SOM
6 MATHEMATICAL
ASDECTS

| 1]
.Z..

:36Y



202

SOME MATHEMATICAL ASPECTS OF FORCE AND ENERGY

5.1 Introduction

The last chapter introduced quite a few new physical concepts—
work, potential energy, kinetic energy, the work-energy theorem,
conservative and nonconservative forces, and the conservation of
energy.

In this chapter there are no new physical ideas; this chapter is
on mathematics. We are going to introduce several mathematical
techniques which will help express the ideas of the last chapter
in a more revealing manner. The rationale for this is partly that
mathematical elegance can be a source of pleasure, but chiefly
that the results developed here will be useful in other areas of
physics, particularly in the study of electricity and magnetism.
We shall find how to tell whether or not a force is conservative and
how to relate the potential energy to the force.

A word of reassurance: Don’t be alarmed if the mathematics
looks formidable at first. Once you have a little practice with the
new techniques, they will seem quite straightforward. In any
case, you will probably see the same techniques presented from
a different point of view in your study of calculus.

In this chapter we must deal with functions of several variables,
such as a potential energy function which depends on z, ¥, and z.
Our first task is to learn how to take derivatives and find differ-
entials of such functions. If you are already familiar with partial
differentiation the next section can be skipped. Otherwise, read
on.

5.2 Partial Derivatives

We start by reviewing briefly the concept of the differential of a
function f(x) which depends on the single variable z. (Differ-
entials are discussed in greater detail in Note 1.1.)

Consider the value of f(x) at any point z. Let dx be an incre-
ment in z, known as the differential of z, which can be any size
we please. The differential df of f is defined to be

df = <C_cll£) dx.

Note that (df/dx) stands for the derivative

Y _ im A

dr  az—0 AX



Example 5.1

SEC. 5.2 PARTIAL DERIVATIVES 203

The actual change in fis Af = f(z 4+ dz) — f(z). Af differs
from df, as the sketch indicates, but if the limit dz — 0 is to be
taken, the difference can be neglected,! and we can use df and
Af interchangeably.

Now let us consider a function f(x,y) which depends on two
variables z and y. For instance, f could be the area of a rec-
tangle of length x and width y. If we keep the variable y fixed
and let the variable z change by dz, the differential of f in this
case is

i = [ lim flx + Azy) — f(x,y)] da.

Az—0 Ax

The quantity in the bracket looks like a derivative. However, f
depends on two variables and since we are differentiating with
respect to only one variable, the quantity in the bracket is called
a partial derivative. The partial derivative is denoted by df/dx.
(Calculus texts sometimes use f,, but we shall avoid this notation
to prevent confusion with vector components.) df/dx is read
‘“‘the partial derivative of f with respect to 2’’ or ‘‘the partial of f
with respect to z.”” If we want to indicate that the partial deriva-
tive is to be evaluated at some particular point zy, yo, we can write

af(ZOIyO) or _g_f .
dx Jx Izoyo

The procedure for evaluating partial derivatives is straightfor-
ward; in evaluating df/dx, for example, all variables but = are
treated as constants.

Partial Derivatives
Let

f=a%siny.
Then

of
— = 2xsiny,
dx sy

) = z%cos y.
9y

1Specifically, (Af — df) is of order (dz)?, so that IimO[(Af — df)/Az] = 0.
Ax—>
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We can generalize the procedure to any number of variables. For
instance, let

f=y+ezz_

Then

o _ .

dz
af

2=,

dy
of

— = ge*s,
9z

Let us consider what happens to f(z,y) if £ and y both vary.
Let z change by dx and y change by dy. The change in fis

Af = f(z + dz, y + dy) — f(z,y).

The right hand side can be written as follows:

fx + dz, y + dy) — f(z,y) = [f(x + d2, y + dy) — f(z, y + dy)]
+ [f(z, y + dy) — f(z.y)].

The first term on the right is the change in f due to dx; this is given
approximately by

af (x, d
(Af)dueto.'c = f(z :gx-'_—‘_y) Az.

The second term on the right is
of(zy)
9y
The total change is

_ofey +dy) | Of(zy)
=~ Fw dr + 3y dy.

We define the differential of f to be

(Af)due oy = Ay.

Af

af (z, af (z,

_ f@y) dr & f(x,y) . 5.1
ox oy

If we take the limit dz — 0, dy — 0, Af approaches df. In

applications where we are going to take the limit, we can use Af
and df interchangeably. Furthermore, even if we do not take

af
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the limit, the differential gives a good approximation to the actual
value of the change in f if dx and.dy are small, as the following
example illustrates.

Applications of the Partial Derivative

A. Suppose that f is the area of a rectangle of length 2 and width .
Then f = zy. The change in area if = increases by dz and y increases
by dy is
Af = f(z + dz, y + dy) — f(z.y)

= (z + dz)(y + dy) — zy

= ydx + xdy + (dz)(dy).

The differential of f is

if = 6(xy)dy 4 9@y) dy
dx dy
= ydz + z dy.
We see that

Af — df = (dz)(dy).

(dz)(dy) is the area of the small rectangle in the figure. As dz— 0 and
dy — 0, the area (dr)(dy) becomes negligible compared with the area
of the strips xdy and y dz, and we can use the differential df as an
accurate approximation to the actual change, Af.

B. Consider the function

f(zy) = yle=.

At 2 =0, y =1 we have f(0,1) = 1. What is the value of £(0.03,1.01)?
Approximating the change in f by df we have

Af =~ df
af af
= —dx + —dy.
ox + dy Y
The partial derivatives are easily evaluated.
of
= = 73e%
9z 101 yre 0,1
=1
if = 3:1/26”
dy 10,1 0,1
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Taking dz = 0.03, dy = 0.01, we find

df = (1)(0.03) 4 3(0.01)
= 0.06.

The actual value, to four significant figures, is

Af = 0.0617.

5.3 How To Find the Force if You Know the Potential Energy

Our problem is this—suppose that we know the potential energy
function U(r); how do we find F(r)? For one dimensional motion
we already know the answer from Sec. 4.8: F, = —dU/dz. It
isn’'t difficult to generalize this result to three dimensions.

Our starting point is the definition of potential energy:

U,,—Ua=—ﬂ:|-'-dr. 5.2

Let us consider the change in potential energy when a particle
acted on by F undergoes a displacement Ar.

U+ an — U0 = — ¢ Fy - ar, 5.3

(We have labeled the dummy variable of integration by r’ to avoid
confusion with the end points of the line integral, r and r + Ar.)
The left hand side of Eq. (5.3) is the difference in U at the two
ends of the path. Let us call this AU. If Ar is so small that F
does not vary appreciably over the path, the integral on the right
is approximately F - Ar. Therefore

AU = —F - Ar
= —(F, Az + F, Ay + F. Az). 5.4
We can obtain an alternative expression for AU by using the

results of the last section. If we approximate AU by the differ-
ential of U, we have from Eq. (5.1)

U aU U
~—A —A — Az. .5
AU 9z z + oy y + 9% Az 5

Combining Eq. (5.4) and (5.5) yields

U oU oU

— A —A — A2 = —F,Ax — F,Ay — F, Az. 5.6
ox =+ Yy v+ a9z “ ‘ v &Y ¢

When we take the limit (Az,Ay,Az) — 0, the approximation becomes

exact. Since Az, Ay, and Az are independent, Eq. (5.6) remains
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valid even if we choose Ay and Az to be zero. This requires that
the coefficients of Ax on either side of the equation be equal.
We conclude that

e]

U _ o

dr

oU

— = —F 5.7
dy Y

oU

— = —F,.

9z

We have the answer to the problem set at the beginning of this
section—how to find the force from the potential energy function.
However, as we shall see in the next section, there is a much neater
way of expressing Eq. (5.7).

5.4 The Gradient Operator

Equation (5.7) is really a vector equation. We can write it expli-
citly in vector form:
F =iF, 4+ jF, + KkF,

U | 6_(_/' o aU'

= —1— —] k — 5.8
ox dy 9z

A shorthand way to symbolize this result is

F=-vU, 5.9
where
J a .0
VUEi—g+j—U+k'_U' 5.10
ox oy 9z

Equation (5.10) is a definition, so if the notation looks strange,
it is not because you have missed something. Let's see what
v U means.

v U is a vector called the gradient of U or grad U. The symbol
V (called ‘‘del’’) can be written in vector form as follows:

9 .0

veil4i 24k

— 5.11
or oy 0z

Obviously V is not really a vector; it is a vector operator. This
means that when V operates on a scalar function (the potential
energy function in our case), it forms a vector.
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The relation F = —VU is a generalization of the one dimen-
sional case. For example, suppose that U depends only on z.
Then

VU . QU.(_x)i
ox
and
a
F, = — _g
ax

However, for a function of a single variable the partial derivative-
is identical to the familiar total derivative. We have

U

F,=——
dx

Here are a few more examples.

Gravitational Attraction by a Particle

If a particle of mass M is at the origin, the potential energy of mass m
a distance r from the origin is

Uz,yz) = — GMm,
r
Then
F=—vU
- 1GMmv
r

'

Consider the x component of v(1/r). Since r = \/:c2 + y* + 2%, we
have

9 1 _ -

0z (22 + y? + 20 (2 + y? + )
_ x
--%

By symmetry the y and z terms are —y/r3 and —z/r3, respectively.
Hence

F=GMm(iL;”+ji’+ﬁlz>
r

7~3 r3
GMm [—_’]
r3

—GMm L.
TZ

Il

I
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We have recovered the familiar expression for the force of gravity
between two particles.

Uniform Gravitational Field

From the last chapter we know that the potential energy of mass m in a
uniform gravitational field directed downward is

U(z,y,2) = mygz,
where z is the height above ground. The corresponding force is

F=—-vU
a . d

3
= — f— 4§ — 4+ k—
" ('ax+’ay+ az)z

= —mgk.

Gravitational Attraction by Two Point Masses

The previous examples were trivial, since the forces were obvious by
inspection. Here is a more complicated case in which the energy method
gives a helpful shortcut.

Two particles, each of mass M, lie on the z axisat x = aand z = —a,
respectively. Find the force on a particle of mass m located atr.

We start by considering the potential energy of m due to the particle at

z = a. The distance is \/(x — a)? 4+ y? + 2%, and the potential energy

is —GMm/V (@ — a)? + y* + 22 = —GMm/r,. Similarly, the potential
energy due to the massatx = —ais —GMm/\/(x + a)?+ y* + 2% =
— GMm/r,. The total potential energy is the sum of these terms. This
illustrates a major advantage of working with energy rather than force.
Energy is a scalar and is simply additive, whereas forces must be added

vectorially.
We have u = — GMm/r, — GMm/r,, or
1 1
U= —-G@Mm l + }
(@—ay+y+21  (@+a)+y +2

The force components are easily found by differentiation.

oU

Fz(x,yVZ) = - E
_ —GMm[ (z —a) @+ a) ]
[@—ay+y*+ 28 (@+a)+y + 28

+

1 748

=—G’Mm(x—-a x+a)
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Similarly,

aU
Fyryze) = — —

dy

- —GMm (l + l)
1 7'23

Furyz2) = — 9y

9z

If m is far from the other two masses so that |z| >> a, we have 7, = r,
re = r. In this case

F,z—ZGMmf
r2 r
2

F, ~ = 2GMmy
r2 r

P~ o 2GMm 2
rz r

At large distances the force on m is like the force (—2GMm/r?)f that
would be exerted by a single mass 2/ located at the origin.

Perhaps these examples suggest something of the convenience
of the energy method. Potential energy is much simpler to
manipulate than force. If force is needed, we can obtain it from
F = —vU. However, only conservative forces have potential
energy functions associated with them. Nonconservative forces
cannot be expressed as the gradient of a scalar function. For-
tunately, most of the important forces of physics are conservative.
In Sec. 5.6 we shall develop a simple means for telling whether a
force is conservative or not.

We next turn to a discussion of the physical meaning of the
gradient.

5.5 The Physical Meaning of the Gradient

Consider a particle moving under conservative forces with potential
energy U(z,y,2). As the particle moves from the point (z,y,2) to
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(x + dz, y + dy, z + dz), its potential energy changes by
Uz + dz, y + dy, 2 4 d2) — U(z,y,2).

As explained in the last section, when we intend to take the limit
dx— 0, dy — 0, dz— 0, we can represent the change in U by the
differential

aU

dU = —
dx

a a
dx + v dy + —U dz.
9y d9z

The displacement is dr = dz i + dyj + dz k and we can write
aU =vU.dr 5.12
where VU, the gradient of U, is

U, oU,_. aU.
VU_6_xI+6yj+az k.

Equation (5.12) expresses the fundamental property of the gra-
dient. The gradient allows us to find the change in a function
induced by a change in its variables. In fact, Eq. (5.12) is actually
the definition of gradient. Like a vector, the gradient operator
is defined without reference to a particular coordinate system.

To develop physical insight into the meaning of VU, it is helpful
to adopt a pictorial representation of potential energy. So let us
make a brief digression.

Constant Energy Surfaces and Contour Lines

The equation U(z,y,2) = constant = C defines for each value of
C a surface known as a constant energy surface. A particle con-
strained to move on such a surface has constant potential energy.
For example, the gravitational potential energy of a particle m at
distance r = V x? 4 y? + 2% from particle M is U = —GMm/r.
The surfaces of constant energy are given by

GMm

r

=cC
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or
_ GMm
c

r =

The constant energy surfaces are spheres centered on M, as
shown in the drawing. (We have taken GMm =1 N-m? for
convenience.)

Constant energy surfaces are usually difficult to draw, and for
this reason it is generally easier to visualize U by considering the
lines of intersection of the constant energy surfaces with a plane.
These lines are sometimes referred to as constant energy lines
or, more simply, contour lines. For spherical energy surfaces the
contour lines are circles. The next example discusses contour
lines for a more complicated situation.

Energy Contours for a Binary Star System

Consider a satellite of mass m in the gravitational field of a binary star
system. The stars have masses M, and M, and are separated by dis-
tance B. The potential energy of the satellite is

GmM, GmbM,
U= - —- - —;

Ta Ty

where 7, and 7, are its distances from the two stars. Consider the con-
tour lines in a plane through the axis of the stars. Near star a, where
ro K 15, We have

GmM.

