1 + Eb/CY

For E — o, rp, — b. Hence0 < Tmin < b.

Tmin =
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The angle of the asymptotes 6, can be found from the orbit equation
by letting r — «. We find

W=

on the interaction, u is deflected through the angle Y = 7 — 26,. The
deflection angle ¢ approaches 180° if (2Eb/(C)? < 1.

Rutherford’s classic experiment that established the nuclear model
of the atom showed that fast alpha particles (doubly charged helium
nuclei) interact with single atoms in thin gold foils according to the
Coulomb potential U(r) = —C’/r. He found that the alpha particles
followed hyperbolic orbits even when r;, was much less than the radius
of the atom, proving that the charge of an atom must be concentrated
in a small volume, the nucleus. Surprisingly, Rutherford was unable
to determine whether the gold nuclei attracted (C’ > 0) or repelled

-(C" < 0) alpha particles. The eccentricity, hence the scattering angle,

depends on (2Eb/C")?, making it impossible to determine the algebraic
sign of the strength parameter C’.

Elliptical orbits (£ < 0, 0 < ¢ < 1) are so important it is worth
looking at their properties in more detail. From the orbit
equation, Eq. (9.21),

To

r =
1 —ecosb

The maximum value of r occurs at § = 0:

To

max — * 9.23
4 1 —e¢
the minimum value of » occurs at § = =:
oy = — L 9.24
14 ¢
The length of the major axis is
A = "min + "max
1 1
_r0(1+e+1—e>
= 9.25

1—52.
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Expressing ro and € in terms of E, [, u, C by Eq. (9.19) and (9.20)
gives

A ="
1 — ¢

21%/(uC)
1 —[1 4 2E1*/(uC?)]

=—" 9.26

The length of the major axis is independent of [; orbits with the
same major axis have the same energy. For instance, all the
orbits in the sketch correspond to the same value of E.

The ratio max/"min is

rosx _ 7o/(L — €
Tmin To/(l + 6)

1+e'
1 —¢

When € is near zero, rm.x/Tmin = 1 and the ellipse is nearly cir-
cular. When eis near 1, the ellipse is very elongated. The shape
of the ellipse is determined entirely by ¢; r, only supplies the scale.

Table 9.1 gives the eccentricities of the orbits of the planets and
Halley’s comet. The table reveals why the Ptolemaic theory of
circles moving on circles was reasonably successful in dealing with
early observations. All the planetary orbits, except those of Mer-
cury and Pluto, have eccentricities near zero and are nearly cir-
cular. Mercury is never far from the sun and is hard to observe,
and Pluto was not discovered until 1930, so that neither of these

PLANET ECCENTRICITY
Mercury 0.206
Venus 0.007
Earth 0.017
Mars 0.093
Jupiter 0.048
Saturn 0.055
Uranus 0.051
Neptune 0.007
Pluto 0.252

Halley's Comet 0.967
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planets was an impediment to the Ptolemaists. Mars has the
most eccentric orbit of the easily observable planets, and its
motion was a stumbling block to the Ptolemaic theory. Kepler
discovered his laws of planetary motion by trying to fit his calcula-
tions to Brahe’s accurate observations of Mars’ orbit.

Note 9.1 derives the geometric properties of elliptical orbits.
We turn now to some examples.

Satellite Orbit

A satellite of mass m = 2,000 kg is in elliptic orbit about the earth. At
perigee (closest approach to the earth) it has an altitude of 1,100 km and
at apogee (farthest distance from the earth) its altitude is 4,100 km.
What are the satellite’s energy £ and angular momentum [? How fast
is it traveling at perigee and at apogee?

Since m << M., we can take u =~ m and assume that the earth is fixed.
The radius of the earth is R, = 6,400 km, and the major axis of the orbit
is therefore

A = [1,100 + 4,100 + 2(6,400)]km

1.8 X 107 m.

I

Knowing A, we can find F from Eq. (9.26):
- ¢ o g=C
(—E) A
C = GmM, = mgR.z?, since ¢ = GM,/R.2. Numerically,
C = (2 X 10%)(9.8)(6.4 X 10%)2 = 8.0 X 107 J-m.

p=--¢
A

—4.5 X 10%° J.

