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b and « are constants and v is the velocity. At ¢ = 0 it is moving with
velocity v,. Find the velocity at later times.

Ans. v(t) = (1/a)In [1/(abt/m + e~avo)]
2.37 The Eureka Hovercraft Corporation wanted to hold hovercraft races
as an advertising stunt. The hovercraft supports itself by blowing air
downward, and has a big fixed propeller on the top deck for forward
propulsion. Unfortunately, it has no steering equipment, so that the
pilots found that making high speed turns was very difficult. Thecompany
decided to overcome this problem by designing a bowl shaped track in
which the hovercraft, once up to speed, would coast along in a circular
path with no need to steer. They hired an engineer to design and build
the track, and when he finished, he hastily left the country. When the
company held their first race, they found to their dismay that the craft
took exactly the same time T to circle the track, no matter what its speed.
Find the equation for the cross section of the bowl in terms of 7.
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3.1 Introduction

In the last chapter we made a gross simplification by treating
nature as if it were composed of point particles rather than real,
extended bodies. Sometimes this simplification is justified—as in
the study of planetary motion, where the size of the planets is of
little consequence compared with the vast distances which char-
acterize our solar system, or in the case of elementary particles
moving through an accelerator, where the size of the particles,
about 10—15 m, is minute compared with the size of the machine.
However, these cases are unusual. Much of the time we deal
with large bodies which may have elaborate structure. For
instance, consider the landing of a spacecraft on the moon.
Even if we could calculate the gravitational field of such an irreg-
ular and inhomogeneous body as the moon, the spacecraft itself
is certainly not a point particle—it has spiderlike legs, gawky
antennas, and a lumpy body.

Furthermore, the methods of the last chapter fail us when we
try to analyze systems such as rockets in which there is a flow of
mass. Rockets accelerate forward by ejecting mass backward; it
is hard to see how to apply F = Ma to such a system.

In this chapter we shall generalize the laws of motion to over-
come these difficulties. We begin by restating Newton’s second
law in a slightly modified form. In Chap. 2 we wrote the law in
the familiar form

F = Ma. 31
This is not quite the way Newton wrote it. He chose to write

d
F = 7 M. 3.2
For a particle in newtonian mechanics, M is a constant and
(d/dt)(Mv) = M(dv/dt) = Ma, as before. The quantity My,
which plays a prominent role in mechanics, is called momentum.
Momentum is the product of a vector vand a scalar /. Denoting
momentum by p, Newton’s second law becomes

_

= 3.3
dt

F

This form is preferable to F = Ma because it is readily generalized
to complex systems, as we shall soon see, and because momentum
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turns out to be more fundamental than mass or velocity
separately.

3.2 Dynamics of a System of Particles

Consider a system of interacting particles. One example of such
a system is the sun and planets, which are so far apart compared
with their diameters that they can be treated as simple particles
to good approximation. All particles in the solar system interact
via gravitational attraction; the chief interaction is with the sun,
although the interaction of the planets with each other also influ-
ences their motion. In addition, the entire solar system is
attracted by far off matter.

At the other extreme, the system could be a billiard ball resting
on a table. Here the particles are atoms (disregarding for now
the fact that atoms are not point particles but are themselves
composed of smaller particles) and the interactions are primarily
interatomic electric forces. The external forces on the billiard
ball include the gravitational force of the earth and the contact
force of the tabletop.

We shall now prove some simple properties of physical systems.
We are free to choose the boundaries of the system as we please,
but once the choice is made, we must be consistent about which
particles are included in the system and which are not. We
suppose that the particles in the system interact with particles
outside the system as well as with each other. To make the argu-
ment general, consider a system of N interacting particles with
masses my, Ma, M3, . . . , My. The position of the jth particle
is r;, the force on it is f;, and its momentum is p; = m;t;, The
equation of motion for the jth particle is

dp;.

f=— 3.4

The force on particle j can be split into two terms:
f,‘ = f]'i"t + fjext. 35

Here f;int, the internal force on particle 7, is the force due to all
other particles in the system, and fs2xt, the external force on par-
ticle j, is the force due to sources outside the system. The equa-
tion of motion becomes

dp;.

fjint + f],ext = E 36
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Now let us focus on the system as a whole by the following
stratagem: add all the equations of motion of all the particles in
the system.

. dp;
f int f ext — =
1 + 1 dt
. ap;
f int f ext = — 37
i+ il
. dpy
f int f ext — — .
Nt A+ fy di

The result of adding these equations can be written

, dp;
Efjmt =+ Efjext s d_t] 3.8
The summations extend over all particles, 7 =1, . . . , N.

The second term, Zf*t, is the sum of all external forces acting
on all the particles. It is the total external force acting on the
system, Fexs.

Ef],ext = Fext-

The first term in Eq. (3.8), 2firt, is the sum of all internal forces
acting on all the particles. According to Newton’s third law, the
forces between any two particles are equal and opposite so that
their sum is zero. It follows that the sum of all the forces between
all the particles is also zero; the internal forces cancel in pairs.
Hence

Efji“t = 0.
Equation (3.8) then simplifies to

ap;

3.9
dt

Fext =

The right hand side can be written Z(dp;/dt) = (d/dt)Zp;, since
the derivative of a sum is the sum of the derivatives. Zp; is the
total momentum of the system, which we designate by P.

P = Ep]‘. 310
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With this substitution, Eq. (3.9) becomes

dP
Fop, = —- 3.11
YT oat

In words, the total external force applied to a system equals
the rate of change of the system’s momentum. This is true irre-
spective of the details of the interaction; F..; could be a single
force acting on a single particle, or it could be the resultant of
many tiny interactions involving each particle of the system.

The Bola

The bola is a weapon used by gauchos for entangling animals. It con-
sists of three balls of stone or iron connected by thongs. The gaucho
whirls the bola in the air and hurls it at the animal. What can we say
about its motion?

Consider a bola with masses m;, m,, and m3. The balls are pulled by
the binding thong and by gravity. (We neglect air resistance.) Since
the constraining forces depend on the instantaneous positions of all
three balls, it is a real problem even to write the equation of motion of
one ball. However, the total momentum obeys the simple equation

dP ,

5 = Fext - flext + f2ext + fsex
= mig + me9 + ms9

or

dP

= Mg,

a

where A is the total mass. This equation represents an important first
step in finding the detailed motion. The equation is identical to that
of a single particle of mass ./ with momentum P. This is a familiar fact
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to the gaucho who forgets that he has a complicated system when he
hurls the bola; he instinctively aims it like a single mass.

Center of Mass
According to Eq. (3.11),

dP
F = X 3.12
where we have dropped the subscript ext with the understanding
that F stands for the external force. This result is identical to
the equation of motion of a single particle, although in fact it
refers to a system of particles. Itis tempting to push the analogy
between Eq. (3.12) and single particle motion even further by
writing

F = MR, 3.13

where M is the total mass of the system and R is a vector yet to
be defined. Since P = Zm;t;, Eq. (3.12) and (3.13) give

. dP )
MR = E = Em,-rj,

which is true if

R = % ij‘l’j. 3.14

R is a vector from the origin to the point called the center of
mass. The system behaves as if all the mass is concentrated at
the center of mass and all the external forces act at that point.

We are often interested in the motion of comparatively rigid
bodies like baseballs or automobiles. Such a body is merely a
system of particles which are fixed relative to each other by strong
internal forces; Eq. (3.13) shows that with respect to external
forces, the body behaves as if it were a point particle. In Chap.
2, we casually treated every body as if it were a particle; we see
now that this is justified provided that we focus attention on the
center of mass.

You may wonder whether this description of center of mass
motion isn’'t a gross oversimplification—experience tells us that
an extended body like a plank behaves differently from a compact
body like a rock, even if the masses are the same and we apply
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the same force. We are indeed oversimplifying. The relation
F = MR describes only the translation of the body (the motion
of its center of mass); it does not describe the body’s orientation
in space. In Chaps. 6 and 7 we shall investigate the rotation of
extended bodies, and it will turn out that the rotational motion
of a body depends both on its shape and the point where the
forces are applied. Nevertheless, as far as translation of the
center of mass is concerned, F = MR tells the whole story.
This result is true for any system of particles, not just for those
fixed in rigid objects, as long as the forces between the particles
obey Newton’s third law. It is immaterial whether or not the
particles move relative to each other and whether or not there
happens to be any matter at the center of mass.

Drum Major’s Baton

A drum major's baton consists of two masses m; and m, separated by a
thin rod of length [. The baton is thrown into the air. The problem is
to find the baton’s center of mass and the equation of motion for the
center of mass.