Ta

U= —

Here the contour lines are effectively circles. Near star b, where r, <K 7,
the contour lines are also effectively circles.

In the intermediate region between the two stars the effects of both
bodies are important. The contour lines in the drawing opposite were
calculated numerically, with GmM,/R = 1, and My/M, = .
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To see the relation between VU and contour lines, consider
the change in U due to a displacement dr along a contour. In
general

dU =vU - dr.
However, on a contour line, U is constant and dU = 0. Hence
vU-dr =0 (dr along contour line).

Since VU and dr are not zero, we see that the vector VU must
be perpendicular to dr. More generally, VU is perpendicular to
any displacement dr on a constant energy surface. Hence, at
every point in space, VU is perpendicular to the constant energy
surface passing through that point.

It is not hard to show that VU points from lower to higher
potential energy. Consider a displacement dr pointing in the
direction of increasing potential energy. For this displacement
dU > 0, and since dU = VU -dr > 0, we see that VU points
from lower to higher potential energy. Hence the direction of
v U is the direction in which U is increasing most rapidly.

Since VU = —F, we conclude that F is everywhere perpen-
dicular to the constant energy surfaces and points from higher to
lower potential energy.
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Given the contour lines, it is easy to sketch the force. For the

gravitational interaction of a particle with a mass located at the

origin, the contour lines are circles. The force points radially

inward from higher to lower potential energy, as we expect.
<N
/.
(B
Nty

A X

oy

The drawing below shows the force at various points along the
contour lines of the binary star system of Example 5.6.

We can
//,Y *\\\\’
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extend the arrows to form a curve everywhere parallel to F. These
lines show the direction of the force everywhere in space and pro-
vide a simple map of the force field. Note that the force lines are
perpendicular to the energy contours everywhere. Point P, where
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two energy contours intersect, presents a problem. How can the
force point in two directions at once? The answer is that point
P is the equilibrium point between the two stars where the force
vanishes.

If two adjacent energy surfaces differ in energy by AU, then
where the separation is AS,

AU

VU| =~ —

IVU| = 15

Hence, the closer the surfaces, the larger the gradient. More
physically, the force is large where the potential energy is changing
rapidly.

5.6 How to Find Out if a Force Is Conservative

Although we have seen numerous examples of conservative forces,
we have no general test to tell us whether a given force F(r) is
conservative. Let us now attack this problem.
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Our starting point is the observation that if F(r) is conservative,
the work done on a particle by force F as it moves from a to b and
back to a around a closed path is

b
CFedrt o Fedr = (=Us+ U+ (U + Us) = 0.

Path 1 Path 2

Thus, the work done by a conservative force around a closed path

must be zero. Symbolically,

FF-dr =0, 5.13

where the integral is a line integral taken around any closed path.
(The symbol ¢ indicates that the path is closed.) Conversely, if
a force F satisfies Eq. (5.13) for all paths (not just for a special
path), the force must be conservative. Hence, Eq. (5.13) is a
necessary and sufficient condition for a force to be conservative.

Although you may think that the problem is now more com-
plicated than when we began, the fact is that we have taken a
big step forward. However, in order to proceed we must further
transform the problem.

Consider ¢F - dr, where the integral is around loop 1. [f we
break the integral into two integrals, via the ‘‘shortcut’” cd, we
have

195F-dr=§SF-dr+2§F-dr.

This identity follows because the contribution to 56 F - dr from the
2

line segment cd is exactly canceled by the contribution from the

segment dc to ¢F - dr. Traversing the same line in two direc-
3
tions gives zero net contribution to the total work.

We can proceed to chop up the line integral into many small
integrals around tiny loops, as shown in the sketch. When the
work around each tiny loop is added, all the contributions from
the interior paths cancel, and the total work is identical to the
work done in traversing the original perimeter. Hence,

GF-dr=3 ¢F-ar 5.14
J A

where 56 F - dr is the work done in circling the 7th tiny loop.

If you are wondering where this is leading, the answer is that
by focusing our attention on one of the tiny paths we can convert
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the original problem, which involves an integral over a large area,
into a problem involving quantities at a single point in space. To
do this, we must evaluate the line integral around one of the tiny
loops. Let us consider a rectangular loop lying in the xy plane
with sides of length Az and Ay. The integral around the loop is

SﬁF-dr=lfF-dr—i—fF-dr-l—jF-dl‘-i-jF'dl’-

Integrals 1 and 3 both involve paths in the x direction, so let us
consider them together. Integral 1is

z+Az, y
1}[F-dr = /y Fo(z,y) dz. 5.15

z,

If Az is small,

f F-dr = F,(z,y) Ax.
1

Similarly, the integral along path 3 is
f F-dr ~ —F.(z, y + Ay) Az.
3

The integrals along paths 1 and 3 almost cancel. However, the
small difference in y between the two paths is important. We
have

fF-dr—!—fF-dr =~ I, (z,y) Ax — F.(z, y + Ay) Ax
i 3

= —[F.(z, y + Ay) — F(z,y)] Az. 5.16

You may be puzzled by the fact that we are allowing for the fact
that y is different between the two paths but are ignoring the vari-
ation of z along each of the paths. The reason is simply that the
variation in y has an effect in first order, whereas the variation
in « does not, as you can verify for yourself.

We shall eventually take the limit Az — 0, Ay — 0, and from
the discussion of differentials in Sec. 5.2, we have

z

9y

Fo(x, y + Ay) — Fa(z,y) = Ay.

Hence Eqg. (5.16) can be written

fr.dr+fr-dr= ——%Asz.
1 3
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Applying the same argument to paths 2 and 4 gives
oF

fr-dr+ fF-dr = 2 Az Ay.

3 i ox

The line integral around the tiny rectangular loop in the zy plane
is therefore

oF oF .,
F.dr = (-f — ) Az Ay. 5.17a

Although we shall not stop to prove it, this result holds for a small

loop of any shape if Az Ay is replaced by the actual area AA.
The line integral around a tiny loop in the yz plane can be found

by simply cycling the variables, x — vy, y— =2, 2— z. We find

oF, OF
F-dr = ( — -—4"> Ay Az, 5.17b
Iy 9z

zy plane

yz plane

Similarly, for a loop in the zz plane,

F-dr = <6F,, — ?ﬂ> Az Az. 5.17¢
az ax

zz plane

The line integral around a tiny loop in an arbitrary orientation
can be decomposed into line integrals in the three coordinate
planes, as the sketch suggests.

Accordingly, the line integral around any tiny loop will vanish
provided

oF, _oF.

dz oy

ZI; - %';—” =0 5.18
OF, OF, _ 0

9z Jx

If Eq. (5.18) is satisfied everywhere, the line integral around any
tiny loop vanishes and it follows that #'F-dr = 0 for any closed
path. Hence, a force satisfying Eq. (5.18) is conservative.

We have achieved our goal of finding a mathematical test for
whether or not a given force is conservative. However, Eq. (5.18)
is rather cumbersome as it stands. Fortunately, we can sum-
marize it in simple vector notation. If we use the familiar rules
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of evaluating the cross product (Sec. 1.4) and treat the vector
operator V as if it were a vector, then

i
3
VXF=|—

CETp
TR ™

dx

FCC z

_ _(9F. 9F)\ , . (0F. 9F.\ , .(0F, 9F,
_I<6y az>+‘(az 6x)+k(6x 6y>

V X F is called the curl of F.

5.19

Example 5.7 The Curl of the Gravitational Force

We know that the gravitational force is conservative since it possesses a
potential energy function. However, for purposes of illustration, let us
prove that the force of gravity is conservative by showing that its curl is

zero.
For the gravitational force between two particles we have
A .
F=—r
7.2
Al btk
3 r3
oF. OF
(VX F) = - -
dy 9z

_ 9 (4z) _ 9 (Av),
dy \ 3 dz \ r?

The first term on the right hand side is

Il

;;—)— Az(a? + y? + 2274 = Az2(—$)? + y? + 2 7H2y)
y

=344
7’5
Similarly,
Jd A
2L 34 %
dz r3 rd
Hence,

(VxF,=—34"Y 1342 .
7-5 7-5

By cycling the coordinates, we see that the other components of
v X F are also zero. Hence v X F = 0 and the gravitational force is
conservative.
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A Nonconservative Force

Here is an example of a nonconservative force: consider a river with a
current whose velocity V is maximum at the center and drops to zero
at either bank.

2
a

The width of the river is 2a, and the coordinates are shown in the sketch.

Suppose that a barge in the stream is hauled around the path shown,
by winches on the banks. The barge is pulled slowly and we shall assume
that the force exerted on it by the current is

Friver = bV,

where b is a constant. The barge is effectively in equilibrium, so that
the force exerted by the winches is

F = _Friver = —bV

i
(=l
b
N
—
|
18,
N—
o)

Let us evaluate v X F to determine whether or not the force is con-
servative. We have

dF, OJF,
VXF)y=———
( ) dy 0z
=0
dF, OF,
v XF), = —
¢ % 9z dz
=0
IF IF
VXF),=—!——=
¢ ) dz dy
2
dz a?
26V,
= — z
a2

Since the curl does not vanish, the force is nonconservative and the
winches must do work to pull the barge around the closed path. The
work done going upstream is F(x = 0)l, and the work done going down-
stream is —F(xz = a)l. (In this idealized problem no work is needed
to move the barge cross stream.) Since F(z) = bV (1l — 2%/a?), the
total work done by the winches is

2
W = bVol — bVl (1 - “_>
a2



Example 5.9
N
N r
] \= 1 .
I
S
_

SEC. 5.6  HOW TO FIND OUT IF A FORCE IS CONSERVATIVE 221

A Most Unusual Force Field

The field described in this example has some very surprising properties.
Consider a particle moving in the zy plane under the force

A .
Fi) = =38,
r
where A is a constant. The force decreases as 1/7, and is directed tan-
gentially about the origin, as shown.
The work done as the particle travels through dr = dr ¥ + r d@ dis

dW =F-dr

érd0
r

= A do.

Surprisingly, the work does not depend on 7, but only on the angle
subtended.

Offhand, F may seem to be conservative, since the work done in going
from r; to r, in the drawing below, left, appears to be independent of path:

I

R
U
SN

w

Il
'S
=y
<
N
|
S
S
4

T2 r,

0,—0

0y

For instance, for the closed path shown above right,

IV=¢:Ad9+f:Ad0

= A(8; — 01) + A6, — 62)
=0,
as we expect for a conservative force.
However, consider the work done along a closed path which encloses

the origin as in the drawing at the left. Since 8; = 0 and 8; = 2m,
the work W = 2w A. Evidently, F is not conservative.
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Every time the particle makes a complete trip around the origin, the
force does work 2wA, but for a closed path that does not encircle the
origin, W = 0. The force appears conservative provided that the path
does not enclose the origin.

w=0

TN
U

If you evaluate v X F, you will find that it is zero everywhere except
at the origin, where it has a singularity. It is this singularity which gives
the force such peculiar properties. For the line integral of a force to
vanish around a closed path, the curl must be zero everywhere inside
the path. In this example, v X F is zero everywhere except at the
origin.

If a force is conservative, it is always possible to find a potential
energy function U such that F = —VU. The following example
shows how this is done.

Construction of the Potential Energy Function

In this example we shall find the potential energy function associated
with the force

F = A% + yi). 1

The first thing is to ascertain that v X F = 0, for otherwise U does
not exist. Since you can easily verify this for yourself, we proceed to
determine U. U must obey

_oU _

= =F, 2
dx
= Ax?
and
aU
—_ @ =F, 3
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We can integrate Eq. (2) to obtain

A
Uy) = — 3 ¢ + f(y). 4

Equation (4) needs some explanation. |If U depended only on z, then
integrating Eq. (2) would yield U(z) = (—A/3)z® + C, where C is a con-
stant. However, U also depends on y. As far as partial differentiation
with respect to z is concerned, f(y) is a constant, since df(y)/dz = 0.

Equation (4) is the most general solution of Eq. (2), and we can proceed
to find the solution to Eq. (3). By substituting Eq. (4) into Eq. (3), we
obtain

9 A
- | =-= =4
% [ .~ +f(y)] Yy
or
_ o) _ _ 4w
dy dy

This can be integrated to give
A
fy) = — ;y“ +C,

where C is a constant. [Since f(y) is a function of the single variable y,
the constant of integration cannot involve z.]
The potential energy is
A A
U= ——=23——=y*+C.
3 2 v

Suppose that we try to apply this method to a nonconservative force.
For instance, consider

F = A(zyi + y*)).

The curl of F is not zero. Nevertheless, we can attempt to solve the
equations

_U_
dx
= Axy 5
_U_
9y

= Ay 6
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The general solution of Eq. (5) is
A
U= - ;xzy + f@)-

If we substitute this into Eq. (6), we have

A _AO _
2 dy
or
M _ _ A e
dy 2

But f(y) cannot depend on z, so that this equation has no solution.
Hence, it is impossible to construct a potential energy function for this
force.

In closing this section, let's take a brief look at the physical
meaning of the curl.

How the Curl Got Its Name

The curl was invented to help describe the properties of moving fluids.
To see how the curl is connected with “curliness’ or rotation, consider an
idealized whirlpool turning with constant angular velocity w about the 2
axis. The velocity of the fluid at r is

v = 1w,

where @§ is the unit vector in the tangential direction. In cartesian
coordinates,

v = rw(— sin wt i 4 cos wt j)

rw(—gi+g—ci)
r r

—wyi + w2j.
y

(BP0 "\
N
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The curl of v is

i i k
VXV = i _a_ _i
dx Ody 0z
—wy wr 0
.| d
= k| — il
[ax (wz) + 3 (wy)]
= 2wk.

If a paddle wheel is placed in the liquid, it will start to rotate. The
rotation will be a maximum when the axis of the wheel points along the-
2 axis parallel to ¥V X v. In Europe, curl is often called ‘‘rot’’ (for rota-
tion). A vector field with zero curl gives no impression of rotation, as
the sketches illustrate.