The initial energy of the satellite before launch was

_ GmM.,
R,
_c

R,
—12.5 X 10%° J.

B =

The energy needed to put the satellite into orbit, neglecting losses due
to friction, is E — E; = 8 X 1010 J.
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We can find the angular momentum from the eccentricity. Since

o and r T
= )
14 € S

Tmin =

we have
A+ €)rmin = A — €)nax

and

_ Tmex — "min

Tmax T Tmin

Tmax — "min
A

3 X 108

1.8 X 10¢

D=

From the definition of ¢, Eq. (9.20),

2E1?
e2 =1+

mC?
which yields

l =12 X 101 kg'm?/s.

We can find the speed v of the satellite at any r from the energy
equation

1
E=—m1)2—g-
2 r

At perigee, r = (1,100 + 6,400) km = 7.5 X 10® m, and the speed at
perigee is

v, = 7,900 m/s.

To find the speed at apogee, v,, most simply, note that at apogee and
perigee the velocity of the satellite is purely tangential. Hence, by con-
servation of angular momentum,

MWUpTp = MUglq,

and we find that

UpT'p

Ta

5,600 m/s.

Vg =
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Suppose that a body is projected from the surface of the earth
with initial velocity ve. If vy is less than the escape velocity,
1.12 X 10* m/s, the total energy of the body is negative, and it
travels in an elliptic orbit with one focus at the center of earth.
As the drawing on the left shows, the body inevitably returns to
earth.

\
\
\
\
\
_\Y\

\

\

/

/

In order to put a spacecraft into orbit around the earth, the
magnitude and direction of its velocity must be altered at a point
where the old and new orbits intersect. Orbit transfer maneuvers
are frequently needed in astronautics. For example, on an
Apollo moon flight the vehicle is first put into near earth orbit
and is then transferred to a trajectory toward the moon. The
next example illustrates the physical principles of orbit transfer.

Satellite Maneuver

One of the commonest orbit maneuvers is the transfer between an ellip-
tical and a circular orbit. This maneuver is used to inject spacecrafts
into high orbits around the earth, or to put a planetary exploration satel-
lite into a low orbit for surface inspection.

Suppose, for instance, that we want to transfer the satellite of Example
9.5 into a circular orbit at perigee, as shown in the sketch. Let F and [
be the initial energy and angular momentum of the satellite and let E’,
!’ be the parameters for the new orbit.

We start our analysis by finding F, [, E’, I’. For simplicity, we shall
assume that the amount of fuel burned by the satellite’s rockets at
transfer is negligible compared with the satellite's mass m = 2,000 kg.

From Eq. (9.26), E = —C/A. Since A/r, = 18 X 108/(7.5 X 10%) = 4&,
we have

—_— 5 C.

= - 1

127,

r, is the radius at perigee, hence the radius of the desired circular orbit.
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An easy way to find [ is to use the one dimensional energy equation,
Eqg. (9.9):

1 . ;2 C
E=5mr2+2mr2—;- 2
At perigee, 7 = 0 and r = r,, and we find
12 = &mCr,. 3
For the circular orbit, the major axis is 2r, and therefore
p--L ’
2rp

7 = 0 for the circular orbit, and from the one dimensional energy
equation,

’2
E = ro_ gr
2mrp? 1y
which yields
U2 = mCrp. 5

How can we switch from E, [ to E’, I'? Since B’ < Eandl’ <1, we
want to apply a braking thrust in order to reduce both the energy and the
angular momentum. Thrust in the radial direction at perigee changes
the energy but not the angular momentum, whereas tangential thrust
changes both parameters. The old and new orbits are tangential where
they intersect, and we might suspect that tangential thrust alone would
be sufficient. We now show that this is correct.

At perigee, v is purely tangential, and tangential thrust changes the
speed from v to /. From the energy equation,

1
E=—mz;2—-g:
2 r

and at perigee

o2 (54)
m Tp

1cC
6 mr,
using Eqg. (1). Similarly,
/2 = E E + g
m Tp
C
= —
mry

using Eq. (4).
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We now check to see if the angular momentum has its required value,
At perigee, v is perpendicular to r and

l

mrpv

\/7 c
Mrp A |- —
6 mry
7
A |- mr,C,
6 P

as we have already found, Eq. (3). Similarly,

A 7
U = mrpy

C
= mrp | —
mry

\/mr,,C ,

which is the required value according to Eq. (5).