Let the position vectors of m; and m, be ry and r,. The position vector
of the center of mass, measured from the same origin, is

_ MuFy + Moy
my =+ My

R , 1

where we have neglected the mass of the thin rod. The center of mass
lies on the line joining m; and m,. To show this, suppose first that the
tip of R does not lie on the line, and consider the vectors r{, ré from the
tip of R to m; and m,. From the sketch we see that

!

r; =t —R
!
ro =r; — R.

Using Eq. (1) gives

’ milky Mmoako
ry==r; — —
my + me  mip + me
ma
=————(r — 1)
mi + me
’ mity Mako
Fop = Ty — —_
my + my  my A+ me

mi

= — <m> (I’l - I’Q).
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’/ .
r, and ry, are proportional to r; — r,, the vector from m,; to m.. Hence
[T . e e
r; and ry lie along the line joining m; and ms, as shown. Furthermore,
rp= "2 [Fr — 1
1 = 1 — 2
my + ms
2
= — l
my + me

= —"0 p —
my -+ my
my
7711 + ms '
Assuming that friction is negligible, the external force on the baton is
F = mg + m.g.
The equation of motion of the center of mass is
(m1 + mR = (m1 + m2)g
or
R=g
The center of mass follows the parabolic trajectory of a single mass in a
uniform gravitational field. With the methods developed in Chap. 6, we

shall be able to find the motion of m; and m, about the center of mass,
completing the solution to the problem.

Although it is a simple matter to find the center of mass of a
system of particles, the procedure for locating the center of mass
of an extended body is not so apparent. However, itis a straight-
forward task with the help of calculus. We proceed by dividing
the body into N mass elements. |If r; is the position of the jth
element, and m; is its mass, then

1 ¥
R = e Z m;t;.

The result is not rigorous, since the mass elements are not true
particles. However, in the limit where N approaches infinity, the
size of each element approaches zero and the approximation
becomes exact.

This limiting process defines an integral. Formally

L)
lim Y m; = / rdm,
i=1

N—o»
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where dm is a differential mass element. Then

1

R=—_—
M

r dm. 3.15

To visualize this integral, think of dm as the mass in an element
of volume dV located at position r. If the mass density at the
elementis p, then dm = p dV and

R=%/rpdv.

This integral is called a volume integral. Although it is important
to know how to find the center of mass of rigid bodies, we shall
only be concerned with a few simple cases here, as illustrated by
the following two examples. Further examples are given in Note
3.1 at the end of the chapter.

Center of Mass of a Nonuniform Rod

A rod of length L has a nonuniform density. A\, the mass per unit length
of the rod, varies as A = A\(s/L), where )\ is a constant and s is the dis-
tance from the end marked 0. Find the center of mass.

It is apparent that R lies on the rod. Let the origin of the coordinate
system coincide with the end of the rod, 0, and let the z axis lie along the
rod so that s = z. The massin an element of length dzisdm = \ dz =
Moz dz/L. The rod extends from x = 0 to + = L and the total mass is

M=/dm

|
>
I
8

It
RO
>
=3
&

The center of mass is at

1
R=L [mdm
ZII/r

2 L R ~ oz dx
= — 0 0k

)\OL/O @+ 05+ 0k) =7
_ 2

23" o

= 2L

-
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Center of Mass of a Triangular Sheet

Consider the two dimensional case of a uniform right triangular sheet of
mass M, base b, height &, and small thickness ¢. If we divide the sheet
into small rectangular areas of side Az and Ay, as shown, then the volume
of each element is AV =t Az Ay, and

M
Zpit Az Ayr;
= —_—

M

where j is the label of one of the volume elements and p; is the density.
Because the sheet is uniform,

M
p; = constant = = —

Vo At

where A is the area of the sheet.

We can carry out the sum by summing first over the Ax’s and then
over the Ay's, instead of over the single index j. This gives a double
sum which can be converted to a double integral by taking the limit, as
follows:

R = tim (22) (L) 2z, ac Ay
Az—0 At M

Ay—0

=%//rdxdy.

Let r = i 4 yj be the position vector of an element dz dy. Then,
writing R = Xi + Yj, we have

R = Xi+ Yj

-+ [[ @ +vidsay

=%<//xdxdy)i+%(/ ydzdy)i

Hence the coordinates of the center of mass are given by

X=%//xdxdy

1
Y=—/ dz dy.
<)) vy
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The double integrals may look strange, but they are easily evaluated.
Consider first the double integral

X=%N@mw.

This integral instructs us to take each element, multiply its area by its
x coordinate, and sum the results. We can do this in stages by first
considering the elements in a strip parallel to the y axis. The strip runs
from y =0 to y = zh/b. Each element in the strip has the same z
coordinate, and the contribution of the strip to the double integral is

zh/b
l:lcdx/ " dy=—h—x2dx.
A 0 bA

Finally, we sum the contributions of all such strips x = 0 to z = b to find

3

X=i/bx2dx=ib—
bA Jo b4 3

_
34

Since A = 4bh,

X = 2b.
Similarly,
1 b zh/b
v (5 va) s
2 2
= h /xzdx=h—b
2Ab2J0 6A
= %h.
Hence

R = 2bi + 34j.
Although the coordinates of R depend on the particular coordinate sys-

tem we choose, the position of the center of mass with respect to the
triangular plate is, of course, independent of the coordinate system.

Often physical arguments are more useful than mathematical
analysis. For instance, to find the center of mass of an irregular
plane object, let it hang from a pivot and draw a plumb line from
the pivot. The center of mass will hang directly below the pivot
(this may be intuitively be obvious, and it can easily be proved
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with the methods of Chap. 6), and it is somewhere on the plumb
line. Repeat the procedure with a different pivot point. The
two lines intersect at the center of mass.

Center of Mass Motion

A rectangular box is held with one corner resting on a frictionless table
and is gently released. It falls in a complex tumbling motion, which we
are not yet prepared to solve because it involves rotation. However,
there is no difficulty in finding the trajectory of the center of mass.

=

The external forces acting on the box are gravity and the normal force
of the table. Neither of these has a horizontal component, and so the
center of mass must accelerate vertically. For a uniform box, the center
of mass is at the geometrical center. If the box is released from rest,
then its center falls straight down.

3.3 Conservation of Momentum

In the last section we found that the total external force F acting
on a system is related to the total momentum P of the system by

dP
F=—-.
di

Consider the implications of this for an isolated system, that is, a
system which does not interact with its surroundings. In this
case F =0, and dP/dt = 0. The total momentum is constant;
no matter how strong the interactions among an isolated system
of particles, and no matter how complicated the motions, the total
momentum of an isolated system is constant. This is the law of
conservation of momentum. As we shall show, this apparently
simple law can provide powerful insights into complicated systems.
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Spring Gun Recoil

A loaded spring gun, initially at rest on a horizontal frictionless surface,
fires a marble at angle of elevation . The mass of the gun is M, the
mass of the marble is m, and the muzzle velocity of the marble is v,.
What is the final motion of the gun?

Take the physical system to be the gun and marble. Gravity and the
normal force of the table act on the system. Both these forces are ver-
tical. Since there are no horizontal external forces, the x component
of the vector equation F = dP/dt is

dP,

0= . 1
dt

According to Eq. (1), P, is conserved:

Pz,init'ml = Pz.ﬁnal' 2

Let the initial time be prior to firing the gun. Then P, nua1 = 0, since
the system is initially at rest. After the marble has left the muzzle, the
gun recoils with some speed V,, and its final horizontal momentum
is MV, to the left. Finding the final velocity of the marble involves a
subtle point, however. Physically, the marble’s acceleration is due to
the force of the gun, and the gun’s recoil is due to the reaction force of
the marble. The gun stops accelerating once the marble leaves the
barrel, so that at the instant the marble and the gun part company, the
gun has its final speed V. At that same instant the speed of the mar-
ble relative to the gun is vo. Hence, the final horizontal speed of the
marble relative to the table is vocos 8 — V. By conservation of hori-
zontal momentum, we therefore have

0=m(oycos @ — V) — MV,

or
__ Mg COS 0
M+ m

By using conservation of momentum we found the final motion of the
system in a few steps. To show the advantage of this method, let us
repeat the problem using Newton’s laws directly.