—————
e —_—
—— —

curl =0 curl =0 curl #0 curl #0

5.7 Stokes’ Theorem

In Sec. 5.6 we stopped short of proving a remarkable result, known
as Stokes’ theorem, which relates the line integral of a vector field
around a closed path to an integral over an area bounded by the
path. Although Stokes’ theorem is indispensible to the study of
electricity and magnetism, we shall have little further use for it
in our study of mechanics. Nevertheless, we have already devel-
oped most of the ideas involved in its proof, and only a brief addi-
tional discussion is needed.

As we discussed earlier, the line integral of F around a closed
path I can be written as the sum of the line integrals around each
tiny loop.

I95!’-dr=§i:¢iF-dr

This result holds whether F is conservative or not; we shall not
assume that F is conservative in this proof. Stokes’ theorem
contains no physics—it is a purely mathematical result.
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area

1
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Our starting point is Eq. (5.17). For a tiny rectangular loop in
the zy plane,

oF dF,
F-dr = (—” — ) (Az Ay)..
dx 9y /i

As we have pointed out, the result is independent of the shape of
the loop provided that we replace (Ax Ay); by the loop’s area AA;.
We can write the area element as a vector AA; = A4;n, where n
is normal to the plane of the loop. (Example 1.4 discusses the
use of vectors to represent areas.) For a loop in the zy plane.
AA = AA.k and we have

oF, 9F,
b,F-dr = (—” - ) A4,
: ox Yy /:

=[(VXF), AAz]i- 5.20

If the tiny loop is at an arbitrary orientation, it is plausible that

5151, F.dr = [(curl F), A4, 4 (curl F), AA, + (curl F), AA.);
= [curl F - AA],.

he line integral of F around path I is therefore

\F-dr=29§iF-dr

= 2 (curl F - AA),. 5.21

In words, the line integral is equal to the result of taking the scalar
product of each vector area element with the curl of F at that ele-
ment and summing over all elements bounded by the curve. In
the limit AA;— 0, the number of area elements approaches
infinity and the sum in Eq. (56.21) becomes an integral. We then
have Stokes’ theorem

95F-dr — fcurl F - dA. 5.22

Two important remarks should be made about Stokes’ theorem,
Eq. (5.22). First, the area of integration on the right hand side
can be any area bounded by the closed path. Second, there is
an apparent ambiguity to the direction of dA, since the normal
can be out from either side of the area element. However, Eq.
(5.17) was deduced using a counterclockwise circulation about the
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loop, and in defining the vector associated with the area element,
we automatically set up the convention that the direction of dA
is given by the right hand rule. If the circulation is counterclock-
wise as seen from above, the correct direction of dA is the one that
tends to point *“‘up.”

Using Stokes’ Theorem

In Example 5.8 we discussed a barge being towed against the current.
We found the work done in going around the path in the sketch by evalu-

ating the line integral ¢F -dr = W. In this example we shall find the

work by using Stokes' theorem

W = (Vv X F)- dA.

It is natural to integrate over the surface in the zy plane, as shown in
the drawing above right. Since the direction of circulation is clockwise,
dA = — dA k, and we have W = — [(V X F). dA.

From Example 5.8, the force is

2
F=bV0<1—x—)j
a2
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and
oF oF,
v X F ;. = vy _ =
¢ ) ox dy
_ ZbVox
= — o .

Since the integrand does not involve y, it is convenient to take dA = [ dz.
Then

W= /" 2Vl g
0 al

_ 2 Vol f
a? 2

= bV,

as we found previously by evaluating the line integral.

5.1 Find the forces for the following potential energies.
a. U = Az* + By?* + Cz*
b. U = A In(x? + y? + 2?) (In = log,)
c. U= Acos8/r? (plane polar coordinates)

5.2 A particle of mass m moves in a horizontal plane along the parabola
y = a2 Attt = 0it is at the point (1,1) moving in the direction shown with
speed v,. Aside from the force of constraint holding it to the path, it
is acted upon by the following external forces:

— Ar3F
B — %)

A radial force F.
A force given by Fy

where A and B are constants.
a. Are the forces conservative?
b. What is the speed v, of the particle when it arrives at the origin?
Ans. vy = (vo2 + A/2m + 3B/5m)?
5.3 Decide whether the following forces are conservative.
a. F = Fy sin at, where F, is a constant vector.

b. F = Aff, A = constant and 0 < 6 < 2w. (F is limited to the zy
plane.)

c. A force which depends on the velocity of a particle but which is
always perpendicular to the velocity.
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5.4 Determine whether each of the following forces is conservative.
Find the potential energy function if it exists. A, «, B are constants.

a. F = AGi + 2j + yk)
b. F = Azyz(i +j + k)
c. F, = 3Ax%%>, F, = 5Ax3%y%ex, F, = adadyse

d. F, = A sin (ay) cos (82), F, = —Aza cos (ay) cos (B2), and F, =
Az sin (ay) sin (82)

5.5 The potential energy function for a particular two dimensional force
field is given by U = Cze~v, where C is a constant.

a. Sketch the constant energy lines.

b. Show that if a point is displaced by a short distance dx along a con-
stant energy line, then its total displacement must be dr = dz(i + j/2).

c. Using the result of b, show explicitly that vU is perpendicular to
the constant energy line.

5.6 If A(r)is a vector function of r which everywhere satisfies v X A = 0,
show that A can be expressed by A(r) = Vv ¢(r), where ¢(r) is some scalar
function. (Hint: \The result follows directly from physical arguments.)

5.7 When the flattening of the earth at the poles is taken into account,
it is found that the gravitational potential energy of a mass m a distance
r from the center of the earth is approximately

2
U GM_em{l 54 10 (@is) (3 cost 6 — 1)].
s

r

where 6 is measured from the pole.

Show that there is a small tangential gravitational force on m except
above the poles or the equator. Find the ratio of this force to GM . m/r?
for § = 45° and r = R,.

5.8 How much work is done around the path that is shown by the force
F = A% + 22%), where A is a constant and z and y are in meters?
Find the answer by evaluating the line integral, and also by using Stokes’
theorem.

Ans. W = Ad?®
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ANGULAR MOMENTUM AND FIXED AXIS ROTATION

6.1 Introduction

Our development of the principles of mechanics in the past five
chapters is lacking in one important respect: we have not devel-
oped techniques to handle the rotational motion of solid bodies.
For example, consider the common Yo-Yo running up and down
its string as the spool winds and unwinds. In principle we already
know how to analyze the motion: each particle of the Yo-Yo moves
according to Newton’s laws. Unfortunately, analyzing rotational
problems on a particle-by-particle basis is an impossible task.
What we need is a simple method for treating the rotational motion
of an extended body as a whole. The goal of this chapter is to
develop such a method. In attacking the problem of translational
motion, we needed the concepts of force, linear momentum, and
center of mass; in this chapter we shall develop for rotational
motion the analogous concepts of torque, angular momentum, and
moment of inertia.

Our aim, of course, is more ambitious than merely to under-
stand Yo-Yos; our aim is to find a way of analyzing the general
motion of a rigid body under any combination of applied forces.
Fortunately this problem can be divided into two simpler problems
—finding the center of mass motion, a problem we have already
solved, and finding the rotational motion about the center of
mass, the task at hand. The justification for this is a theorem
of rigid body motion which asserts that any displacement of a
rigid body can be decomposed into two independent motions: a
translation of the center of mass and a rotation about the center

To bring the body from position 4 to some new position B, first translate it so
that the center of mass coincides with the new center of mass, and then rotate
it around the appropriate axis through the center of mass until the body is in
the desired position.
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of mass. A few minutes spent playing with a rigid body such as
a book or a chair should convince you that the theorem is plausible.
Note that the theorem does not say that this is the only way to
represent a general displacement—merely that it is one possible
way of doing so. The general proof of this theorem! is presented
in Note 6.1 at the end of the chapter. However, detailed attention
to a formal proof is not necessary at this point. What is important
is being able to visualize any displacement as the combination of
a single translation and a single rotation.

Leaving aside extended bodies for a time, we start in the best
tradition of physics by considering the simplest possible system—
a particle. Since a particle has no size, its orientation in space
is of no consequence, and we need concern ourselves only with
translational motion. In spite of this, particle motion is useful
for introducing the concepts of angular momentum and torque.
We shall then move to progressively more complex systems, cul-
minating, in Chap. 7, with a treatment of the general motion of a
rigid body.

6.2 Angular Momentum of a Particle

Here is the formal definition of the angular momentum L of a par-
ticle which has momentum p and position vector r with respect
to a given coordinate system.

L=rxp 6.1

The unit of angular momentum is kg'm?/s in the Sl system or
g-cm?/s in cgs. There are no special names for these units.

Angular momentum is our first physical quantity to involve the
cross product. (See Secs. 1.2 and 1.4 if you need to review the
cross product.) Because angular momentum is so different from
anything we have yet encountered, we shall discuss it in great
detail at first.

Possibly the strangest aspect of angular momentum is its direc-
tion. The vectors r and p determine a plane (sometimes known
as the plane of motion), and by the properties of the cross product,
L is perpendicular to this plane. There is nothing particularly
“natural’’ about the definition of angular momentum. However,
L obeys a very simple dynamical equation, as we shall see, and
therein lies its usefulness.

1 Euler proved that the general displacement of a rigid body with one point fixed
is a rotation about some axis; the theorem quoted in the text, called Chasle's
theorem, follows directly from this.
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The diagram at left shows the trajectory and instantaneous
position and momentum of a particle. L = r X pis perpendicular
to the plane of r and p, and points in the direction dictated by the
right hand rule for vector multiplication. Although L has been
drawn through the origin, this location has no significance. Only
the direction and magnitude of L are important.

If r and p lie in the zy plane, then L is in the z direction. L is
in the positive z direction if the ‘‘sense of rotation’’ of the point
about the origin is counterclockwise, and in the negative z direc-
tion if the sense of rotation is clockwise. Note that the sense of
rotation is well defined even if the trajectory is a straight line.
The only exception is when the trajectory aims at the origin, in
which case r and p are along the same line so that L is 0 anyway.

y y
\
N P e
Sense. of Sense of
rotation T~ _ | ™~_ rotation
\ N\ r
N l| x
|
|
L,>0 L, <0

There are various methods for visualizing and calculating angu-
lar momentum. Here are three ways to calculate the angular
momentum of a particle moving in the zy plane.

Method 1
L=rXxp

= rp sin ok
or
L, = rp sin ¢.

For motion in the zy plane, L lies in the z direction. Its magni-
tude has a simple geometrical interpretation: the line r, has
length r, = rsin(r — ¢) = rsin ¢. Therefore,

L, =r,p,
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where 7, is the perpendicular distance between the origin and the

line of p. This result illustrates that angular momentum is pro-

portional to the distance from the origin to the line of motion.
As the sketches show, an alternative way of writing L, is

Lz = rp_Lr

where p, is the component of p perpendicular to r.

y y
P
P
Py
ry
s r
X X
,=r1p L,=rp,
Method 2
Resolve r into two vectors r, and v,
r=r.+mr,

such that r, is perpendicular to p, and r; is parallel to p. Then

L=rxp=(,+n)Xxp
(ry Xp)+ (nxp)

rJ.va

Il

since rp x p = 0. (Parallel vectors have zero cross product.)
Evaluating the cross product r, X p is trivial because the vectors
are perpendicular by construction. We have

L. = [r.] |p|
as before. By a similar argument,

L. = |r] [p.].

Method 3
Consider motion in the zy plane, first in the z direction and then
in the y direction, as in drawings a and b on the next page.
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y y
Py Py ? P
I
1
|
1
_____ >0 |y -
| } r Px
\\;7 /," ~ i | i x
% x A L—x —>l x x
Ly ==yp, LZ=Xpy L,=xp,-yp,
(@) (b) (©)

The most general case involves both these motions simultan-
eously, as drawings above show.

Hence L, = zp, — yp., as you can verify by inspection or by
evaluating the cross product as follows. Using r = (z,y,0) and
P = (P=py,0), we have
L=rxp

i j k

=z y O

P py 0 -

= (zpy — Yp2)k.

We have limited our illustrations to motion in the zy plane where
the angular momentum lies entirely along the 2z axis. There is,
however, no difficulty applying any of these methods to the general
case where L has components along all three axes.

Example 6.1 Angular Momentum of a Sliding Block

Consider a block of mass m and negligible dimensions sliding freely in
the x direction with velocity v = vi, as shown in the sketch. What is its
angular momentum L4 about origin A and its angular momentum Lz
about the origin B?

As shown in the drawing on the top of page 237, the vector from origin
A to the block is

rg = xi.
Since r4 is parallel to v, their cross product is zero and

La=mraXv
= 0.
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Taking origin B, we can resolve the position vector rg into a component
r| parallel to vand a componentr, perpendicular tov. Sincer;X v =0,
only r, gives a contribution to Lg. We have |r, X v| = lv and

Lp = mrg X v
mlvk.

It

Lz lies in the positive z direction because the sense of rotation is counter-
clockwise about the z axis.

To calculate Lp formally we can write rg = 2i — [j and evaluaterg X v
using our determinantal form.

Lz = mrg X v

i ] k
=m|z —l 0
v 0 0
= mlvk
as before.

The following example shows in a striking way how L depends
on our choice of origin.

Angular Momentum of the Conical Pendulum

Let us return to the conical pendulum, which we encountered in Example
2.8, to illustrate some features of angular momentum. Assume that the
pendulum is in steady circular motion with constant angular velocity w.

We begin by evaluating L4, the angular momentum about origin 4.
From the sketch we see that L, lies in the positive z direction. It has
magnitude |r,| |p| = |r| [p| = rp, where 7 is the radius of the circular
motion. Since

lp| = Mo

= Mrw,
we have
Ls = Mriwk.

Note that L, is constant, both in magnitude and direction.
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Now let us evaluate the angular momentum about the origin B located
at the pivot. The magnitude of L is

Lz = ¢ X p]
= || p| = !|p|
= Mlrw,

where |r’| = [, the length of the string. Itis apparent that the magnitude
of L depends on the origin we choose.