The maneuver can be executed by applying a braking thrust tangential
to the orbit at perigee to reduce the speed of the satellite from v =
VI1C/(6mry) = 7,900 m/s to v = V C/(mrp,) = 7,300 m/s.

Practical orbit maneuvers are generally planned to economize on the
fuel. According to our discussion of rockets in Sec. 3.5, if the mass of
the spacecraft changes from M, to M; — AM during the rocket burn,
its velocity changes by

Av = —uln __]_14,___ :
M, — AM

Therefore, the smaller the change in speed required by a maneuver, the
more economical of fuel it is.

The maneuver described in this example reaches the maximum effi-
ciency. At transfer,

E — E' = tmv? — Fmo'?
= 3mo? — Im(v — Av)?
= mv + Av.

|v] is greatest at perigee, and since Av is parallel to v, |Av| is least there
to obtain the needed value of £ — E'.

9.7 Kepler’'s Laws

Johannes Kepler was the assistant of the sixteenth century Danish
astronomer Tycho Brahe. They had a remarkable combination of
talents. Brahe made planetary measurements of unprecedented
accuracy, and Kepler had the mathematical genius and fortitude to
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show that Brahe's data could be fitted into three simple empirical
laws. The task was formidable. It took Kepler 18 years of labor-
jous calculation to obtain the following three laws:

1. Each planet moves in an ellipse with the sun at one focus.
2. The radius vector from the sun to a planet sweeps out equal
areas in equal times.

3. The period of revolution T of a planet about the sun is related
to the major axis of the ellipse A by

T? = kA3,
where k is the same for all the planets.

Kepler's first law follows from the results of the last section;
elliptic orbits are characteristic of the inverse square law force.
The second law is a general feature of central force motion as we
demonstrated in Example 6.3.

Kepler’'s third law is easily proved by the following trick: We
start with the definition of angular momentum, Eq. (9.8a),

l= p,7‘2 vt

dt

which can be written

l

— dt = 3r? dé. 9.27
2u

But 3r2df is a differential element of area in polar coordinates.
Over one complete period, the whole area of the ellipse is swept
out, and integration of Eq. (9.27) yields

l
™ T = area of ellipse = wab, 9.28
M

where a = A/2 is the semimajor axis and b is the semiminor axis.
From Eq. (9.26),

c

a = (—ZE')’
and from Note 9.1,

l

b= ——
\/—-ZME
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Equation (9.28) becomes

4 2
T2 = Lzﬂ.zazbz
B w2uC?
 (—2E3)
T

= >0 A3, 9.29

using A = C/(—E). Since C = GMm and u = Mm/(M + m),
we obtain finally

w2

2 — 43
T 2(M+m)GA'

9.30
This result shows that Kepler's third law is not exact; T?/A%
depends slightly on the planet’'s mass. However, even for Jupi-
ter, the largest planet, m/M is only 1/1,000, so that Kepler’s third
law holds to good accuracy in the solar system.

Kepler's laws also apply to the motion of satellites around a
planet. In Table 9.2 we show how his third law, the law of periods,
holds for a number of artificial earth satellites. The ratio A3/7T?
is constant to a fraction of a percent, although the periods vary
by nearly a factor of 100. A more refined check would take into
account the nonspherical shape of the earth and perturbations
due to the moon.

SATELLITE € A, km T, min A3/T?

Cosmos 358 0.002 13,823 95.2 2.91 X 108
Explorer 17 0.047 13,928 96.39 2.91 X 108
Cosmos 374 0.104 15,446 112.3 2.92 X 108
Cosmos 382 0.260 18,117 143 2.91 X 108
ATS 2 0.455 24,123 219.7 2 91 X 108
15th Molniya | 0.738 52,537 706 2.91 X 108
Ers 13 0.887 117,390 2,352 2.92 X 108
Ogo 3 0.901 135,270 2,917 2.91 X 108
Explorer 34 0.940 224,150 6,225 2.91 X 108
Explorer 28 0.952 273,740 8,400 2.91 X 108