Let v(¢) be the velocity of marble at time ¢ and let V(¢) be the velocity
of the gun. While the marble is being fired, it is acted on by the spring,
by gravity, and by friction forces with the muzzle wall. Let the net
force on the marble be f(¢). The z equation of motion for the marble is

dv,
— = f,.(). 3
me F=(t)
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Formal integration of Eq. (3) gives
¢
mu,(t) = mv,(0) + /0 Sz dt. 4

The external forces are all vertical, and therefore the horizontal force f,
on the marble is due entirely to the gun. By Newton’s third law, there is
a reaction force —f, on the gun due to the marble. No other horizontal
forces act on the gun, and the horizontal equation of motion for the gun
is therefore

av
M—== —f.t),
” f2)

which can be integrated to give
MVt = MV.,0) — ﬁ)tfx dt. 5

We can eliminate the integral by combining Eqgs. (4) and (5):
MV (@) + mo,(t) = MV,0) + mv.(0). 6

We have rediscovered that the horizontal component of momentum is
conserved.

What about the motion of the center of mass? Its horizontal velocity
is
MV.(t) + mo (@),

R.(t) =
@ M +m

Using Eq. (6), the numerator can be rewritten to give

MV 2(0) + mv.0) _

R.¢t) =
@ M+ m

0,
since the system is initially at rest. R, is constant, as we expect.

We did not include the small force of air friction. Would the center of
mass remain at rest if we had included it?

The essential step in our derivation of the law of conservation of
momentum was to use Newton’s third law. Thus, conservation of
momentum appears to be a natural consequence of newtonian
mechanics. It has been found, however, that conservation of
momentum holds true even in areas where newtonian mechanics
proves inadequate, including the realms of quantum mechanics
and relativity. In addition, conservation of momentum can be
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generalized to apply to systems like the electromagnetic field,
which possess momentum but not mass. For these reasons,
conservation of momentum is generally regarded as being more
fundamental than newtonian mechanics. ¥From this point of view,
Newton’s third law is a simple consequence of conservation of
momentum for interacting particles. For our present purposes
it is purely a matter of taste whether we wish to regard Newton’s
third law or conservation of momentum as more fundamental.

Earth, Moon, and Sun—a Three Body System

Newton was the first to calculate the motion of two gravitating bodies.
As we shall discuss in Chap. 9, two bodies of mass M, and M, bound by
gravity move so that r;, traces out an ellipse. The sketch shows the
motion in a frame in which the center of mass is at rest. (Note that the
center of mass of two particles lies on the line joining them.)

There is no general analytical solution for the motion of three gravi-
tating bodies, however. In spite of this, we can explain many of the
important features of the motion with the help of the concept of center
of mass.

At first glance, the motion of the earth-moon-sun system appears
to be quite complex. In the absence of the sun, the earth and moon
would execute elliptical motion about their center of mass. As we shall
now show, that center of mass orbits the sun like a single planet, to good
approximation. The total motion is the simple result of two simultaneous
elliptical orbits.

O
- e //9 o
o // I O\\ Q. Moon Earth
d | N 0
6 b O
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The center of mass of the earth-moon-sun system lies at

_ MeRe + ]l[mRm + MsRs
M.+ Mn+ M,

where M., M,, and M, are the masses of the earth, moon, and sun,
respectively. The sun’s mass is so large compared with the mass of
the earth or the moon that R, = R,, and to good approximation the cen-
ter of mass of the three body system lies at the center of the sun. Since
external forces are negligible, the sun is effectively at rest in an inertial
frame and it is natural to use a coordinate system with its origin at the
center of the sun so that R = 0.

Let . and 7, be the positions of the earth and moon with respect to
the sun, and let us focus for the moment on the system composed of
the earth and moon. Their center of mass lies at

M, + M,,,r,,,.

Ren =
M.+ M,

The external force on the earth-moon system is the gravitational pull
of the sun:

oo (e i),
7e? T

e
The equation of 5notion of the center of mass is
M.+ Ma)Rem = F.

The earth and moon are so close compared with their distance from
the sun that we shall not make a large error if we assume 7, = 7, = Rem.
With this approximation,

(M, + MR, ~ %f”—s (M o + M)
_GA[s(Me + ]llm)ﬁem

R2

The center of mass of the earth and moon moves like a planet of mass
M, + M,, about the sun. The total motion is the combination of’ this
elliptical motion and the elliptical motion of the earth and moon about
their center of mass, as illustrated on the opposite page. (The drawing
is not to scale: the center of mass of the earth-moon system lies within
the earth, and the moon's orbit is always concave toward the sun. Also,
the plane of the moon's orbit is inclined by 5° with respect to the earth’s
orbit around the sun.)

i
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Center of Mass Coordinates
m
: Often a problem can be simplified by the right choice of coordi-
\\\ nates. The center of mass coordinate system, in which the origin
T AN lies at the center of mass, is particularly useful. The drawing
R SO illustrates the case of a two particle system with masses m; and
my my. In the initial coordinate system, z, y, 2z, the particles are
v located at r; and r; and their center of mass is at
y
R = mary + mzl’zl
my + mq
We now set up the center of mass coordinate system, 2/, ¢/, 2/,
with its origin at the center of mass. The origins of the old and
i z' new system are displaced by R. The center of mass coordinates
4 v of the two particles are
' r; =Fr; — R
' ’
R~ Jom, r,=r,—R.
f”’rl . .
= y Center of mass coordinates are the natural coordinates for

an isolated two body system. For such a system the motion of
the center of mass is trivial—it moves uniformly. Furthermore,
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mary + maor, = 0 by the definition of center of mass, so that if
the motion of one particle is known, the motion of the other par-
ticle follows directly. Here is an example.

Example 3.8 The Push Me-Pull You

Two identical blocks a and b both of mass m slide without friction on a

straight track. They are attached by a spring of length [ and spring
constant k. Initially they are at rest. At { = 0, block a is hit sharply,
_ v,(0) =2, giving it an instantaneous velocity vy to the right. Find the velocities for
2,(0)=0 —_— subsequent times. (Try this yourself if there is a linear air track
s Il e available—the motion is quite unexpected.)
Since the system slides freely after the collision, the center of mass
, __‘ moves uniformly and therefore defines an inertial frame.
b Let us transform to center of mass coordinates. The center of mass
Ta lies at
B - Mmre -+ mry
m+m
1
= E (ra + Tb)-

As expected, R is always halfway between a and b. The center of mass
coordinates of @ and b are

rh =1, —R

= 3(Ta — T5)
7'2 =rn—R

= —3(Ta — 1)

’
—7,.

The sketch below shows these coordinates.

r
a
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—— R coordinates
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Center of mass
coordinates
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The instantaneous length of the springis ro — r, — 1 = r) — 1y — 1,
where [ is the unstretched length of the spring. The magnitude of the
spring force is k(r; - r{, — ). The equations of motion in the center of
mass system are

—htra — 15 = 1)
+]C(7'¢; - rl’) - l)v

I

s
mrq

o/
mry

where [ is the unstretched length of the spring. The form of these equa-
tions suggests that we subtract them, obtaining

m@G, — i) = —2k(re — s — ).

It is natural to introduce the departure of the spring from its equi-
librium length as a variable. Letting u = r,; — 7y — 1, we have

mi + 2ku = 0.

This is the equation for simple harmonic motion which we discussed
in Example 2.14. The solution is

u = A sin wt + B cos wt,

where w = \/Zk/m. Since the spring is unstretched at¢ = 0, «(0) = 0
which requires B = 0. Furthermore, since u = r,; - r,; —l=r,—1rs— 1,
we have att{ =0

w(0) = va(0) — vy(0)
= Aw cos (0)
= Vo,

so that

A = Uo/w

and

u = (Vo/w) sin wt.
. ! ’ . ’ ’
Since v, — v, = u, and v, = —v,, we have
’ ’ 1
V, = —U, = 3V COS wi.
The laboratory velocities are

va=R+v;
vb=R+v,;.
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Since R is consta nt, it is always equal to its initial value

R = [v.0) + v,(0)]

1
200

Putting these together gives
v
Vg = 30(1 + cos wt)
v
v = Eo(l — cos wt).

The masses move to the right on the average, but they alternately
come to rest in a push me—pull you fashion.

3.4 Impulse and a Restatement of the Momentum Relation

The relation between force and momentum is

dP

F = —
dt

3.16

As a general ru , any law of physics which can be expressed in
terms of derivatives can also be written in an integral form. The
integral form of the force-momentum relationship is

/0’ Fdt = P@t) — P(0). 3.17

The change in momentum of a system is given by the integral of
force with respect to time. This form contains essentially the
same physical information as Eqg. (3.16), but it gives a new way of
looking at the effect of a force: the change in momentum is the
time integral of the force. To produce a given change in the

momentum in time interval ¢ requires only that ﬁ)l F dt have the

appropriate value; we can use a small force acting for much of
the time or a large force acting for only part of the interval. The

integral ﬁ)t F dt is called the impulse. The word impulse calls to

mind a short, sharp shock, as in Example 3.8, where we talked of
giving a blow to a mass at rest so that its final velocity was v,.
However, the physical definition of impulse can just as well be
applied to a weak force acting for a long time. Change of momen-
tum depends only on [Fdi, independent of the detailed time
dependence of the force.