Unlike Ly, the direction of Lp is not constant. Lp is perpendicular to
both r’ and p, and the sketches below show Ly at different times. Two
sketches are given to emphasize that only the magnitude and direction
of L are important, not the position at which we choose to draw it. The
magnitude of Lp is constant, but its direction is obviously not constant;
as the bob swings around, Lz sweeps out the shaded cone shown in the
sketch at the right. The z component of Lp is constant, but the hori-
zontal component travels around the circle with the bob. We shall see
the dynamical consequences of this in Example 6.6.

/
/
r'/
/
/
/I
- ¥
L, “W_
6.3 Torque

To continue our development of rotational motion we must intro-
duce a new quantity torque =. The torque due to force F which
acts on a particle at position r is defined by

= =1rXF. 6.2

In the last section we discussed several ways of evaluating angular
momentum, r X p. The mathematical methods we developed for
calculating the cross product can also be applied to torque r X F.
For example, we have

o] = .| |F]
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or
x| = [r| [F.]
or, formally,
i j k
T =z Yy z|
F, F, F,

We can also associate a ‘‘sense of rotation’” usingrand F. Assume
in the sketch that all the vectors are in the zy plane. The torque
on m, due to F; is along the positive z axis (out of the paper) and
the torque on m, due to F; is along the negative z axis (into the
paper).

It is important to realize that torque and force are entirely
different quantities. For one thing, torque depends on the origin
we choose but force does not. For another, we see from the
definition + = r X F that « and F are always mutually perpen-
dicular. There can be a torque on a system with zero net force,
and there can be force with zero net torque. In general, there
will be both torque and force. These three cases are illustrated
in the sketches below. (The torques are evaluated about the
centers of the disks.)

]f f
f ff ]f
T =2Rf

Rf
f

T

= 0 T
F=0 F

2f F

[}
mwon

Torque is important because it is intimately related to the rate
of change of angular momentum:

dL d
u gt(rxp)

dr dp
(axp)—l—(rx dt)

It
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But (dr/dt) x p = v X mv = 0, since the cross product of two
parallel vectors is zero. Also, dp/dt = F, by Newton's second
law. Hence, the second termis r X F = <, and we have

— dL.

= — 6.3
dt

T

Equation (6.3) shows that if the torque is zero, L = constant and
the angular momentum is conserved. As you may already realize
from our work with linear momentum and energy, conservation
laws are powerful tools. However, because we have considered
only the angular momentum of a single particle, the conservation
law for angular momentum has not been presented in much gen-
erality. In fact, Eq. (6.3) follows directly from Newton’s second
law—only when we talk about extended systems does angular
momentum assume its proper role as a new physical concept.
Nevertheless, even in its present context, considerations of angu-
lar momentum lead to some surprising simplifications, as the next
two examples show.

Central Force Motion and the Law of Equal Areas

In 1609 Kepler announced his second law of planetary motion, the law of
equal areas: that is, the area swept out by the radius vector from the
sun to a planet in a given time is the same for any location of the planet
in its orbit. The sketch (not to scale) shows the areas swept out by the
earth during a month at two different seasons. The shorter radius
vector at B is compensated by the greater speed of the earth when it is
nearer the sun. We shall now show that the law of equal areas follows
directly from considerations of angular momentum, and that it holds not
only for motion under the gravitational force but also for motion under
any central force.

Consider a particle moving under a central force, F(r) = f(r)f, where
f(r) has any dependence on r we care to choose. The torque on the
particle about the origin is £ = r X F(r) = r X f(r)f = 0. Hence, the
angular momentum of the particle L = r X p is constant both in mag-
nitude and direction. An immediate consequence is that the motion is
confined to a plane; otherwise the direction of L would change with time.
We shall now prove that the rate at which area is swept out is constant,
a result that leads directly to the law of equal areas.

Consider the position of the particle at { and ¢ 4+ A{, when its polar
coordinates are, respectively, (r,0) and (r + Ar, 8 + Af). The area
swept out is shown shaded in the drawing at left.
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For small values of Af, the area A.l is approximately equal to the area
of a triangle with base r 4+ Ar and altitude r Af, as shown.

AA = J(@r + Ar)(r AB)
= $r2 AQ + $r Ar AB

The rate at which area is swept out is

dA . AA
— = lim —
dit at—0 At
1
= lim - rzg—f—rAeAr
At—0 2 At At
_1,d6
2 dt

(The small triangle with sides r Af and Ar makes no contribution in the
limit.)

In polar coordinates the velocity of the particle is v = #r + rd. Its
angular momentum is

L = (r X mv) = rf X m@Gt + r68) = mriék.

(Note that ¥ X § = k). Hence,

a4 1 .
— = —r2¢
a2
L.

T 2m

Since L, is constant for any central force, it follows that dA /dt is constant
also.

Here is another way to prove the law of equal areas. For a central
force, Fg = 0, so that ap = 0. It follows that rag = 0, but ray; =
r@if + rf) = (d/dtyr20) = 2(d/dt)(dA/dt). Hence, dA/dt = constant.

Capture Cross Section of a Planet

This example concerns the problem of aiming an unpowered spacecraft
to hit a far-off planet. If you have ever looked at a planet through a
telescope, you know that it appears to have the shape of a disk. The
area of the disk is mR?, where R is the planet’s radius. |f gravity played
no role, we would have to aim the spacecraft to head for this area in
order to assure a hit. However, the situation is more favorable than this
because of the gravitational attraction of the spacecraft by the planet.
Gravity tends to deflect the spacecraft toward the planet, so that some
trajectories which are aimed outside the planetary disk nevertheless end
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in a hit. Consequently, the effective area for a hit A, is greater than
the geometrical area A, = wR2% Our problem is to find A,.

We shall neglect effects of the sun and other planets here, although
they would obviously have to be taken into account for a real space
mission.

One approach to the problem would be to work out the full solution
for the orbit of the spacecraft in the gravitational field of the planet.
This involves a lengthy calculation which is not really necessary; by using
conservation of energy and angular momentum, we can find the answer
in a few short steps.

Al T

The sketch shows several possible trajectories of the spacecraft. The
distance between the launch point and the target planet is assumed to
be extremely large compared with R, so that the different trajectories
are effectively parallel before the gravitational force of the planet becomes
important. The line aa is parallel to the initial trajectories and passes
through the center of the planet. The distance b between the initial
trajectory and line aa is called the impact parameter of the trajectory.
The largest value of b for which the trajectory hits the planet is indicated
by b’ in the sketch. The area through which the trajectory must pass
to assure a hit is 4. = w(b’)2. (If there were no attraction, the trajec-
tories would be straightlines. Inthiscase, b’ = Rand A, = 7R? = A,.)

To find &', we note that both the energy and angular momentum of the
spacecraft are conserved. (Linear momentum of the spacecraft is not
conserved. Do you see why?)

The kinetic energy is $mv?, and the potential energy is —mAMG/r. The
total energy E = K + V'is

1
E = lmv2 — mMG@G -
2 r

The angular momentum about the center of the planet is

L = —mrvsin ¢.
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Initially, r — o, v = vy, and r sin ¢ = b’. Hence,
L = —mb'v,,
1
E = - mve2
2

The point of collision occurs at the distance of closest approach of the
orbit, r = R; otherwise the trajectory would not ‘‘just graze' the planet.
At the distance of closest approach, r and v are perpendicular. If o(R)
is the speed at this point,

L = —mRu(R)

E

lmv(R)2 _ mMG.
2 R

Since L and E are conserved, their values at r = R must be the same as
their values at r = «. Hence
—mb'vg = —mRu(R) 1
1 1 mMG
-mwo? = - mu(R)? — .
0 5 ) 7

2
Equation (1) gives v(R) = vob’/R, and by substituting this in Eq. (2) we
obtain

I

mMG/R
) = R2(1 .
" ( + —y >
The effective area is
A, = w(d')?

<R (1 + mMG/R)

mv02/2

As we expect, the effective area is greater than the geometrical area.
Since mMG/R = — U(R), and mvy2/2 = E, we have

U(R)).

A,=A,,<1— e
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If we *‘turn off"” gravity, U(R) — 0 and 4, — A, as we require. Fur-
thermore, as £ — 0, A, — «, which means that it is impossible to miss
the planet, provided that you start from rest. For I = 0, the space-
craft inevitably falls into the planet.

If there is a torque on a system the angular momentum must
change according to ¢ = dL/dt, as the following examples illustrate.

Torque on a Sliding Block

For a simple illustration of the relation « = dL/dt, consider a small block
of mass m sliding in the z direction with velocity v = »i. The angular
momentum of the block about origin B is

Lg =mrgXv 1

mlvk,

as we discussed in Example 6.1. If the block is sliding freely, v does not
change, and Lp is therefore constant, as we expect, since there is no
torque acting on the block.

Suppose now that the block slows down because of a friction force
f = —fi. The torque on the block about origin B is

w8 =rg X f
= —Ifk. 2

We see from Eq. (1) that as the block slows, Lz remains along the posi-
tive 2z direction but its magnitude decreases. Therefore, the change
ALg in Lp points in the negative z direction, as shown in the lower sketch.
The direction of ALp is the same as the direction of zg. Since = = dL/dt
in general, the vectors = and AL are always parallel.

From Eq. (1),

ALB = ml Av R, 3

where Av < 0. Dividing Eq. (3) by At and taking the limit At — 0, we
have

dL dv -
%k 4
dt dt
By Newton’s second law, m dv/dt = —f and Eq. (4) becomes
dLs R
— = —Ifk
dt /
= 2B

as we expect.
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It is important to keep in mind that since = and L depend on the choice
of origin, the same origin must be used for both when applying the rela-
tion = = dL/dt, as we were careful to do in this problem.

The angular momentum of the block in this example changed only in
magnitude and not in direction, since = and L happened to be along the
same line. In the next example we return to the conical pendulum to
study a case in which the angular momentum is constant in magnitude
but changes direction due to an applied torque.

Torque on the Conical Pendulum

In Example 6.2, we calculated the angular momentum of a conical pen-
dulum about two different origins. Now we shall complete the analysis
by showing that the relation = = dL/dt is satisfied.

The sketch illustrates the forces on the bob. 7 is the tension in the
string. For uniform circular motion there is no vertical acceleration, and
consequently

Tcosa — Mg = 0. 1
The total force F on the bob is radially inward: F = —T sinaf. The
torque on M about 4 is
©a=rs XF

=0,

since r4 and F are both in the f direction. Hence
dLa
dt

=0

and we have the result
L4 = constant

as we already know from Example 6.2.
The problem looks entirely different if we take the origin at B. The
torque =p is

=5 =g X F.
Hence

|*8] = lcos aF = lcos a T sin«

= Mgl sin a,

where we have used Eq. (1), T cos &« = Mg. The direction of =g is tan-
gential to the line of motion of M:

<5 = Mgl sin ab, 2

where § is the unit tangential vector in the plane of motion.
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Our problem is to show that the relation

L
oy = — 3

dt

is satisfied. From Example 6.2, we know that Lp has constant magnitude
Mlrw. As the diagram at left shows, Lp has a vertical component
L, = Mlrw sin o and a horizontal radial component L, = Mirw cos a.
Writing Lg = L, + L,, we see that L, is constant, as we expect, since =z
has no vertical component. L, is not constant; it changes direction as the
bob swings around. However, the magnitude of L, is constant. We
encountered such a situation in Sec. 1.8, where we showed that the only
way a vector A of constant magnitude can change in time is to rotate, and
that if its instantaneous rate of rotation is df/dt, then |dA/dt| = A d6/dt.
We can employ this relation directly to obtain

‘dLT = L,w.

dt

However, since we shall invoke this result frequently, let us take a moment
to rederive it geometrically.

The vector diagrams show L, at some time ¢ and at ¢t + Af{. During
the interval At, the bob swings through angle A@ = w A¢, and L, rotates
through the same angle. The magnitude of the vector difference AL, =
L.(t + At) — L.(f) is given approximately by

|AL,| ~ L, AS.

In the limit At — 0, we have

AL, _, i
dt di
= L,w.

Since L, = Mlrw cos a, we have

L,
dt

= Mlrw? cos a.

Mrw? is the radial force, T sin «, and since T cos a = Mg, we have

ar,
dt

= Mgl sin o,

which agrees with the magnitude of =g from Eq. (2). Furthermore, as
the vector drawings indicate, dL,/dt lies in the tangential direction, parallel
to ~p, as we expect.
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Another way to calculate dLg/dt is to write Lp in vector form and then
differentiate:

Lz = (Mlrw sin o)k + (Mlrw cos a)f.
dL—B = Mlrw cos « ﬂ
di dt

Mirw? cos o8,

where we have used df/dt = w0.

It is important to be able to visualize angular momentum as a vector
which can rotate in space. This type of reasoning occurs often in analyz-
ing the motion of rigid bodies; we shall find it particularly helpful in
understanding gyroscope motion in Chap. 7.

Torque due to Gravity

We often encounter systems in which there is a torque exerted by gravity.
Examples include a pendulum, a child’s top, and a falling chimney. In
the usual case of a uniform gravitational field, the torque on a body
about any point is R X W, where R is a vector from the point to the
center of mass and W is the weight. Here is the proof.

The problem is to find the torque on a body of mass 3 about origin
A when the applied force is due to a uniform gravitational field g. We
can regard the body as a collection of particles. The torque «; on the
Jth particle is

T, =r; X mg,

where r; is the position vector of the jth particle from origin 4, and m;
is its mass.
The total torque is

© = 2x;
= 2r; X m,9
= (Zm;r;) X g.
By definition of center of mass,
Zmir; = MR,
where R is the position vector of the center of mass. Hence

MRXg
RX Mg
=RXW.

i

<

Il

A corollary to this result is that in order to balance an object, the
pivot point must be at the center of mass.
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6.4 Angular Momentum and Fixed Axis Rotation

The most prominent application of angular momentum in classical
mechanics is to the analysis of the motion of rigid bodies. The
general case of rigid body motion involves free rotation about any
axis—for instance, the motion of a baseball bat flung spinning and
tumbling into the air. Analysis of the general case involves a
number of mathematical complexities which we are going to post-
pone for a chapter, and in this chapter we restrict ourselves to a
special, but important, case—rotation about a fixed axis. By fixed
axis we mean that the direction of the axis of rotation is always
along the same line; the axis itself may translate. For example,
a car wheel attached to an axle undergoes fixed axis rotation as
long as the car drives straight ahead. If the car turns, the wheel
must rotate about a vertical axis while simultaneously spinning on
the axle; the motion is no longer fixed axis rotation. If the wheel
flies off the axle and wobbles down the road, the motion is defi-
nitely not rotation about a fixed axis.