* Data taken from the data catalogs of the National Space Science Data Center
and the World Data Center A. The catalogs give satellite altitudes relative to the
surface of the earth; we assumed the diameter of the earth to be 12,757 km in
calculating A.
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The Law of Periods

Here is a more general way of deriving the law of periods. Starting from

Eq. (9.13) we have, with U(r) = —C/r,
t it = u /Tb rdr )
ta e (QuEr? 4 2uCr — %)}

The integral is listed in standard tables. For the case of interest, £ < 0,
we find
V2uEr® + 2uCr — 12|
2E ra

— (,uC) 71 arcsin ( -_—_ZMET —ue )
2E ) \/ —2uE V12 + 2Bl
Fortunately this result can be greatly simplified. For a complete period,

th —to = T,and r, = r,. The first term on the right hand side vanishes,
and in the second term, the arcsine changes by 2wr. The result is

by — ta =

b

Ta

7wl 1
(=EY\/ —2uE
or
. muC?
(—2E%)
Ty,
2C

as we found earlier, Eq. (9.29).

Properties of the Ellipse
The equation of any conic section is, in polar coordinates,

7o
r = —
1 — ecos @

Converting to cartesian coordinates » = V 2% + y%, « = rcos 0, Eq. (1)
becomes

A — e)2? — 2rox + y? = rod 2
The ellipse corresponds to the case 0 < ¢ < 1. The ellipse described

by Egs. (1) and (2) is symmetrical about the z axis, but its center does not
lie at the origin.
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We can use Eq. (1) to determine the important dimensions of the
ellipse. The maximum value of r, which occurs at 8 = 0, is

The minimum value of r, which occurs at § = , is

To

1+e

Tmin =

The major axis is

A- = Tmax + Tmin
1 4 1
=7
0 l1—¢ 1+4c¢€
— 27y . 3
1 — ¢
The semimajor axis is
A
a=—
2
1 — ¢
The distance from the origin to the center of the ellipse is
To = @ — Tmin
1 1
1—¢€ 1+4c¢
= _Te€ | 4
1 — ¢?

We see that the eccentricity is equal to the ratio zo/a.

To find the length of the semiminor axis b = V72 — z0% note that
the tip of the semiminor axis has angular coordinates given by cos § =
Zo/r. We have

To

=

1 —ecos @
To

- 1-— 62’)0/7‘
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or
62
r=1r9+ exo =1ro| 1+
1 — ¢
1 — ¢
Hence,
’
— €
To

‘\/1—-52

Finally, we shall prove that the origin lies at a focus of the ellipse.
According to the definition of an ellipse, the sum of the distances from

r , the foci to a point on the ellipse is a constant. Hence, for the ellipse
shown in the sketch we need to prove r + ' = constant. By the law of
cosines,

7’2 = r? + 4x4® — 4rx, cos 6. 5

From Eq. (1) we find that

T —To
rcos = ——
€

Equation (5) becomes

4z, 4roto
r'? =7 — — 1 4 Ax? + ——
€

Using the relation zo = roe/(1 — €?) from Eq. (4) gives

P2 - 4ry r+ Ary%e? + 4ry?
1 — ¢ 1—-e)? (A —é€)

4ry 47‘02
r2 — r .
(1 ~ 52> ta= ey

The right hand side is a perfect square.

, +(r— 270
1— ¢

= +@ — A).

r'?

=
I

Since A > r, we must choose the negative sign to keep ' > 0.
Therefore,

r+r=A4

constant.
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To conclude, we list a few of our results in terms of E, [, u, C for the
inverse square force problem U(r) = —C/r. When using these for-
mulas, £ must be taken to be a negative number. From Egs. (9.19) and
(9.20),

ZZ
T = —

nC
and

e = V14 2E12/(uC?.

Hence,

L . To C
semimajor axis @ = = —
1 —¢? —2F

semiminor axis b =

To _ l
V1—e V —2uF

To€ C 2E12
= (= h_ .
o 1 — ¢ (——2E> + uC?