Here are two examples involving impulse.
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Example 3.9 Rubber Ball Rebound

z A rubber ball of mass 0.2 kg falls to the floor. The ball hits with a speed
of 8 m/s and rebounds with approximately the same speed. High
speed photographs show that the ball is in contact with the floor for 103 s.
What can we say about the force exerted on the ball by the floor?

The momentum of the ball just before it hits the floor is P, = —1.6k
kg'm/s and its momentum 10~3 s later is P, = --1.6k kg'm/s. Since
t"’ Fdt = P, — P, ﬁ“’ Fdt = 1.6k — (—16k) = 3.2k kg'm/s. Although

a

the exact variation of F with time is not known, it is easy to find the average
F force exerted by the floor on the ball. If the collision time is At = t, — &g,
the average force F,, acting during the collision is

F,. Al = / LA e .

a

Since Af = 1073 s,

_ 3.2k kg'm/s

= 3,200k N.
107¢s

av

The average force is directed upward, as we expect. In more familiar
t units, 3,200 N = 720 |Ib—a sizable force. The instantaneous force on the
ball is even larger at the peak, as the sketch shows. If the ball hits a
resilient surface, the collision time is longer and the peak force is less.
Actually, there is a weakness in our treatment of the rubber ball
rebound. In calculating the impulse fF dt, F is the total force. This
includes the gravitational force, which we have neglected. Proceeding
more carefully, we write

F = Fpoor + Fgrav
= Frioor — Mgk

The impulse equation then becomes
10-3 10-3 - .
/0 Fiioor At — /0 Mgk dt = 3.2k kg'm/s.

The impulse due to the gravitational force is

Il

—(0.2)(9.8)(10~3)k

10-3 - “ 10-3

- ﬂ) Mgk di = —Mgkﬁ) d
' = —1.96 X 107%k kg'm/s.

This is less than one-thousandth of the total impulse, and we can neglect
it with little error. Over a long period of time, gravity can produce a
large change in the ball's momentum (the ball gains speed as it falls, for
example). In the short time of contact, however, gravity contributes
little momentum change compared with the tremendous force exerted
by the floor. Contact forces during a short collision are generally so
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huge that we can neglect the impulse due to other forces of moderate
strength, such as gravity or friction.

The last example reveals why a quick collision is more violent
than a slow collision, even when the initial and final velocities are
identical. This is the reason that a hammer can produce a force
far greater than the carpenter could produce on his own; the hard
hammerhead rebounds in a very short time compared with the
time of the hammer swing, and the force driving the hammer is
correspondingly amplified. Many devices to prevent bodily injury
in accidents are based on the same considerations, but applied in
reverse—they essentially prolong the time of the collision. This
is the rationale for the hockey player’s helmet, as well as the auto-
mobile seat belt. The following example shows what can happen
in even a relatively mild collision, as when you jump to the ground.

How to Avoid Broken Ankles

Animals, including humans, instinctively reduce the force of impact with
the ground by flexing while running or jumping. Consider what happens
to someone who hits the ground with his legs rigid.

Suppose a man of mass M jumps to the ground from height 4, and
that his center of mass moves downward a distance s during the time of
collision with the ground. The average force during the collision is

where ¢ is the time of the collision and v, is the velocity with which he hits
the ground. As a reasonable approximation, we can take his accelera-
tion due to the force of impact to be constant, so that the man comes
uniformly to rest. In this case the collision time is given by vy = 2s/¢, or

Inserting this in Eq. (1) gives

F o= I]IUQZ.
28

For a body in free fall for distance A,
vo? = 2gh.
Inserting this in Eq. (2) gives

F =Mgfl~
s
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If the man hits the ground rigidly in a vertical position, his center of
mass will not move far during the collision. Suppose that his center of
mass moves 1 cm, which roughly means that his height momentarily
decreases by approximately 2 cm. [f he jumps from a height of 2 m,
the force is 200 times his weight!

Consider the force on a 90-kg (=200-lb) man jumping from a height of
2 m. The force is

F = 90 kg X 9.8 m/s? X 200

= 1.8 X 105 N.

Where is a bone fracture most likely to occur? The force is a maxi-
mum at the feet, since the mass above a horizontal plane through the
man decreases with height. Thus his ankles will break, not his neck.
If the area of contact of bone at each ankle is 5 cm?, then the force per
unit area is

P 18X 105N
A 10 cm?
1.8 X 10¢ N/cm=.

Il

This is approximately the compressive strength of human bone, and
so there is a good probability that his ankles will snap.

Of course, no one would be so rash as to jump rigidly. We instinc-
tively cushion the impact when jumping by flexing as we hit the ground,
in the extreme case collapsing to the ground. If the man’s center of
mass drops 50 cm, instead of 1 cm, during the collision, the force is only
one-fiftieth as much as we calculated, and there is nc danger of com-
pressive fracture.

3.5 Momentum and the Flow of Mass

Analyzing the forces on a system in which there is a flow of mass
becomes terribly confusing if we try to apply Newton’s laws blindly.
A rocket provides the most dramatic example of such a system,
although there are many other everyday problems where the same
considerations apply—for instance, the problem of calculating the
reaction force on a fire hose, or of calculating the acceleration of
a snowball which grows larger as it rolls downhill.

There is no fundamental difficulty in handling any of these
problems provided that we keep clearly in mind exactly what is
included in the system. Recall that F = dP/dt [Eq. (3.12)] was
established for a system composed of a certain set of particles.
When we apply this equation in the integral form,

(“Fdi = P(ty) — P(t),
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it is essential to deal with the same set of particles throughout
the time interval ¢, to #; we must keep track of all the particles
that were originally in the system. Consequently, the mass of
the system cannot change during the time of interest.

Mass Flow and Momentum

A spacecraft moves through space with constant velocity v. The space-
craft encounters a stream of dust particles which embed themselves in
it at rate dm/dt. The dust has velocity u just before it hits. At time ¢
the total mass of the spacecraft is M (). The problem is to find the
external force F necessary to keep the spacecraft moving uniformly.
(In practice, F would most likely come from the spacecraft's own rocket
engines. For simplicity, we can visualize the source F to be completely
external—an invisible hand, so to speak.)

Let us focus on the short time interval between ¢ and ¢ + Af. The
drawings below show the system at the beginning and end of the interval.

Am to be
added in time A?

System boundary;

mass of system =M(t) + Am System boundary;

mass of system = M(t)+Am
Time ¢ + At

Time ¢

Let Am denote the mass added to the satellite during Af. The sys-
tem consists of M () and Am. The initial momentum is

P(¢) = M@V + (Am)u.
The final momentum is
P@ + At) = M () + (Am)v.
The change in momentum is

AP

Il

Pt + Af) — P@)
(v — u) Am.
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The rate of change of momentum is approximately

AP Am
— = (v —u)—
At At

In the limit At — 0, we have the exact result

Py gydm

dt dt
Since F = dP/dt, the required external force is

am
F = - —_—
(v u) it

Note that F can be either positive or negative, depending on the direction
of the stream of mass. If u = v, the momentum of the system is con-
stant, and F = 0.

The procedure of isolating the system, focusing on differentials,
and taking the limit may appear a trifle formal. However, the
procedure is helpful in avoiding errors in a subject where it is
easy to become confused. For instance, a frequent error is to
argue that F = (d/dt)(mv) = m(dv/dt) + v(dm/dt). In the last
example v is constant, and the result would be F = v(dm/dt)
rather than (v — u)(dm/dt). The difficulty arises from the fact
that there are several contributions to the momentum, so that the
expression for the momentum of a single particle, p = mv, is not
appropriate. The limiting procedure illustrated in the last exam-
ple avoids such ambiguities.

Freight Car and Hopper

Sand falls from a stationary hopper onto a freight car which is moving
with uniform velocity ». The sand falls at the rate dm/di. How much
force is needed to keep the freight car moving at the speed v?