We can choose the axis of rotation to be in the z direction, with-
out loss of generality. The rotating object can be a wheel or a
baseball bat, or anything we choose, the only restriction being
that it is rigid—which is to say that its shape does not change as it
rotates.

When a rigid body rotates about an axis, every particle in the
body remains at a fixed distance from the axis. |If we choose a
coordinate system with its origin lying on the axis, then for each
particle in the body, |r| = constant. The only way that r can
change while [r| remains constant is for the velocity to be perpen-
dicular to r. Hence, for a body rotating about the 2 axis,

[vi| = [k 6.4

= wp;

where p; is the perpendicular distance from the axis of rotation to
particle m; of the rigid body and p; is the corresponding vector.
w is the rate of rotation, or angular velocity. Since the axis of
rotation lies in the z direction, we have p; = (2;2 + y,;2)!. [In this
chapter and the next we shall use the symbol p to denote perpen-
dicular distance to the axis of rotation. Note that r stands for
the distance to the origin: r = (2% + y2 + 22)%L.]

The angular momentum of the jth particle of the body, L(j), is.

L(j) = r; X myv;.
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In this chapter we are concerned only with L., the component of
angular momentum along the axis of rotation. Since v, lies in
the 2y plane,

L,(7) = mu; X (distance to z axis) = mu;p;.
Using Eq. (6.4), v; = wp;, we have
L.(j) = mjp;*w.

The z component of the total angular momentum of the body L,
is the sum of the individual z components:

% L(j)

= Emjpﬂw, 6.5

L,

where the sum is over all particles of the body. We have taken
w to be constant throughout the body; can you see why this must
be so?

Equation (6.5) can be written as

Lz = Iw; 6.6

where

I= 2 m]'ij. 6.7
J

I is a geometrical quantity called the moment of inertia. I depends
on both the distribution of mass in the body and the location of the
axis of rotation. (We shall give a more general definition for I
in the next chapter when we talk about unrestricted rigid body
motion.) For continuously distributed matter we can replace the
sum over mass particles by an integral over differential mass ele-
ments. In this case

2 m;p? — [p* dm,
J
and
I = [p2dm
= [(x? + y?) dm.

To evaluate such an integral we generally replace the mass ele-
ment dm by the product of the density (mass per unit volume) w
at the position of dm and the volume dV occupied by dm:

dm = wdV.
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(Often p is used to denote density, but that would cause confusion
here.) We can write
I = [p%dm
= [(@*+ yDHw dV.
For simple shapes with a high degree of symmetry, calculation of

the moment of inertia is straightforward, as the following examples
show.

Moments of Inertia of Some Simple Objects

a. UNIFORM THIN HOOP OF MASS }/ AND RADIUS R, AXIS THROUGH
THE CENTER AND PERPENDICULAR TO THE PLANE OF THE HOOP
The moment of inertia about the axis is given by

I = [p*dm.

Since the hoop is thin, dm = \ds, where A = M /2rR is the mass per
unit length of the hoop. All points on the hoop are distance R from the
axis so that p = R, and we have

I = /OQ"R R\ ds

R? % s
(27rR>

MR

2R
0

It

I

b. UNIFORM DISK OF MASS M, RADIUS R, AXIS THROUGH THE CENTER
AND PERPENDICULAR TO THE PLANE OF THE DISK
We can subdivide the disk into a series of thin hoops with radius p
width dp, and moment of inertia dI. Then I = [dI.

The area of one of the thin hoops is dA = 2mwp dp, and its mass is

dA  M2mp dp
dm = M — = ———
" A TR?
_2Mpdp
=
2Mp3d
I = p*dm = #
I = R2Mp3dp
B /o R?

= 1MRZ.
2
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Let us also solve this problem by double integration to illustrate the
most general approach.

I = [p2dm
= [p¥ dS,

where ¢ is the mass per unit area. For the uniform disk, ¢ = M /wR?,
Polar coordinates are the obvious choice. In plane polar coordinates,

dS = pdp dé.
Then
I = /pZads

as before.
c. UNIFORM THIN STICK OF MASS M, LENGTH L, AXIS THROUGH
THE MIDPOINT AND PERPENDICULAR TO THE STICK

+L/2
I =/ z2dm
—L/2

_ M +L/2
L /—L/z
M1 }+L/2
= — -3
L3 —L/2

ToeML?

z? dx

I

d. UNIFORM THIN STICK, AXIS AT ONE END AND PERPENDICULAR TO
THE STICK

%f(fx”dx

FM L2

~
It

e. UNIFORM SPHERE OF MASS M, RADIUS R, AXIS THROUGH CENTER
We quote this result without proof—perhapsyou can derive it foryourself.

I = 2MR:.
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The Parallel Axis Theorem

This handy theorem tells us I, the moment of inertia about any axis,
provided that we know I,, the moment of inertia about a parallel axis
through the center of mass. If the mass of the body is A/ and the dis-
tance between the axes is [, the theorem states that

I =1,+ M

To prove this, consider the moment of inertia of the body about an
axis which we choose to have lie in the z direction. The vector from the
2 axis to particle j is
p; =i+ ij,
and
I = Em,-pﬁ.

If the center of mass is at R = Xi + Yj + Zk, the vector perpen-
dicular from the z axis to the center of mass is

R, = Xi 4 Yj.

If the vector from the axis through the center of mass to particle j is
p;, then the moment of inertia about the center of mass is

]o = Em,p,'z

From the diagram we see that

pi = P; + Ry,
so that
I = Zmpj?

= Zmp; + R.)?
Zmip;* + 2pj - Ry + R 2.
The middle term vanishes, since
Zmp; = Zmip; — R = M(Ry — Ry)
= 0.

Il

If we designate the magnitude of R, by [, then
I =1,+ M

For example, in Example 6.8¢c we showed that the moment of inertia of a
stick about its midpoint is A/ L?/12. The moment of inertia about its
end, which is L/2 away from the center of mass, is therefore

ML L\?
I, = M=
T <2>

ML
3 J

which is the result we found in Example 6.8d.
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Similarly, the moment of inertia of a disk about an axis at the rim, per-
pendicular to the plane of the disk, is

2 2
I MZR + pe = B

6.5 Dynamics of Pure Rotation about an Axis

In Chap. 3 we showed that the motion of a system of particles is
simple to describe if we distinguish between external forces and
internal forces acting on the particles. The internal forces cancel
by Newton’s third law, and the momentum changes only because
of external forces. This leads to the law of conservation of
momentum: the momentum of an isolated system is constant.
In describing rotational motion we are tempted to follow the
same procedure and to distinguish between external and internal
torques. Unfortunately, there is no way to prove from Newton’s
laws that the internal torques add to zero. However, it is an
experimental fact that they always do cancel, since the angular
momentum of an isolated system has never been observed to
change. We shall discuss this more fully in Sec. 7.5 and for the
remainder of this chapter simply assume that only external tor-
ques change the angular momentum of a rigid body.

In this section we consider fixed axis rotation with no translation
of the axis, as, for instance, the motion of a door on its hinges or
the spinning of a fan blade. Motion like this, where there is an
axis of rotation at rest, is called pure rotation. Pure rotation is
important because it is simple and because it is frequently
encountered.

Consider a body rotating with angular velocity » about the 2
axis. From Eq. (6.6) the z component of angular momentum is

L, = lw.

Since ¢ = dL/dt, where = is the external torque, we have
d

z = I

T dl( w)

dw
—Igt—

= Ja,

where o = dw/dt is called the angular acceleration. In this chap-
ter we are concerned with rotation only about the z axis, so we
drop the subscript z and write

7 = Ia. 6.8
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Equation (6.8) is reminiscent of F = ma, and in fact there is a
close analogy between linear and rotational motion. We can
develop this further by evaluating the kinetic energy of a body
undergoing pure rotation:

K = Zimp;?
Zamp;*w?

e,

II

where we have used v; = pjw and I = Zm;p,%

The method of handling problems involving rotation under
applied torques is a straightforward extension of the familiar
procedure for treating translational motion under applied forces,
as the following example illustrates.

Atwood’s Machine with a Massive Pulley

The problem is to find the acceleration a for the arrangement shown in
the sketch. The effect of the pulley is to be included.

Force diagrams for the three masses are shown below left. The
points of application of the forces on the pulley are shown; this is neces-
sary whenever we need to calculate torques. The pulley evidently under-
goes pure rotation about its axle, so we take the axis of rotation to be
the axle.

The equations of motion are

1‘1/1 - T1 = Mla
Tz — W2 = Mza
T T\R — T:R = Ia
N-T—-T,—W,=0
Note that in the torque equation, & must be positive counterclockwise to
correspond to our convention that torque out of the paper is positive.

N is the force on the axle, and the last equation simply assures that
the pulley does not fall. Since we don’'t need to know N, it does not
contribute to the solution.

There is a constraint relating ¢ and «, assuming that the rope does
not slip. The velocity of the rope is the velocity of a point on the surface
of the wheel, v = wR, from which it follows that

Masses

Pulley

a = aR.
We can now eliminate 7'y, T, and «;
W] bl I/Vz - (T1 - Tz) = (1][1 + 1112)(1
T] - Tz = LC—Y = -I—g,
R R?
1
Wy — Wa — R—“z = (M, + M.
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If the pulley is a simple disk, we have

_ M,R?
2

I

and it follows that

@ = (A[l hd .Zl[?)g .
M+ M:+ Mp/2
The pulley increases the total inertial mass of the system, but in com-

parison with the hanging weights, the effective mass of the pulley is only
one-half its real mass.

6.6 The Physical Pendulum

A mass hanging from a string is a simple pendulum if we assume
that the mass has negligible size and the mass of the string is
zero. We shall review its behavior as an introduction to the more
realistic object, the physical pendulum, for which we do not need
to make these assumptions.

The Simple Pendulum

At the left is a sketch of a simple pendulum and the force dia-
gram. The tangential force is — W sin ¢, and we obtain

ml¢ = —W sin ¢.

(Incidentally, we get the same result by considering pure rotation

about the point of suspension: I = mi%,a = ¢,andr = —Wlisin ¢,
soml’¢ = —Wlisin ¢.) We can rewrite the equation of motion as
lé + gsingp = 0.

This equation cannot be solved in terms of familiar functions.
However, if the pendulum never swings far from the vertical, then
¢ < 1, and we can use the approximation sin ¢ =~ ¢. Then

l$ +g¢ = 0.

This is the equation for simple harmonic motion. (See Example
2.14)) The solutionis ¢ = A sin wt + B cos wt, where w = \/g_/l
and A and B are constants. If the pendulum starts from rest at
angle ¢,, the solution is

¢ = ¢ COS wi.
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The motion is periodic, which means it occurs identically over and
over again. The period T, the time between successive repeti-
tions of the motion, is given by T = 2x, or

_
Vg/l

\/l
= 2r A[--
g

The maximum angle ¢, is called the amplitude of the motion.
The period is independent of the amplitude, which is why the
pendulum is so well suited to regulating the rate of a clock. How-
ever, this feature of the motion is a consequence of the approxi-
mation sin ¢~ ¢. The exact solution, which is developed in
Note 6.2 at the end of the chapter, shows that the period lengthens
slightly with increasing amplitude. The following example illus-
trates the consequence of this.

T

Grandfather’s Clock

As shown in Eq. (7) of Note 6.2, for small amplitudes the period of a pen-
dulum is given by

T = Tl + T5o® + ). 1

where

To = 2T \/z
g

For ¢o =~ 0 we have our previous result, 7 = 27 \/l/g‘ The correction
term, ts¢o? is surprisingly small: Consider a grandfather's clock with
Ty=2sandl = 1m. Ifthe pendulum swings 4 cm to either side, then
¢o = 4 X 1072 rad and the correction term is ¢o2/16 = 1074 This by
itself is of no consequence, since the length of the pendulum can be
adjusted to make the clock run at any desired rate. However, the ampli-
tude may vary slightly due to friction and other effects. Suppose that
the amplitude changes by an amount d¢. Taking differentials of Eq.
1) gives

dT = §Todo d.
The fractional change in T is

ar

1
- ¢o dop.
T 8¢o¢
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If the amplitude changes by 10 percent, then d¢ = 0.1¢po = 4 X 1072 rad,
and dT/T, = 2 X 1075, giving an error of about 2 seconds per day.

The Physical Pendulum

Now let us turn to the physical pendulum such as the one in the
sketch. The swinging object can have any shape. Its mass is
M, and its center of mass is at distance [ from the pivot. One
other quantity we need is the moment of inertia about the pivot,
I,. The motion is pure rotation about the pivot. Choosing the
axis of rotation through the pivot, we find that the only torque
is that due to gravity, and we have

—IW sin ¢ = 1,é.
Making the small angle approximation,
I.¢ + Mlge = 0.

This is again the equation of simple harmonic motion with the
solution

¢ = A cos wt + B sin wt,
where w = V Mlg/I,.

We can write this result in a simpler form if we introduce the
radius of gyration. |If the moment of inertia of an object about its
center of mass is I,, the radius of gyration k is defined as

k=\fIM° or I, = ME?2,

For instance, for a hoop of radius R,k = R; foradisk, &k = \/% R;
and for a solid sphere, k = \/% R.
By the parallel axis theorem we have

I, =1+ MI?
= M(k? + 1?),
so that

gl
w = VW—{-ZZ'

The simple pendulum corresponds to &k = 0, and in this case we
obtain w = V g/, as before.