9.1 Obtain Egs. (9.7a and b) by differentiating Egs. (9.8a and b) with
respect to time.

9.2 A particle of mass 50 g moves under an attractive central force of
magnitude 473 dynes. The angular momentum is equal to 1,000 g'cm?/s.

a. Find the effective potential energy.

b. Indicate on a sketch of the effective potential the total energy for
circular motion.

c. The radius of the particle’s orbit varies between ro and 2r,. Find 7.
Ans. (¢) ro = 2.8 cm

9.3 A particle moves in a circle under the influence of an inverse cube
law force. Show that the particle can also move with uniform radial
velocity, either in or out. (This is an example of unstable motion. Any
slight perturbation to the circular orbit will start the particle moving
radially, and it will continue to do so.) Find @ as a function of  for motion
with uniform radial velocity.

9.4 For what values of n are circular orbits stable with the potential
energy U(r) = —A/r*, where 4 > 0?

9.5 A 2-kg mass on a frictionless table is attached to one end of a mass-
less spring. The other end of the spring is held by a frictionless pivot.
The spring produces a force of magnitude 37 newtons on the mass, where
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r is the distance in meters from the pivot to the mass. The mass moves
in a circle and has a total energy of 12 J.

a. Find the radius of the orbit and the velocity of the mass.

b. The mass is struck by a sudden sharp blow, giving it instantaneous
velocity of 1 m/s radially outward. Show the state of the system before
and after the blow on a sketch of the energy diagram.

c. For the new orbit, find the maximum and minimum values of 7.

9.6 A particle of mass m moves under an attractive central force Kr*
with angular momentum [. For what energy will the motion be circular,
and what is the radius of the circle? Find the frequency of radial oscil-
lations if the particle is given a small radial impulse.

9.7 Avrocketisin elliptic orbit around the earth. To putitinto an escape
orbit, its engine is fired briefly, changing the rocket's velocity by AV.
Where in the orbit, and in what direction, should the firing occur to attain
escape with a minimum value of AV?
9.8 A projectile of mass m is fired from the surface of the earth at an
angle a from the vertical. The initial speed v, is equal to \/Gille/Re.
How high does the projectile rise? Neglect air resistance and the earth's
rotation. (Hint: It is probably easier to apply the conservation laws
directly instead of using the orbit equations.)

Ans. clue. If a = 60°, then ry,, = 3R./2

9.9 Halley's comet is in an elliptic orbit about the sun. The eccentricity
of the orbit is 0.967 and the period is 76 years. The mass of the sun is
2 X 10% kg, and G = 6.67 X 107! N-m?/kg?.

a. Using these data, determine the distance of Halley’s comet from
the sun at perihelion and at aphelion.

b. What is the speed of Halley’s comet when it is closest to the sun?

9.10 a. A satellite of mass m is in circular orbit about the earth. The
radius of the orbit is 7o and the mass of the earth is /.. Find the total
mechanical energy of the satellite.

b. Now suppose that the satellite moves in the extreme upper atmos-
phere of the earth where it is retarded by a constant feeble friction force
f. The satellite will slowly spiral toward the earth. Since the friction
force is weak, the change in radius will be very slow. We can therefore
assume that at any instant the satellite is effectively in a circular orbit
of average radius 7. Find the approximate change in radius per revolu-
tion of the satellite, Ar.

c. Find the approximate change in kinetic energy of the satellite per
revolution, AK.

Ans. (c) AK = +2mrf (note the sign!)

9.11 Before landing men on the moon, the Apollo 11 space vehicle was

put into orbit about the moon. The mass of the vehicle was 9,979 kg

and the period of the orbit was 119 min. The maximum and minimum
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distances from the center of the moon were 1,861 km and 1,838 km.
Assuming the moon to be a uniform spherical body, what is the mass
of the moon according to these data? G = 6.67 X 107! N-m?/kg?.

9.12 A space vehicle is in circular orbit about the earth. The mass of
the vehicle is 3,000 kg and the radius of the orbit is 2R, = 12,800 km. It
is desired to transfer the vehicle to a circular orbit of radius 4R,.

a. What is the minimum energy expenditure required for the transfer?

b. An efficient way to accomplish the transfer is to use a semielliptical
orbit (known as a Hohmann transfer orbit), as shown. What velocity
changes are required at the points of intersection, 4 and B?