In this case, the initial speed of the sand is 0, and

dP dm dm
—=w—-uw)|—)=v—
dt (dt) dt

The required force is F' = v dm/df. We can understand why this force
is needed by considering in detail just what happens to a sand grain as
it lands on the surface of the freight car. What would happen if the
surface of the freight car were slippery?
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Leaky Freight Car

Now consider a related case. The same freight car is leaking sand at
the rate dm/dt; what force is needed to keep the freight car moving
uniformly with speed v?

Here the mass is decreasing. However, the velocity of the sand after
leaving the freight car is identical to its initial velocity, and its momentum
does not change. Since dP/dt =0, no force is required. (The sand
does change its momentum when it hits the ground, and there is a
resulting force on the ground, but that does not affect the motion of the
freight car.)

The concept of momentum is invaluable in understanding the
motion of a rocket. A rocket accelerates by expelling gas at a
high velocity; the reaction force of the gas on the rocket accelerates
the rocket in the opposite direction. The mechanism is illustrated
by the drawings of the cubical chamber containing gas at high
pressure.

The gas presses outward on each wall with the force F,. (We
show only four walls for clarity.) The vector sum of the F,’s is
zero, giving zero net force on the chamber. Similarly each wall
of the chamber exerts a force on the gas F, = —F,; the net force
on the gasis also zero. In the right hand drawings below, one wall

Force on chamber <

|

F
b
Force on gas — <

Fb
A\

ﬁ

|

|

|

|

I
FbI |Fb
has been removed. The net force on the chamber is F,, to the

right. The net force on the gas is F}, to the left. Hence the gas
accelerates to the left, and the chamber accelerates to the right.
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To analyze the motion of the rocket in detail, we must equate
the external force on the system, F, with the rate of change of
momentum, dP/dt. Consider the rocket at time {. Between ¢
and ¢t + At a mass of fuel Am is burned and expelled as gas with
velocity u relative to the rocket.. The exhaust velocity u is deter-
mined by the nature of the propellants, the throttling of the
engine, etc., but it is independent of the velocity of the rocket.

The sketches below show the system at time ¢ and at time

———

v+Av+u -7 ~

~N.
7 N
( \
|
),
N /
S —_————

~_ —~7 V+ AV

Time ¢ + At

t + At. The system consists of Am plus the remaining mass of
the rocket M. Hence the total mass is M + Am.

The velocity of the rocket at time ¢ is v(¢), and at ¢ + A¢, it is
v + Av. The initial momentum is

P() = (M + Am)v
and the final momentum is
P + At) = M(v + Av) + Am(v 4+ Av 4 u).

The change in momentum is

AP = P(t + At) — P(?)
= M Av + (Am)u.
Therefore,
dP .
— = lim —
dt a0 Al
dv dm
- o >, 3.18
Mot

Note that we have defined u to be positive in the direction of v.
In most rocket applications, u is negative, opposite to v. It is
inconvenient to have both m and M in the equation. dm/dt is
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the rate of increase of the exhaust mass. Since this mass comes
from the rocket,

dm aM

dt dt

Using this in Eq. (3.18), and equating the external force to dP/dt,
we obtain the fundamental rocket equation

3.19

It may be useful to point out two minor subtleties in our develop-
ment. The first is that the velocities have been expressed with
respect to an inertial frame, not a frame attached to the rocket.
The second is that we took the final velocity of the element of
exhaust gas to be v + Av + u rather than v 4+ u. This is correct
(consult Example 3.6 on spring gun recoil if you need help in seeing
the reason), but actually it makes no difference here, since either
expression yields the same final result when the limit is taken.
Here are two examples on rockets.

Rocket in Free Space
If there is no external force on a rocket, F = 0 and its motion is given by

a0
dt dt

or

dv_ udM
dt M di

Generally the exhaust velocity u is constant, in which case it is easy to
integrate the equation of motion.

tjfi_v.dt_ t/iﬂ
woar T M e Moar
_ [l
C oM
or
.
Vs vo—unﬂ[o
M,
= —uln——:
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If vo = 0, then

in o
vy = —uln—-
d M,
The final velocity is independent of how the mass is released—the fuel
can be expended rapidly or slowly without affecting v;. The only
important quantities are the exhaust velocity and the ratio of initial to
final mass.

The situation is quite different if a gravitational field is present, as
shown by the next example.

Rocket in a Gravitational Field

If a rocket takes off in a constant gravitational field, Eq. (3.19) becomes

o T 9

Integrating with respect to time, we obtain
M,
vi— Vo =uln (E) + g(t; — to)-

Let vo = 0, £, = 0, and take velocity positive upward.

vy = uln % — gt
! M, gty

Now there is a premium attached to burning the fuel rapidly. The
shorter the burn time, the greater the velocity. This is why the takeoff
of a large rocket is so spectacular—it is essential to burn the fuel as
quickly as possible.

3.6 Momentum Transport

Nearly everyone has at one time or another been on the receiving
end of a stream of water from a hose. You feel a push. If the
stream is intense, as in the case of a fire hose, the push can be
dramatic—a jet of high pressure water can be used to break
through the wall of a burning building.
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The push of a water stream arises from the momentum it
transfers to you. Unless another external force gives you equal
momentum in the opposite direction, off you go. How can a
column of water flying through the air exert a force which is every
bit as real as a force transmitted by a rigid steel rod? The reason
is easy to see if we picture the stream of water as a series of small
uniform droplets of mass m, traveling with velocity »,. Let the
Q--0 O O = droplets be distance [ apart and suppose that the stream is

L_,__j directed against your hand. Assume that the drops collide with-
out rebound and simply run down your arm. Consider the force
exerted by your hand on the stream. As each drop hits there is
a large force for a short time. Although we do not know the
instantaneous force, we can find the impulse 4ropiet ON €ach drop
due to your hand.

Laroples = /1 collision Fdt
= m(vf - 7)0)
= —'mvo-

The impulse on your hand is equal and opposite.
Ihand = MUo.

The positive sign means that the impulse on the hand is in the

Area = impulse same direction as the velocity of the drop. The impulse equals

/~ Deak force the area under one of the peaks shown in the drawing. If there

are many collisions per second, you do not feel the shock of each

drop. Rather, you feel the average force F,, indicated by the

dashed line in the drawing. The area under F,, during one colli-

o\ Avemgefore] 1 sion period T (the time between collisions) is identical to the
impulse due to one drop.

FavT= F dt

1 collision

Since T = l/vy and [F dt = mv,, the average force is

muvo

Foy
T

Il

= - 1)02.

~|3
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Here is another way to find the average force. Consider length
L of the stream just about to hit the surface. The number of
drops in L is L/l, and since each drop has momentum muv,, the
total momentum is

L
Ap = — mv,.
l
All these drops will strike the wall in time
L
At = —-
Vo

The average force is

_A4r
At
m
— ok
l 0

To apply this model to a fluid, consider a stream moving with
speed v. If the mass per unit length is m/l = \, the momentum
per unit length is A\v and the rate at which the stream transports
momentum to the surface is

Il

dp
L3 3.20
a =Y

If the stream comes to rest at the surface, the force on the sur-
face is

F = 2 3.21

Momentum Transport to a Surface

A stream of particles of mass m and separation [ hits a perpendicular
surface with velocity v». The stream rebounds along the original line of
motion with velocity »'. The mass per unit length of the incident stream
is A\ = m/l. What is the force on the surface?

The incident stream transfers momentum to the surface at the rate
Av2.  However, the reflected stream does not carry it away at the rate
A%, since the density of the stream must change at the surface. The
number of particles incident on the surface in time At is v At/l and their
total mass is Am = mv At/l. Hence, the rate at which mass arrives at
the surface is
dm _m

L P W
a 10"
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The rate at which mass is carried away from the surface is N'v’. Since
mass does not accumulate on the surface, these rates must be equal.
Hence N'v/ = Ao, and the force on the surface is

dp’

F = —l—(Lp:)\’v’?—l—)\v?
dt

= N’ 4 v).

If the stream collides without rebound, then »’ = 0 and I = \?, in
agreement with our previous result. If the particles.undergo perfect
reflection, then v/ = v, and FF = 2\v%. The actual force lies somewhere
between these extremes.

We can generalize the idea of momentum transport to three
dimensions. Consider a stream of fluid which strikes an object
and rebounds in some arbitrary direction. For simplicity we
assume that the incident stream is uniform and that in time A¢
it transports momentum AP,;. The direction of AP; is parallel to
the initial velocity v; and AP; = A\w;2 At. During the same interval
At the rebounding stream carries away momentum AP,, where
AP; = N\v,? At; the direction of AP, is parallel to the final velocity
v;. The vectors are shown in the sketch.

The net momentum change of the fluid in At is

APsiyia = AP, — AP;.