258

1

—

-

Example 6.12

I~
Knife
|_ Center edee
of mass g
=

ANGULAR MOMENTUM AND FIXED AXIS ROTATION

Kater’s Pendulum

Between the sixteenth and twentieth centuries, the most accurate mea-
surements of g were obtained from experiments with pendulums. The
method is attractive because the only quantities needed are the period
of the pendulum, which can be determined to great accuracy by counting
many swings, and the pendulum’'s dimensions. For very precise mea-
surements, the limiting feature turns out to be the precision with which
the center of mass of the pendulum and its radius of gyration can be
determined. A clever invention, named after the nineteenth century
English physicist, surveyor, and inventor Henry Kater, overcomes this
difficulty.

Kater's pendulum has two knife edges; the pendulum can be sus-
pended from either. If the knife edges are distances l4 and Iz from
the center of mass, then the period for small oscillations from each of
these is, respectively,

2 2\ %
T, = on (M)
gla

2 2\ %
Ty = 21 <M> .
gls

la or lp is adjusted until the periods are identical: T4 = Tp = T. We
can then eliminate T and solve for k%

_ lAZBZ - lBlAz

lg — la

k2

T = o <ZAZB + lﬁ)’l’
gla

. (u)*
g

or

The beauty of Kater's invention is that the only geometrical quantity
needed is 4 + lp, the distance between the knife edges, which can be
measured to great accuracy. The position of the center of mass need
not be known.
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The Doorstop

The banging of a door against its stop can tear loose the hinges. How-
ever, by the proper choice of [, the impact forces on the hinge can be
made to vanish.

The forces on the door during impact are F'y, due to the stop, and F”’
and F’ due to the hinge. F’' is the small radial force which provides
the centripetal acceleration of the swinging door. F’ and Fg4 are the
large impact forces which bring the door to rest when it bangs against
the stop. The force on the hinges is equal and opposite to F’ and F’’
To minimize the stress on the hinges, we must make F’ as small as
possible.

To derive an expression for I/, we shall consider in turn the angular
momentum of the door about the hinges and the linear momentum of
the center of mass.

Since dL = rdt, we have
t
Lfina.l - Linitial = /;_IT dt.

The initial angular momentum of the door is Jw,, where I is the moment
of inertia about the hinges. Since the door comes to rest, L, = 0.
The torque on the door during the collision is 7 = —[F, and we obtain

Two =1 / 7y d, 1

where the integral is over the duration of the collision.
The center of mass motion obeys

Pfina.l - Pinitia.l = / F dtv

where F is the total force. The momentum in the y direction immedi-
ately before the collision is MV, = MU'w,, where I’ is the distance from
the hinge to the center of mass of the door. Py, = 0, and the y com-
ponent of Fis F, = —(F’ 4+ F,). Hence,

MUw, = [ (' + Fo) dt. 2

According to Eq. (1), [Fsdt = Iwo/l, and substituting this in Eq. (2) gives

/ Pt = (Ml’ - z£> wo.

By choosing
I
= —
MU

If the door is uniform, and of width w,
In this case | = §w.

the impact force is made zero.
then I = Mw?/3 and ' = w/2.
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Incidentally, the stop must be at the height of the center of mass
rather than at floor level. Otherwise the impact forces will not be iden-
tic | on the two hinges and the door will tend to rotate about a horizontal
axis, an effect we have not taken into account.

The distance ! specified by Eq. (3) is called the center of percussion.
In batting a baseball it is important to hit the ball at the bat's center of
percussion to avoid a reaction on the batter's hands and a painful sting.

6.7 Motion Involving Both Translation and Rotation

Often translation and rotation occur simultaneously, as in the case
of a rolling drum. There is no obvious axis as there was in Sec.
6.5 when we analyzed pure rotation, and the problem seems
confusing until we recall the theorem in Sec. 6.1—that one pos-
sible way to describe a general motion is by a translation of the
center of mass plus a rotation about the center of mass. By
using center of mass coordinates we will find it a straightforward
matter to obtain simple expressions for both the angular momen-
tum and the torque and to find the dynamical equation connecting
them.

As before, we shall consider only motion for which the axis of
rotation remains parallel to the z axis. We shall show that L.,
the z component of the angular momentum of the body, can be
written as the sum of two terms. L. is the angular momentum
Iy due to rotation of the body about its center of mass, plus the
angular momentum (R x MV), due to motion of the center of
mass with respect to the origin of the inertial coordinate system:

L, = Iqw 4+ (R X MV),,

where R is the position vector of the center of mass and V = R.

To find the angular momentum, we start by considering the
body to be an aggregation of N particles with masses m,(j = 1,
. . ., N) and position vectors r; with respect to an inertial coor-
dinate system. The angular momentum of the body can be
written

N
L = 'Zl (rj X m]‘ij). 6.9
i=

The center of mass of the body has position vector R:

Zm,-rj
= ——

R="u

6.10
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where M is the total mass. The center of mass coordinates r;
can be introduced as we did in Sec. 3.3:

r,=R+r.

Eliminating r; from Eq. (6.9) gives
L 2(r; X myt;)

Z(R + 1)) x m(R + ¥)

R x Zm;R + Zmir; X R + R X Zmi; + Imyt; X ¥l

I

Il

I

This expression looks cumbersome, but we can show that the
middle two terms are identically zero and that the first and last
terms have simple physical interpretations. Starting with the
second term, we have

Emjr]'- = Em,-(r]- — R)
— Sm;r; — MR
= 0.

by Eq. (6.10). The third term is also zero; since Zm,t; is identi-
cally zero, its time derivative Zm;¥; = 0 as well.
The first term is

szij=RXMR
=R X MV,

where V = R is the velocity of the center of mass with respect to
the inertial system. The expression for L then becomes

L = R x MV + =, X mjf;. 6.11

The first term of Eq. (6.11) represents the angular momentum
due to the center of mass motion. The second term represents
angular momentum due to motion around the center of mass.
The only way for the particles of a rigid body to move with respect
to the center of mass is for the body as a whole to rotate. We
shall evaluate the second term for an arbitrary axis of rotation in
the next chapter. In this chapter, however, we are restricting
ourselves to fixed axis rotation about the z axis. Taking the z
component of Eq. (6.11) gives

L, = (R X MV), + (Zr; X mi)).. 6.12
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For rotation about the z axis, the second term (2r; x m;i), can
be simplified by recognizing that we dealt with this kind of expres-
sion before, in Sec. 6.4. The body has angular velocity wk about
its center of mass, and since the origin of r; is the center of mass,
the second term is identical in form to the case of pure rotation
we treated in Sec. 6.4.

(Emit; X 1), = Cmp; X p1):
= Zm,p;’w = Lo,

where p;» is the vector to m; perpendicular from an axis in the z
direction through the center of mass. I, = Zm;p;’ is the moment
of inertia of the body about this axis.

Collecting our results, we have

L. = Iw + (R X MV).. 6.13

We have proven the result stated at the beginning of this sec-
tion. The angular momentum of a rigid object is the sum of the
angular momentum about its center of mass and the angular
momentum of the center of mass about the origin. These two
terms are often referred to as the spin and orbital terms, respec-
tively. The earth illustrates them nicely. The daily rotation of
the earth about its axis gives rise to the earth’s spin angular
momentum, and its annual revolution about the sun gives rise to
the earth’s orbital angular momentum about the sun. An impor-
tant feature of the spin angular momentum is that it is indepen-
dent of the coordinate system. In this sense it is intrinsic to the
body; no change in coordinate system can eliminate spin, whereas
orbital angular momentum disappears if the origin is along the
line of motion.

It should be kept in mind that Eq. (6.13) is valid even when the
center of mass is accelerating, since L was calculated with respect
to an inertial coordinate system.

Angular Momentum of a Rolling Wheel

In this example we apply Eq. (6.13) to the calculation of the angular
momentum of a uniform wheel of mass M and radius b which rolls uni-
formly and without slipping. The moment of inertia of the wheel about
its center of mass is I, = $Mb? and its angular momentum about the
center of mass is

L() = —Iow
= —iMbw.
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Ly is parallel to the z axis. The minus sign indicates that Ly is directed
into the paper, in the negative z direction.

If we calculate the angular momentum of the center of mass of the
wheel with respect to the origin, we have

(RX MV), = —1bV.
The total angular momentum about the origin is then
L, = —$Mb%w — MbV

= —iMb2w — Mbw

= —$Mbw,

where we have used the result ¥V = bw, which holds for a wheel that
rolls without slipping.

Torque also naturally divides itself into two components. The
torque on a body is
T = El’j X fj

=3(r;+ R) x f;
2(r; x f) + RxF, 6.14

It

where F = Zf; is the total applied force. The first term in Eq.
(6.14) is the torque about the center of mass due to the various
external forces, and the second term is the torque due to the
total external force acting at the center of mass. For fixed axis
rotation o = wk, and Eq. (6.14) can be written

7. =710+ (RXF), 6.15

where 7 is the z component of the torque about the center of
mass. But from Eq. (6.13) for L, we have

dL, do d
at Ty a TaRx M)
= Ioa + (R X Ma),. 6.16

Using 7, = dL./dt, Eq. (6.15) and (6.16) yield
70+ (RXF), = I1a + (R X Ma),
= Toa + (R X F),,
since F = Ma. Hence,
70 = oo 6.17

According to Eq. (6.17), rotational motion about the center of mass
depends only on the torque about the center of mass, independent
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of the translational motion. In other words, Eq. (6.17) is correct
even if the axis is accelerating.

These relations will seem quite natural when we use them.
Before doing so, we complete the development by examining the
kinetic energy.

K = %Emﬂ)ﬁ
= #2my(p; + V)’
= ZImp;* + Zmp; -V + $2m, V2
= L w? + LMV? 6.18
The first term corresponds to the kinetic energy of spin, while

the last term arises from the orbital center of mass motion.
Here is a summary of these results.

TABLE 6.1
Summary of Dynamical Formulas for Fixed Axis Motion

a Pure rotation about an axis—no translation.

L =1Iw

7= Ia

K = 3lw?

b Rotation and translation (subscript 0 refers to center of mass)

L, = Iow + (R X MV),
7. =10+ (RXF),
7o = Lo

K = 3Iow? + $MV?

Disk on Ice

A disk of mass M and radius b is pulled with constant force F' by a thin
tape wound around its circumference. The disk slides on ice without
friction. What is its motion?

We shall solve the problem by two different methods.

METHOD 1
Analyzing the motion about the center of mass we have

To=bF

Ioa
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The acceleration of the center of mass is

F
a = —-
M
METHOD 2

We choose a coordinate system whose origin A is along the line of F.
The torque about A is, from Table 6.1b,

7. =70+ (RXF),
=bF — bF = 0.

The torque is zero, as we expect, and angular momentum about the origin
is conserved. The angular momentum about A is, from Table 6.1b,

L, = Iow + (R X MV),

= Jow — bMV.

Since dL./dt = 0, we have
0= Iga — bMa
or

bMa  bF
o = = —

I, I,

as before.

Drum Rolling down a Plane

A uniform drum of radius b and mass A/ rolls without slipping down a
plane inclined at angle 6. Find its acceleration along the plane. The
moment of inertia of the drum about its axis is I, = 1{b2/2.

METHOD 1

The forces acting on the drum are shown in the diagram. fis the force
of friction. The translation of the center of mass along the plane is
given by

Wsinf —f= Ma

and the rotation about the center of mass by
bf = Ia.

For rolling without slipping, we also have

a = ba.
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If we eliminate f, we obtain
W sin 6 — Ioz—‘ = Ma.
Using Iy = Mb?/2, and a = a/b, we obtain

Mg sin 0 — ﬂ% = Ma,

or
a = %g sin 6.

METHOD 2

Choose a coordinate system whose origin 4 is on the plane. The torque
about A is

Ts=TO+(RXF)z

—R. f+ R, (f— Wsin0) + Ry(N — W cos 6)

= —bW sin 6,

since R, = b and Wcos § = N. The angular momentum about 4 is

L, = —Iqw + (RX MV),
= —$Mb2w — Mbw
= —3Mbw,

where (R X 11V), = — Mb%w, as in Example 6.14. Since 1, = dL,/dt, we
have

bIV sin 0 = sz%z,

or

For rolling without slipping, ¢ = ba and
a = 3¢ sin 6.

Note that the analysis would have been even more direct if we had
chosen the origin at the point of contact. In this case we can calculate
7, directly from

7, = 2(r; X f,)..
Since f and N act at the origin, the torque is due only to W, and
7, = —bWsin 0

as we obtained above. With this origin, however, the unknown forces
f and N do not appear.



SEC. 6.7 MOTION INVOLVING BOTH TRANSLATION AND ROTATION 267

The Work-energy Theorem

In Chap. 4 we derived the work-energy theorem for a particle
Ky — Ko = Wy,

where

Wi = :b F . dr.

We can generalize this for a rigid body and show that the work-
energy theorem divides naturally into two parts, one dealing with
translational energy and one dealing with rotational energy.

To derive the translational part, we start with the equation of
motion for the center of mass.

_ IR
S de
A"}

=M —
di

F

The work done when the center of mass is displaced by
dR = Vdtis

F-dR=Md—v~th
di

= d(zMV?).
Integrating, we obtain
Ry
fR F.dR = MV, — sMV.2 6.19

Now let us evaluate the work associated with the rotational
kinetic energy. The equation of motion for fixed axis rotation
about the center of mass is

1o = I
dw
= I _—
*dt
Rotational kinetic energy has the form 4/,w? which suggests that
we multiply the equation of motion by df = o di:
dw

Tode =Ioawdt

A1 w?).

Il
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Integrating, we find that

[ " r0dd = ooyt — s 6.20

a

The integral on the left evidently represents the work done by the
applied torque.
The general work-energy theorem for a rigid body is therefore

Kb - Ka = Wbay

where K = $MV? + Iw? and W, is the total work done on the
body as it moves from position a to position b. We see from Egs.
(6.19) and (6.20) that the work-energy theorem is composed of
two independent theorems, one for translation and one for rota-
tion. In many problems these theorems can be applied sepa-
rately, as the following example shows.

Drum Rolling down a Plane: Energy Method

Consider once again a uniform drum of radius b, mass 17, and moment
of inertia Iy = }Mb%/2 on a plane of angle 8. If the drum starts from
rest and rolls without slipping, find the speed of its center of mass, V,
after it has descended a height A.