The rate of change of the fluid’s momentum is

() = (@), - (5);
dt / s1uia \dt 7 dt /;

By Newton’s second law, (dP/dt)n.ia €quals the force on the fluid
due to the object. By Newton'’s third law, the force on the object
due to the fluid is

F— — <d_">
dt /s1uia
- (7).~ (%)
~\dt /. dt),

=P, — P,. 3.22

The sketches illustrate this result.

Unless there is some opposing force, the object will begin to
accelerate. If P, = P, the stream transfers no momentum and
F=0.
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The force on a moving airplane or boat can be found by con-
sidering the effect of a multitude of streams hitting the surface,
each with its own velocity. Although the mathematical formalism
for analyzing this would lead us too far afield, the physical principle
is the same: momentum transport.

A Dike at the Bend of a River

The problem is to build a dike at the bend of a river to prevent flooding
when the river rises. Obviously the dike has to be strong enough to
withstand the static pressure of the river pgh, where p is the density of
the water and % is the height from the base of the dike to the surface of
the water. However, because of the bend there is an additional pres-
sure, the dynamic pressure due to the rush of water. How does this
compare with the static pressure?

We approximate the bend by a circular curve with radius R, and focus
our attention on a short length of the curve subtending angle Af. We
need only concern ourselves with that section of the river above the base
of the dike, and we consider the volume of the river bounded by the bank
a, the dike b, and two imaginary surfaces ¢ and d. Momentum is trans-
ferred into the volume through surface ¢ and out through surface d at
rate P = \o? = pdv?. Here A is the cross sectional area of the river
lying above the base of the dike, A = hw. (Note that pA = A\ = mass
per unit length of the river.)

However, surfaces ¢ and d are not parallel. The rate of change of
the stream’s momentum is

B =B, — b

As we can see from the vector drawing below, Pis radially inward and has
magnitude

|[P| = P A6.

The dynamic force on the dike is radially outward, and has the same
magnitude, P A§. The force is exerted over the area (B Af)k, and the
dynamic pressure is therefore

P A
pressure = ——
R A6k
pAv?
Rh
pwvz.
R
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The ratio of dynamic to static pressure is

dynamic pressure  puwv? 1 w v?

static pressure R pg_h B -iZIT??y

width centripetal acceleration

depth g

For a river in flood with a speed of 10 mi/h (approximately 14 ft/s), a
radius of 2,000 ft, a flood height of 3 ft, and a width of 200 ft, the ratio is
0.22, so that the dynamic pressure is by no means negligible. The ratio
is even larger near the surface of the river where the static pressure is
small.

Pressure of a Gas

As a further application of the idea of momentum transport, let us find
the pressure exerted by a gas. Although our argument will be somewhat
simpleminded, it exhibits the essential ideas and gives the same result as
more refined arguments.

Assume that there are n atoms per unit volume of the gas, each having
mass m, and that they move randomly. Let us find the force exerted on
an area A in the yz plane due to motion of the atoms in the « direction.
We make the plausible assumption that it is permissible to neglect motion
in the y and z direction, and treat only motion parallel to the z axis.
Suppose that all atoms have the same speed, v,. The rate at which they
hit the surface is #nAv,, where the factor of % is introduced because the
atoms can move in either direction with equal probability. The momen-
tum carried by each atom is mv,. It is unlikely that the atoms come to
rest after the collision; this would correspond to the freezing of the gas
on the walls. On the average, they must leave at the same rate as they
arrive, which means that the average change in momentum is 2muv.,.
Hence, the rate at which momentum changes due to collisions with area
A is

dp 1
- = - A x z
0l (211 v)(va)

= mndv,2.
The force is
d
=2
dt
= mndv,?

and the pressure P, on the z surface is
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The assumption that v, has a fixed value is actually unnecessary. If

the atoms have many different instantaneous speeds, then it can be
shown that v,2 should be replaced by its average v,2%, and P, = nmv,%

By an identical argument we have P, = mny,? and P, = nmz? How-
ever, since the pressure of a gas should not depend on direction, we

have P, = P, = P,, which implies that 1)_,5 = z? = p,2, The mean

squared velocity is v2 = v,2 + v,2 + v,2, so that v,2 = %v? and the pres-
sure is

P = inmoe.
This is a famous result of the kinetic theory of gas, and it is a crucial

point in the argument connecting heat and kinetic energy.

Center of Mass

In this Note we shall find the center of mass of some nonsymmetrical
objects. These examples are trivial if you have had experience evai-
uating two or three dimensional integrals. Otherwise, read on.

1. Find the center of mass of a thin rectangular plate with sides of length

a and b, whose mass per unit area ¢ varies in the following fashion:
o = go(zy/ab), where g, is a constant.

1 . .
R = /(xl + yi)o dz dy

We find J{, the mass of the plate, as follows:

b
M=//%M@
o Jo
_ b a ? :[_/
B ﬁJ /0 anbdxdy'
We first integrate over z, treating y as a constant.
b a Ty
b y 2% |z=a
= /;) (aogz—a z=0>dy
b ya
Jo ooyz
y=b 1

y=0 = Zaoab.

M

Il

ooa y?

2 2
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The x component of R is

X=iﬁwmw
M
_ 1 b a ﬁ
_M[) (ﬁ) xaoabdx>dy
1 rbfogy 2% |e
(3L)»

=—]l}0 ab 3
dy

_ 1 o royad
MabJO 3

~
|

Mab 3 2
4 o
goab 6
2

= -a.
X 3

Similarly, Y = %b.
2. Find the center of mass of a uniform solid hemisphere of radius R
and mass M.

From symmetry it is apparent that the center of mass lies on the z
axis, as illustrated. Its height above the equatorial plane is

Z=%[sz.

The integral is over three dimensions, but the symmetry of the situ-
ation lets us treat it as a one dimensional integral. We mentally sub-
divide the hemisphere into a pile of thin disks. Consider the circular
disk of radius r and thickness dz. Its volume is dV = wr?dz, and its
massisdM = pdV = (M/V)(AV), where V = #rR3." Hence,

1
7z = — ]—%de
M v
=i w2z dz
VvV Jz=

To evaluate the integral we need to find r in terms of z. Since
r? = RB? — 22, we have

Z=%ARz(R2—z2)dz

z R
R (L ape 1
V \2 4 0
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3.1 The density of a thin rod of length [ varies with the distance z from
one end as p = pox?/l%. Find the position of the center of mass.
Ans. X = 3l/4

3.2 Find the center of mass of a thin uniform plate in the shape of an
equilateral triangle with sides a.

3.3 Suppose that a system consists of several bodies, and that the posi-
tion of the center of mass of each body is known. Prove that the center
of mass of the system can be found by treating each body as a particle
concentrated at its center of mass.

3.4 An instrument-carrying projectile accidentally explodes at the top of
its trajectory. The horizontal distance between the launch point and the
point of explosion is L. The projectile breaks into two pieces which fly
apart horizontally. The larger piece has three times the mass of the
smaller piece. To the surprise of the scientist in charge, the smaller
piece returns to earth at the launching station. How far away does the
larger piece land? Neglect air resistance and effects due to the earth’s
curvature.

3.5 A circus acrobat of mass I/ leaps straight up with initial velocity v
from a trampoline. As he rises up, he takes a trained monkey of mass
m off a perch at a height 4 above the trampoline.

What is the maximum height attained by the pair?

3.6 A light plane weighing 2,500 |Ib makes an emergency landing on a
short runway. With its engine off, it lands on the runway at 120 ft/s.
A hook on the plane snags a cable attached to a 250-lb sandbag and drags
the sandbag along. If the coefficient of friction between the sandbag
and the runway is 0.4, and if the plane’s brakes give an additional retard-
ing force of 300 Ib, how far does the plane go before it comes to a stop?

3.7 A system is composed of two blocks of mass m; and m, connected
by a massless spring with spring constant k. The blocks slide on a fric-
tionless plane. The unstretched length of the spring is I. Initially m,
is held so that the spring is compressed to [/2 and m; is forced against
a stop, as shown. mg is released att¢ = 0.

Find the motion of the center of mass of the system as a function of
time.
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3.8 A 50-kg woman jumps straight into the air, rising 0.8 m from the
ground. What impulse does she receive from the ground to attain this
height?

3.9 A freight car of mass M contains a mass of sand m. At{ =20 a
constant horizontal force F is applied in the direction of rolling and at
the same time a port in the bottom is opened to let the sand flow out at
constant rate dm/dt. Find the speed of the freight car when all the sand
is gone. Assume the freight car is at rest at { = 0.