The forces on the drum are shown in the sketch. The energy equa-
tion for the translational motion is

b
fﬂ Fodr = 1MV, — 3MV.2

or
(Wsin 8 — Hl = zMV?, 1

where I = h/sin B is the displacement of the center of mass as the drum
descends height A.
The energy equation for the rotational motion is

1)
ﬁ 7d0 = $Towy? — 31 owa?

or
J60 = $Iw?,

where 0 is the rotation angle about the center of mass. For rolling
without slipping, b8 = I. Hence,

fl = ’%Iouﬂ. 2
We also have w = V /b, so that
= 11,V

2 b
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Using this in Eq. (1) to eliminate f gives
1/1,

Wh=-—=+ M)V?
2 <b2 + )

= %(M + M> V2

2
=3MV?
or
V = Agh.
3

An interesting point in this example is that the friction force is not
dissipative. From Eq. (1), friction decreases the translational energy by
an amount fl. However, from Eq. (2), the torque exerted by friction
increases the rotational energy by the same amount. In this motion,
friction simply transforms mechanical energy from one mode to another.
If slipping occurs, this is no longer the case and some of the mechanical
energy is dissipated as heat.

We conclude this section with an example involving constraints
which is easily handled by energy methods.

The Falling Stick

A stick of length [ and mass M, initially upright on a frictionless table,
starts falling. The problem is to find the speed of the center of mass
as a function of position.

The key lies in realizing that since there are no horizontal forces, the
center of mass must fall straight down. Since we must find velocity as
a function of position, it is natural to apply energy methods.

The sketch shows the stick after it has rotated through angle 6 and the
center of mass has fallen distance y. The initial energy is

E =Ko, + U,

Myl
2

The kinetic energy at a later time is
K = 316 + dMye

and the corresponding potential energy is

l
v =ato (=)
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Since there are no dissipative forces, mechanical energy is conserved
and K + U = Ko + Uy = Mgl/2. Hence,

My + o6 + My (Zl - y> = My ;

We can eliminate by turning to the constraint equation. From the
sketch we see that

l
=-1— 0).
y 2( cos 0)
Hence,
l .
) = -sin 66
Y 2sm

and

2
lsin @

Since I, = M (12/12), we obtain

g+ 300 S (2N e agg (L= ) = arg
ERY T EE 5 \Using) Y AV 75

or

29y

= —

[1 + 1/@3 sin? 6)]

.| bgysin®6 %.
4 3sin?2f +1

6.8 The Bohr Atom

We conclude this chapter with an historical account of the Bohr
theory of the hydrogen atom. Although this material represents
an interesting application of the principles we have encountered,
it is not essential to our development of classical mechanics.

The Bohr theory of the hydrogen atom is the major link between
classical physics and quantum mechanics. We present here a
brief outline of the Bohr theory as an exciting example of the appli-
cation of concepts we have studied, particularly energy and angu-
lar momentum. Our description is similar, though not identical,
to Bohr’s original paper which he published in 1913 at the age of
26. Although this brief account cannot deal adequately with the
background to the Bohr theory, it may give some of the flavor of
one of the great chapters in physics.
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The development of optical spectroscopy in the nineteenth
century made available a great deal of experimental data on the
structure of atoms. The light from atoms excited by an electric
discharge is radiated only at certain discrete wavelengths char-
acteristic of the element involved, and the last half of the nine-
teenth century saw tremendous effort in the measurement and
interpretation of these line spectra. The wavelength measure-
ments represented a notable experimental achievement; some
were made to an accuracy of better than a part in a million.
Interpretation, on the other hand, was a dismal failure; aside
from certain empirical rules which gave no insight into the under-
lying physical laws, there was no progress.

The most celebrated empirical formula was discovered in 1886
by the Swiss high school art teacher Joseph Balmer. He found
that the wavelengths of the optical spectrum of atomic hydrogen
are given within experimental accuracy by the formula

1 1 1
X=Ry<———> n=345 ...,

where \ is the wavelength of a particular spectral line, and Ry is
a constant, named the Rydberg constant after the Swedish spec-
troscopist who modified Balmer’s formula to apply to certain other
spectra. Numerically, Ry = 109,700 cm~. (In this section we
shall follow the tradition of atomic physics by using cgs units.)

Not only did Balmer’'s formula account for the known lines of
hydrogen, n = 3 through n = 6, it predicted other lines, n = 7,
8, . . ., which were quickly found. Furthermore, Balmer sug-
gested that there might be other lines given by

1 1
>\=Ry<—2——2> m=3,4,5,...
m n
n=m-+1m-+2 ... 6.21

and these, too, were found. (Balmer overlooked the series with
m = 1, lying in the ultraviolet, which was found in 1916.)

Undoubtedly the Balmer formula contained the key to the struc-
ture of hydrogen. Yet no one was able to create a model for an
atom which could radiate such a spectrum.

Bohr was familiar with the Balmer formula. He was also
familiar with ideas of atomic structure current at the time, ideas
based on the experimental researches of J. J. Thomson and
Ernest Rutherford. Thomson, working in the Cavendish physi-
cal laboratory at Cambridge University, surmised the existence of



272

ANGULAR MOMENTUM AND FIXED AXIS ROTATION

electrons in 1897. This first indication of the divisibility of the
atom stimulated further work, and in 1911 Ernest Rutherford’s?!
alpha scattering experiments at the University of Manchester
showed that atoms have a charged core which contains most of
the mass. Each atom has an integral number of electrons and
an equal number of positive charges on the massive core.

A further development in physics which played an essential
role in Bohr's theory was Einstein's theory of the photoelectric
effect. In 1905, the same year that he published the special
theory of relativity, Einstein proposed that the energy transmitted
by light consists of discrete ‘‘packages,’” or quanta. The quan-
tum of light is called a photon, and Einstein asserted that the
energy of a photon is £ = hv, where v is the frequency of the
light and A = 6.62 X 10~27 erg - s is Planck’s constant.?

Bohr made the following postulates:

1. Atoms cannot possess arbitrary amounts of energy but must
exist only in certain stationary states. While in a stationary state,
an atom does not radiate.

2. An atom can pass from one stationary state a to a lower state
by emitting a photon with energy E, — E,. The frequency of
the emitted photon is

_ B.— B

6.22
h

14
3. While in a stationary state, the motion of the atom is given
accurately by classical physics.

4, The angular momentum of the atom is nh/2r, where n is an
integer.

Assumption 1, the most drastic, was absolutely necessary to
account for the fact that atoms are stable. According to classical
theory, an orbiting electron would continuously lose energy by
radiation and spiral into the nucleus.

In view of the fact that assumption 1 breaks completely with
classical physics, assumption 3 hardly seems justified. Bohr
recognized this difficulty and justified the assumption on the
ground that the electrodynamical forces connected with the emis-
sion of radiation would be very small in comparison with the

1 Rutherford had earlier been a student of J. J. Thomson and in 1919 succeeded
Thomson as director of the Cavendish laboratory. Bohr in turn studied with
Rutherford while working out the Bohr theory.

2 Max Planck had introduced h in 1901 in his theory of radiation from hot bodies.
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electrostatic attraction of the charged particles. Possibly the
real reason that Bohr continued to apply classical physics to this
nonclassical situation was that he felt that at least some of the
fundamental concepts of classical physics should carry over into
the new physics, and that they should not be discarded until
proven to be unworkable.

Bohr did not utilize postulate 4, known as the quantization of
angular momentum, in his original work, although he pointed out
the possibility of doing so. It has become traditional to treat this
postulate as a fundamental assumption.

Let us apply these four postulates to hydrogen. The hydrogen
atom consists of a single electron of charge —e and mass m,, and
a nucleus of charge +e¢ and mass M. We assume that the mas-
sive nucleus is essentially at rest and that the electron is in a cir-
cular orbit of radius » with velocity ». The radial equation of
motion is

- _Z 6.23

where —e?/r?is the attractive Coulomb force between the charges
The energy is

e2

E=K+U=4imw*— — 6.24
r

Equations (6.23) and (6.24) yield

2
= _%i. 6.25
r

By postulate 4, the angular momentum is nh/2r, where n is an
integer. Labeling the orbit parameters by n, we have

[ 6.26
2w

Equations (6.26) and (6.23) yield

252
N 6.27
moe? (2r)?
and Eq. (6.25) gives
2 4
B, = — 1@mimet 6.28

2 n*h?
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If the electron makes a transition from state n to state m, the
emitted photon has frequency

_ B.— B,
YT T

(2m)2 mee* [ 1 1

=2 w e ) 6.29

The wavelength of the radiation is given by

2 4
_ 2r mee <i _ i). 6.30

This is identical in form to the Balmer formula, Eq. 6.21. What
is even more impressive is that the numerical coefficients agree
extemely well; Bohr was able to calculate the Rydberg constant
from the fundamental atomic constants.

The Bohr theory, with its strong flavor of elementary classical
mechanics, formed an important bridge between classical physics
and present-day atomic theory. Although the Bohr theory was
unsuccessful in explaining more complicated atoms, the impetus
provided by Bohr's work led to the development of modern
quantum mechanics in the 1920s.

Chasles’ Theorem

Chasles’ theorem asserts that is always possible to represent an arbi-
trary displacement of a rigid body by a translation of its center of mass
plus a rotation about its center of mass. This appendix is rather detailed
and an understanding of it is not necessary for following the development
of the text. However, the result is interesting and its proof provides a
nice exercise in vector methods for those interested.

To avoid algebraic complexities, we consider here a simple rigid body
consisting of two masses m, and m, joined by a rigid rod of length [.
The position vectors of m; and m, are r; and r,, respectively, as shown
in the sketch. The position vector of the center of mass of the body is
R, and r{ and r; are the position vectors of m; and m, with respect to the
center of mass. The vectors rj and r; are back to back along the same
line.

In an arbitrary displacement of the body, m,; is displaced by dr; and
m, is displaced by dr.. Because the body is rigid, dr, and dr, are not
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independent, and we begin our analysis by finding their relation. The
distance between m; and m, is fixed and of length [. Therefore,

[rl - rzl =1
or
(ry — 1) (ri—rp) = [~ 1

Taking differentials of Eq. (1),!
(r1 — l’g) . (dr1 - drg) = 0. 2
Equation (2) is the *‘rigid body condition’” we seek. There are evidently
two ways of satisfying Eq. (2): either dr, = dr,, or (dr, — dr;) is perpen-
dicular to (r; — ry).

We now turn to the translational motion of the center of mass. By
definition,
miry + mz"z.

my + my

Therefore, the displacement dR of the center of mass is

_ 7n1dr1 + WszI’Q'

my + me

dr

If we subtract this translational displacement from dr, and dr,, the resi-
dual displacements dr; — dR and dr, — dR should give a pure rotation
about the center of mass. Before investigating this point, we notice that
since

!
ry—R=I’1
!
ro — R =r,,

the residual displacements are

dr; — dR = dr}
dry, — dR = dr,. 4
Using Eq. (3) in Eq. (4) we have
dr; = dr, — dR
ma
=(———)Wdr, — d 5
(ml T mz) (dr, r2)
and
dl’; = dl’g — dR
m
= — [ ——— ) (dr; — dry). 6
(mx T m2)( ry r2)

Note that if dr, = dr,, the residual displacements dr; and dry are zero
and the rigid body translates without rotating.

! Remember that d(A + A) = 2A - dA.
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We must show that the residual displacements represent a pure
rotation about the center of mass to complete the theorem. The sketch
shows what a pure rotation would look like. First we show that dr{ and
dr, are perpendicular to the line rj — ;.

dri- (rp —ry) = dri-(r — r2)

= <L> (dry — dry) « (ry — 13)

my + me
=0,

where we have used Eq. (b) and the rigid body condition, Eq. (2).
Similarly,

dry . (ry —ry) = 0.
Finally, we require that the residual displacements correspond to rotation

through the same angle, Af. With reference to our sketch, this condi-
tion in vector form is

’
dry dry

’ ’
T1 7o

Keeping in mind that

’
T1 me
- = —
To my

by definition of center of mass, and using Eq. (5) and (6), we have

d_r; _ ( Mme >(d|'1 — dry)

’ ’
81 my + my 1
_ m (dry — dry)
- 7
my + me T
dr}
= - =
To

completing the proof.

Pendulum Motion

The motion of a body moving under conservative forces can always be
solved formally by energy methods, and it is natural to use thisapproach
to find the motion of a pendulum.

The total energy of the pendulum is

E=K+U
= 31¢* + mgy,

where [ is the length of the pendulum and y is the vertical distance from
the lowest point. From the sketch we have y = I(1 — cos ¢).
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At the end of the swing, ¢ = ¢ and ¢ = 0. The total energy is
E = mgl(1 — cos ¢o).

The energy equation is

Iml2p? 4+ mgl(l — cos ¢) = mgl(l — cos ¢o),
do

2g
— = 7 (cos ¢ — cos ¢y),

dt
/__dd’_____z\/g[dz. 1
\/cosd)—cosqso !

and

Before looking at the general solution, let us find the solution for the
case of small amplitudes. With the approximation cos ¢ =~ 1 — %¢?2
we have

/_d¢— - \/2_9 / dt.
VEV ¢t — ¢ !
Let us integrate over one-fourth of the swing, from ¢ =0 to ¢ = ¢o.

The time varies between { = 0 and { = T'/4, where T is the period. We
have

40 de \/zg 2
ﬁ) T o V1 — (¢/d0)? /

s fir
dolo — N4

Co- \/gT
14
T=27r\/—l’
g

as we found in the text.
To obtain a more accurate solution to Eq. (1), it is helpful to use the
identity cos ¢ = 1 — 2sin?(¢/2). Then

cos ¢ — cos ¢y = 2[sin? (¢o/2) — sin? (¢/2)]. 2
Introducing Eq. (2) in Eg. (1) gives
d¢ 29
= Al— [ di. 3
/ V2 V/sin ($0/2) — sin (¢/2) ! /

Now let us change variables as follows:

sin (¢/2)

siny = ———- 4

sin (¢o/2)

arcsin

Ny
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As the pendulum swings through a cycle, ¢ varies between —¢, and
+¢o. At the same time, u varies between —m and +m. If we let

K = sin ﬂ):
2
then

sin — = Ksinu

™[

1

—cosg—)dda = Kcos u du
2 2

and

1 — K?sin?2u

— sin? 3
dd,:(J__“_) oK dis. 5

Substituting Egs. (4) and (5) in Eqg. (3) gives

[ et

Let us take the integral over one period. The limits on « are 0 and
2w, while t ranges from 0 to 7. We have

9. 6

e -
0 1 — K?sin2u !