3.10 An empty freight car of mass M starts from rest under an applied
force F. At the same time, sand begins to run into the car at steady
rate b from a hopper at rest along the track.
Find the speed when a mass of sand, m, has been transferred. (Hint:
There is a way to do this problem in one or two lines.)
Ans. clue. If M =500 kg, b = 20 kg/s, F = 100 N, then v = 1.4 m/s at
t=10s

3.11 Material is blown into cart A from cart B at a rate b kilograms per
second. The material leaves the chute vertically downward, so that it
has the same horizontal velocity as cart B, u. At the moment of interest,
cart A has mass M and velocity v, as shown. Find dv/dt, the instan-
taneous acceleration of A.

3.12 A sand-spraying locomotive sprays sand horizontally into a freight
car as shown in the sketch. The locomotive and freight car are not
attached. The engineer in the locomotive maintains his speed so that
the distance to the freight car is constant. The sand is transferred at
a rate dm/dt = 10 kg/s with a velocity of 5 m/s relative to the locomotive.
The car starts from rest with an initial mass of 2,000 kg. Find its speed
after 100 s.

3.13 A ski tow consists of a long belt of rope around two pulleys, one at
the bottom of a slope and the other at the top. The pulleys are driven
by a husky electric motor so that the rope moves at a steady speed of
1.5 m/s. The pulleys are separated by a distance of 100 m, and the angle
of the slope is 20°.

Skiers take hold of the rope and are pulled up to the top, where they
release the rope and glide off. If a skier of mass 70 kg takes the tow
every 5 s on the average, what is the average force required to pull the
rope? Neglect friction between the skis and the snow.

3.14 N men, each with mass m, stand on a railway flatcar of mass J{.
They jump off one end of the flatcar with velocity u relative to the car.
The car rolls in the opposite direction without friction.

a. What is the final velocity of the flatcar if all the men jump at the
same time?

b. What is the final velocity of the flatcar if they jump off one at a
time? (The answer can be left in the form of a sum of terms.)
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c. Does case a or case b yield the largest final velocity of the flat car?
Can you give a simple physical explanation for your answer?
3.15 A rope of mass M and length [ lies on a frictionless table, with a
short portion, l,, hanging through a hole. Initially the rope is at rest.

a. Find a general equation for x(f), the length of rope through the
hole.

Ans. z = Aev + Be ™, vyt =g/l

b. Evaluate the constants 4 and B so that the initial conditions are
satisfied.
3.16 Water shoots out of a fire hydrant having nozzle diameter D with
nozzle speed V,. What is the reaction force on the hydrant?

3.17 An inverted garbage can of weight IV is suspended in air by water
from a geyser. The water shoots up from the ground with a speed v,,
at a constant rate dm/df. The problem is to find the maximum height
at which the garbage can rides. What assumption must be fulfilled for
the maximum height to be reached?

Ans. clue. |f v =20 m/s, W = 10 kg, dm/dt = 0.5 kg/s, then hAmsx =~ 17 m
3.18 A raindrop of initial mass M, starts falling from rest under the
influence of gravity. Assume that the drop gains mass from the cloud
at a rate proportional to the product of its instantaneous mass and its

0 instantaneous velocity:
VSSZONZSN 2 NN
et =kEMV,
dt '

where k is a constant.

Show that the speed of the drop eventually becomes effectively con-
stant, and give an expression for the terminal speed. Neglect air
resistance.

3.19 A bowl full of water is sitting out in a pouring rainstorm. Its sur-
face area is 500 cm?2. The rain is coming straight down at5 m/s at a rate
of 1073 g/cm?s. |If the excess water drips out of the bowl with negli-
gible velocity, find the force on the bowl due to the falling rain.

What is the force if the bowl is moving uniformly upward at 2 m/s?

3.20 A rocket ascends from rest in a uniform gravitational field by eject-
ing exhaust with constant speed u. Assume that the rate at which mass
is expelled is given by dm/dt = ym, where m is the instantaneous mass of
the rocket and < is a constant, and that the rocket is retarded by air
resistance with a force mbv, where b is a constant. Find the velocity of the
rocket as a function of time.

Ans. clue. The terminal velocity is (yu — ¢)/b.
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WORK AND ENERGY

4.1 Introduction

In this chapter we make another attack on the fundamental prob-
lem of classical mechanics—predicting the motion of a system
under known interactions. We shall encounter two important
new concepts, work and energy, which first appear to be mere
computational aids, mathematical crutches so to speak, but which
turn out to have very real physical significance.

As first glance there seems to be no problem in finding the
motion of a particle if we know the force; starting with Newton’s
second law, we obtain the acceleration, and by integrating we can
find first the velocity and then the position. It sounds simple,
but there is a problem; in order to carry out these calculations we
must know the force as a function of time, whereas force is usually
known as a function of position as, for example, the spring
force or the gravitational force. The problem is serious because
physicists are generally interested in interactions between systems,
which means knowing how the force varies with position, not how
it varies with time.

The task, then, is to find v(¢) from the equation

av
= = F(p), 4.1
m il (r)

where the notation emphasizes that F is a known function of
position. A physicist with a penchant for mathematical forma-
lism might stop at this point and say that what we are dealing
with is a problem in differential equations and that what we ought
to do now is study the schemes available, including numerical
methods, for solving such equations. From the strict calcula-
tional point of view, he is right. However, such an approach
is too narrow and affords too little physical understanding.

Fortunately, the solution to Eq. (4.1) is simple for the import-
ant case of one dimensional motion in a single variable. The
general case is more complex, but we shall see that it is not
too difficult to integrate Eq. (4.1) for three dimensional motion
provided that we are content with less than a complete solution.
By way of compensation we shall obtain a very helpful physical
relation, the work-energy theorem; its generalization, the law of
conservation of energy, is among the most useful conservation
laws in physics.

Let's consider the one dimensional problem before tackling the
general case.
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4.2 Integrating the Equation of Motion in One Dimension

A large class of important problems involves only a single variable
to describe the motion. The one dimensional harmonic oscillator
provides a good example. For such problems the equation of
motion reduces to

d%x
= F®
or
dv
= = Fa). 4.2
moy =@

We can solve this equation for » by a mathematical trick. First,
formally integrate m dv/dt = F(x) with respect to x:

The integral on the right can be evaluated by standard methods
since F(z) is known. The integral on the left is intractable as it
stands, but it can be integrated by changing the variable from z
to {. The trick is to use!?

dz
dr = (EZ) dt

= v dt.
Then
:%dx =m tfg—?—;vdt
=m/;:b(—;%(%v2)dt
3]

1
= imu? — Fmu,?,

where z, = x(t,), vo = v(t,), etc.
Putting these results together yields

Fmu? — dmo,? = /;Ib F(x) dz. 4.3

1 Change of variables using differentials is discussed in Note 1.1.
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Alternatively, we can use indefinite upper limits in Eq. (4.3):
Imy? — Imp,? = /: F(z) dz, 4.4

where v is the speed of the particle when it is at position . Equa-
tion (4.4) gives us v as a function of . Since » = dz/dt, we could
solve Eq. (4.4) for dx/dt and integrate again to find z(¢). Rather
than write out the general formula, it is easier to see the method
by studying a few examples.

Mass Thrown Upward in a Uniform Gravitational Field

A mass m is thrown vertically upward with initial speed v,. How high
does it rise, assuming the gravitational force to be constant, and neglect-
ing air friction?

Taking the z axis to be directed vertically upward,

F = —myg.

Equation (4.3) gives

21
3mv,2 — Fmue? = F dz
20
zZ1
= —mg/ dz
20
= —mg1 — 2o)-

At the peak, v; = 0 and we obtain the answer
v 2

2 =20 + —-
2g

It is interesting to note that the solution makes no reference to time
at all. We could have solved the problem by applying Newton's second
law, but we would have had to eliminate ¢ to obtain the resuit.

Here is an example that is not easy to solve by direct application
of Newton’s second law.

Solving the Equation of Simple Harmonic Motion

In Example 2.17 we discussed the equation of simple harmonic motion
and pulled the solution out of a hat without proof. Now we shall derive
the solution using Eq. (4.4).



RRRRRDDLY

- 1
NN,
h NN

M VARV

Equilibrium
position

I

————

L]

T
——— :

= ]
F=-hkx | |

SEC. 4.2 INTEGRATING THE EQUATION OF MOTION IN ONE DIMENSION 155

Consider a mass I attached to a spring. Using the coordinate z
measured from the equilibrium point, the spring force is F = —kz.
Then Eq. (4.4) becomes

= —k/xxdx
zo

= —3ka? 4+ kxot

QI‘ZW?)z — ‘%‘]’[7)02

The initial coordinates are labeled by the subscript 0.