The integral on the left is an elliptic integral: specifically, it is a com-
plete elliptic integral of the first kind. Values for this function are avail-
able from computed tables. However, for our purposes it is more con-
venient to expand the integrand:

@ — Kzsin2u)? =14 £K2sin2u 4+ - - *

and
T=\/:l/2"du(1+lmsin2u+ )
gJo :
=\/_l(2.,r+2ir K2+ - - )
g 4
=27r\/5<1 +}lsin2(—z—°+ s )

If ¢o K1, then sin? (¢o/2) =~ ¢¢%/4, and we have

l
T=27"\/§(1+1}§¢02+"‘)- 7
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6.1 a. Show that if the total linear momentum of a system of particles
is zero, the angular momentum of the system is the same about all
origins.

b. Show that if the total force on a system of particles is zero, the
torque on the system is the same about all origins.

6.2 A drum of mass 3 4 and radius a rotates freely with initial angular
velocity w4(0). A second drum with mass Mp and radius b > a is
mounted on the same axis and is at rest, although it is free to rotate.
A thin layer of sand with mass 1/ is distributed on the inner surface of
the smaller drum. At ¢ = 0, small perforations in the inner drum are
opened. The sand starts to fly out at a constant rate A and sticks to
the outer drum. Find the subsequent angular velocities of the two
drums wy and wp. lgnore the transit time of the sand.

Ans. clue. If N\t = M, and b = 2qa, then ws = w4(0)/8

6.3 A ring of mass M and radius R lies on its side on a frictionless
table. It is pivoted to the table at its rim. A bug of mass m walks
around the ring with speed v, starting at the pivot. What is the rota-
tional velocity of the ring when the bug is (a) halfway around and (b)
back at the pivot.

Ans. clue. (a) If m = M, w = v/3R

6.4 A spaceship is sent to investigate a planet of mass A}/ and radius R.
While hanging motionless in space at a distance 5K from the center of
the planet, the ship fires an instrument package with speed v, as shown
in the sketch. The package has mass m, which is much smaller than the
mass of the spaceship. For what angle 8 will the package just graze the
surface of the planet?

6.5 A 3,000-lb car is parked on a 30° slope, facing uphill. The center
of mass of the car is halfway between the front and rear wheels and is
2 ft above the ground. The wheels are 8 ft apart. Find the normal
force exerted by the road on the front wheels and on the rear wheels.

6.6 A man of mass A} stands on a railroad car which is rounding an
unbanked turn of radius R at speed v. His center of mass is height L
above the car, and his feet are distance d apart. The man is facing the
direction of motion. How much weight is on each of his feet?

6.7 Find the moment of inertia of a thin sheet of mass A/ in the shape
of an equilateral triangle about an axis through a vertex, perpendicular
to the sheet. The length of each side is L.

6.8 Find the moment of inertia of a uniform sphere of mass M and
radius K about an axis through the center.

Ans. Iy = 2MR?
6.9 A heavy uniform bar of mass M rests on top of two identical rollers
which are continuously turned rapidly in opposite directions, as shown.
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The centers of the rollers are a distance 2] apart. The coefficient of
friction between the bar and the roller surfaces is u, a constant indepen-
dent of the relative speed of the two surfaces.

Initially the bar is held at rest with its center at distance z, from the
midpoint of the rollers. At time { = 0 it is released. Find the subse-
quent motion of the bar.

6.10 A cylinder of mass M and radius R is rotated in a uniform V groove
with constant angular velocity w. The coefficient of friction between the
cylinder and each surface is u. What torque must be applied to the
cylinder to keep it rotating?

Ans. clue. If w =05, B =0.1m, W =100 N, then r = 5.7 N'm

6.11 A wheel is attached to a fixed shaft, and the system is free to rotate
without friction. To measure the moment of inertia of the wheel-shaft
systern, a tape of negligible mass wrapped around the shaft is pulled
with a known constant force F. When a length L of tape has unwound,
the system is rotating with angular speed w,. Find the moment of
inertia of the system, I,.

Ans. clue. If F =10 N, L =5 m, wo = 0.5 rad/s, then I, = 400 kg'm?

6.12 A pivoted beam has a mass M, suspended from one end and an
Atwood’'s machine suspended from the other (see sketch at left below).
The frictionless pulley has negligible mass and dimension. Gravity is
directed downward, and M, > M.

Find a relation between M, M, M3, 1), and I, which will ensure that
the beam has no tendency to rotate just after the masses are released.

6.13 Mass m is attached to a post of radius K by a string (see right hand
sketch below). Initially it is distance r from the center of the post and is
moving tangentially with speed v,. In case (a) the string passes through
a hole in the center of the post at the top. The string is gradually short:
ened by drawing it through the hole. In case (b) the string wraps around
the outside of the post.

What quantities are conserved in each case? Find the final speed of
the mass when it hits the post for each case.

(®)
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6.14 A uniform stick of mass M and length [ is suspended horizontally
with end B on the edge of a table, and the other end, A is held by hand.
Point 4 is suddenly released. At the instant after release:

a. What is the torque about B?
b. What is the angular acceleration about B?

c. What is the vertical acceleration of the center of mass?
Ans. 3g/4

d. From part ¢, find by inspection the vertical force at B.
Ans. mg/4

6.15 A pendulum is made of two disks each of mass A and radius R
separated by a massless rod. One of the disks is pivoted through its
center by a small pin. The disks hang in the same plane and their
centers are a distance [ apart. Find the period for small oscillations.

6.16 A physical pendulum is made of a uniform disk of mass M and
radius R suspended from a rod of negligible mass. The distance from
the pivot to the center of the disk is [. What value of [ makes the period
a minimum?

6.17 A rod of length [ and mass m, pivoted at one end, is held by a
spring at its midpoint and a spring at its far end, both pulling in opposite
directions. The springs have spring constant k, and at equilibrium
their pull is perpendicular to the rod. Find the frequency of small oscilla-
tions about the equilibrium position. See figure below left

6.18 Find the period of a pendulum consisting of a disk of mass M and
radius R fixed to the end of a rod of length [ and mass m. How does
the period change if the disk is mounted to the rod by a frictionless'bear-
ing so that it is perfectly free to spin? See figure above right

6.19 A solid disk of mass M and radius R is on a vertical shaft. The
shaft is attached to a coil spring which exerts a linear restoring torque of
magnitude C6, where 0 is the angle measured from the static equilibrium
position and C is a constant. Neglect the mass of the shaft and the
spring, and assume the bearings to be frictionless.
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a. Show that the disk can undergo simple harmonic motion, and find
the frequency of the motion.

b. Suppose that the disk is moving according to 6 = 6, sin (wt), where
w is the frequency found in part a. At time ¢, = 7/w, a ring of sticky
putty of mass A/ and radius R is dropped concentrically on the disk.
Find:

(1) The new frequency of the motion

(2) The new amplitude of the motion

6.20 A thin plank of mass }{ and length [ is pivoted at one end (see
figure below). The plank is released at 60° from the vertical. What
is the magnitude and direction of the force on the pivot when the plank
is horizontal?

6.21 A cylinder of radius R and mass A rolls without slipping down a

plane inclined at angle §. The coefficient of friction is u.
What is the maximum value of 8 for the cylinder to roll without slipping?
Ans. @ = arctan 3u

6.22 A bead of mass m slides without friction on a rod that is made to
rotate at a constant angular velocity w. Neglect gravity.

a. Show that r = ree® is a possible motion of the bead, where r is
the initial distance of the bead from the pivot.

b. For the motion described in part a, find the force exerted on the
bead by the rod.

c. For the motion described above, find the power exerted by the
agency which is turning the rod and show by direct calculation that this
power equals the rate of change of kinetic energy of the bead.

6.23 A disk of mass M and radius R unwinds from a tape wrapped
around it (see figure below at left). The tape passes over a frictionless
pulley, and a mass m is suspended from the other end. Assume that
the disk drops vertically.

a. Relate the accelerations of m and the disk, a and A, respectively,
to the angular acceleration of the disk.

Ans. clue. If A = Za, then @ = 34/R
b. Find a, A and «.
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6.24 Drum A of mass M and radius R is suspended from a drum B
aiso of mass J{ and radius R, which is free to rotate about its axis (see
sketch below right). The suspension is in the form of a massless metal
tape wound around the outside of each drum, and free to unwind, as
shown. Gravity is directed downward. Both drums are initially at rest.
Find the initial acceleration of drum A, assuming that it moves straight
down.

6.25 A marble of mass A/ and radius R is rolled up a plane of angle 6.
If the initial velocity of the marble is vy, what is the distance [ it travels up
the plane before it begins to roll back down?

Ans. clue. Ifvg =3 m/s, § = 30° thenl =~ 13 m

6.26 A uniform sphere of mass 1/ and radius R and a uniform cylinder
of mass M and radius R are released simultaneously from rest at.the
top of an inclined plane. Which body reaches the bottom first if they
both roll without slipping?

6.27 A Yo-Yo of mass M has an axle of radius b and a spool of radius
R. Its moment of inertia can be taken to be J{R2/2. The Yo-Yo is
placed upright on a table and the string is pulled with a horizontal force
F as shown. The coefficient of friction between the Yo-Yo and the table
is u.

What is the maximum value of F' for which the Yo-Yo will roll without
slipping?
6.28 The Yo-Yo of the previous problem is pulled so that the string makes
an angle @ with the horizontal. For what value of 8 does the Yo-Yo have
no tendency to rotate?

6.29 A Yo-Yo of mass M has an axle of radius b and a spool of radius R.
Its moment of inertia can be taken to be A1 R2/2 and the thickness of the
string can be neglected. The Yo-Yo is released from rest.

a. What is the tension in the cord as the Yo-Yo descends and as it
ascends?
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b. The center of the Yo-Yo descends distance 4 before the string is
fully unwound. Assuming that it reverses direction with uniform spin
velocity, find the average force on the string while the Yo-Yo turns
around.

6.30 A bowling ball is thrown down the alley with speed v,. Initially it
slides without rolling, but due to friction it begins to roll. Show that its
speed when it rolls without sliding is 2v,.

6.31 A cylinder of radius R spins with angular velocity wg. When the
cylinder is gently laid on a plane, it skids for a short time and eventually
rolls without slipping. What is the final angular velocity, w,?

Ans. clue. If wg = 3 rad/s, w; = 1 rad/s

6.32 A solid rubber wheel of radius KR and mass 3] rotates with angular
velocity wo, about a frictionless pivot (see sketch at left). A second
rubber wheel of radius »r and mass m, also mounted on a frictionless
pivot, is brought into contact with it. What is the final angular velocity
of the first wheel?

6.33 A cone of height 4 and base radius R is free to rotate about a
fixed vertical axis. It has a thin groove cut in the surface. The cone
is set rotating freely with angular speed w,, and a small block of mass m
is released in the top of the frictionless groove and allowed to slide under
gravity. Assume that the block stays in the groove. Take the moment
of inertia of the cone about the vertical axis to be I,.

a. What is the angular velocity of the cone when the block reaches
the bottom?

b. Find the speed of the block in inertial space when it reaches the

bottom.

6.34 A marble of radius b rolls back and forth in a shallow dish of radius
R. Find the frequency of small oscillations. R > b.

Ans. w = V' 5¢/1R
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6.35 A cubical block of side L rests on a fixed cylindrical drum of radius
R. Find the largest value of L for which the block is stable. See figure
below left.

6.36 Two masses m4 and mp are connected by a string of length [ and
lie on a frictionless table. The system is twirled and released with my4
instantaneously at rest and mpz moving with instantaneous velocity v, at
right angles to the line of centers, as shown below right.

Find the subsequent motion of the system and the tension in the
string.

Ans. clue. 1f mq = mp =2 kg, vo =3 m/s,l =05m, then T =18 N

m"O

my ( )——vo

6.37 a. A plank of length 2l and mass M lies on a frictionless plane.
A ball of mass m and speed v, strikes its end as shown. Find the final
velocity of the ball, v;, assuming that mechanical energy is conserved
and that v, is along the original line of motion.
b. Find v; assuming that the stick is pivoted at the lower end.
Ans. clue. For m = M, (a) v; = 3v0/5; (b) v; = vy/2

6.38 A rigid massless rod of length L joins two particles each of mass
m. The rod lies on a frictionless table, and is struck by a particle of
mass m and velocity vy, moving as shown. After the collision, the pro-
jectile moves straight back.

Find the angular velocity of the rod about its center of mass after the
collision, assuming that mechanical energy is conserved.

Ans. w = (4\/5/7)(7)0/14)

6.39 A boy of mass m runs on ice with velocity v, and steps on the end
of a plank of length [ and mass M which is perpendicular to his path.
a. Describe quantitatively the motion of the system after the boy is
on the plank. Neglect friction with the ice.
b. One point on the plank is at rest immediately after the collision.
Where is it?
Ans. 2l/3 from the boy

6.40 A wheel with fine teeth is attached to the end of a spring with con-
stant k and unstretched length [. For x > [, the wheel slips freely on
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the surface, but for x < [ the teeth mesh with the teeth on the ground
so that it cannot slip. Assume that all the mass of the wheel is in its
rim.

a. The wheel is pulled to x = [ 4+ b and released. How close will it
come to the wall on its first trip?

b. How far out will it go as it leaves the wall?
c. What happens when the wheel next hits the gear track?

6.41 This problem utilizes most of the important laws introduced so far
and it is worth a substantial effort. However, the problem is tricky
(although not really complicated), so don’t be alarmed if the solution
eludes you.

A plank of length 2L leans against a wall. It starts to slip downward
without friction. Show that the top of the plank loses contact with the
wall when it is at two-thirds of its initial height.

Hint: Only a single variable is needed to describe the system. Note
the motion of the center of mass.