In order to find x and v, we must know their values at some time {,.
Physically, this arises because the equation of motion by itself cannot
completely specify the motion; we also need to know a set of initial
conditions, in this case the initial position and velocity.! We are free to
choose any initial conditions we wish. Let us consider the case where at
t = 0 the mass is released from rest, vy = 0, at a distance x, from the

origin. Then
k k
1)2 _ — 22 —_ 2
ws ™
and
dr _
dt .
k _—
= ol V x? — 2%
M \/ ° *

Separating the variables gives

=\/Az[ﬂ)‘dt

k
= A/t

M
The integral on the left hand side is arcsin (z/x,). (The integral is listed
in standard tables. Consulting a table of integrals is just as respectable
for a physicist as consulting a dictionary is for a writer. Of course, in
both cases one hopes that experience gradually reduces dependence.)
Denoting \/lc/ﬂl by w, we obtain

. x
arcsin { —
Zo

or

. x .
arcsin | — )] — arcsinl = wt.
Zo

1In the language of differential equations, Newton's second law is a ‘‘second
order’’ equation in the position; the highest order derivative it involves is the
acceleration, which is the second derivative of the position with respect to time.
The theory of differential equations shows that the complete solution of a dif-
ferential equation of nth order must involve n initial conditions.

/z dx
zo \/xuz — z?

x
= wi

zo
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Since arcsin 1 = 7/2, we obtain

= 2o sin (wt + %r)

Zo COS wi.

8
I

It

Note that the solution indeed satisfies the given initial conditions: at
t =0, =2zcos 0= 2y and £ = xow sin0 = 0. For these conditions
our result agrees with the general solution given in Example 2.14.

4.3 The Work-energy Theorem in One Dimension

In Sec. 4.2 we demonstrated the formal procedure for integrating
Newton’s second law with respect to position. The result was

xb
Lmwy? — dmog? = / F(z) dz,

which we now wish to interpret in physical terms.
The quantity $mov? is called the kinetic energy K, and the left

hand side can be written K, — K,. The integral /;“ F(x)dx is

called the work W,, done by the force F on the particle as the
particle moves from a to b. Our relation now takes the form

Wy = Ky — K. 4.5

This result is known as the work-energy theorem or, more pre-
cisely, the work-energy theorem in one dimension. (We shall
shortly see a more general statement.) The unit of work and
energy in the Sl system is the joule (J):

1J =1 kg'm?/s2
The unit of work and energy in the cgs system is the erg:
lerg = 1 gm-cm?/s?
=107 J.
The unit work in the English system is the foot-pound:
1 ft'lb = 1.336 J.

Vertical Motion in an Inverse Square Field

A mass m is shot vertically upward from the surface of the earth with
initial speed v,. Assuming that the only force is gravity, find its maxi-
mum altitude and the minimum value of v, for the mass to escape the
earth completely.
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The force on m is

_ GMm

r2

F =

The problem is one dimensional in the variable r, and it is simple to find
the kinetic energy at distance r by the work-energy theorem.
Let the particle start at r = R, with initial velocity v.

K@) — K(re) = [RT F(r)dr

= ——Gﬂ[em/T d_r
Re p2?

GMm (1 - i>.
r R,

We can immediately find the maximum height of m. At the highest
point, »(r) = 0 and we have

vo? = 2GM, (l - >
RB 7"m‘ax

It is a good idea to introduce known familiar constants whenever possible.
For example, since ¢ = GM,./R.? we can write

1 1
v = 2gR2 | — — —
’ g (Re rmax)
= 2gR, (1 - Re)
rmax

or

Fmu(r)? — $moy?

or
Tmax = Re :
002
B 2gR,

The escape velocity from the earth is the initial velocity needed to
move 7., to infinity. The escape velocity is therefore

Vescape = VzgRe
=12 X 98 X 6.4 X 105
= 1.1 X 10* m/s.

The energy needed to eject a 50-kg spacecraft from the surface of the
earth is

W= %Mvtgscape
$(50)(1.1 X 1092 = 3.0 X 10° J.
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4.4 Integrating the Equation of Motion in Several Dimensions

Returning to the central problem of this chapter, let us try to
integrate the equation of motion of a particle acted on by a force
which depends on position.

Fay = m &Y 4.6
= m —- .
dt

In the case of one dimensional motion we integrated with respect
to position. To generalize this, consider what happens when the
particle moves a short distance Ar.

We assume that Ar is so small that F is effectively constant over
this displacement. If we take the scalar product of Eq. (4.6)
with Ar, we obtain

dav
F-Ar = m — . Ar. 4.7
dt

The sketch shows the trajectory and the force at some point
along the trajectory. At this point,

F:.Ar = F Arcos 6.

Perhaps you are wondering how we know Ar, since this requires
knowing the trajectory, which is what we are trying to find. Let
us overlook this problem for a few moments and pretend we know
the trajectory.

Now consider the right hand side of Eq. (4.7), m(dv/dt) - Ar.
We can transform this by noting that vand Ar are notindependent;
for a sufficiently short length of path, v is approximately constant.
Hence Ar = v A¢{, where At is the time the particle requires to
travel Ar, and therefore

v dv
—VAr = m — v AL, 4.8
Ta Ty

We can transform Eq. (4.7) with the vector identity!
dv 1d
—_— = — — ( 2)
" dt 2.dt

1 The identity A (dA/dt) = 3(d/dl) (A?) is easily proved:

- - 2—__

Zdt( ) Zdt(A n
D
—A——

dt
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Equation (4.7) becomes

m d
F-.Ar = —— (v?) AL 4.9

2 dt( )
The next step is to divide the entire trajectory from the initial
position r, to the final position r, into N short segments of length
Ar;, where j is an index numbering the segments. (It makes no
difference whether all the pieces have the same length.) For each
segment we can write a relation similar to Eq. (4.9):

m d

F(r,~) . Al’j = —2— a (1)_7'2) Atj, 4.10
where r; is the location of segment j, v; is the velocity the particle
has there, and At; is the time it spends in traversing it. If we add
together the equations of all the segments, we have
N N d
2 F(r)-Ar = Y — = (u2) At,. 4.11
= 2 dt

i=1

Next we take the limiting process where the length of each seg-
ment approaches zero, and the number of segments approaches
infinity. We have

r tm d

. = —_—— 2

fra Fry-de = [ 22 ot 4.12
where ¢, and {, are the times corresponding to r, and r,. In con-
verting the sum to an integral, we have dropped the numerical
index 7 and have indicated the location of the first segment Ar,
by r,, and the location of the last section Ary by r;.

The integral on the right in Eq. (4.12) is
m tnd ty

— — () dt = tm?
2 Jta dt( ) 2 ta
= 3mu? — M2

This represents a simple generalization of the result we found for
one dimension. Here, however, »? = v,2 4+ v,2 + 0,2, whereas
for the one dimensional case we had v? = v,

Equation (4.12) becomes

/rrb F.dr = imun? — 3mu,2 4,13

The integral on the left is called a line integral. We shall see how
to evaluate line integrals in the next two sections, and we shall
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also see how to interpret Eq. (4.13) physically. However, before
proceeding, let's pause for a moment to summarize.

Our starting point was F(r) = m dv/di. All we have done is to
integrate this equation with respect to distance, but because we
described each step carefully, it looks like many operations are
involved. This is not really the case; the whole argument can be
stated in a few lines as follows:

av
F=m—
"™

ﬁbF-dr=me%-dr

b dv
=/;mE'th
vm d
—_ 2

. Zdt(v)dt

= dmu? — tmo, 2

4.5 The Work-energy Theorem

We now want to interpret Eq. (4.13) in physical terms. The
quantity 3mw? is called the kinetic energy K, and the right hand
side of Eq. (4.13) can be written as K, — K,. The integral
/rrb F - dr is called the work W, done by the force F on the particle

as the particle moves from a to b. Equation (4.13) now takes the
form

Wiy = Ky — K. 4.14

This result is the general statement of the work-energy theorem
which we met in restricted form in our discussion of one dimen-
sional motion.

The work AW done by a force F in a small displacement Ar is

AW = F.Ar = F cos 6 Ar =F||A7‘,

where F|| = F cos 0 is the component of F along the direction of

Ar. The component of F perpendicular to Ar does no work. For

a finite displacement from r, to r,, the work on the particle, -
b

L F . dr, is the sum of the contributions AW = F) Ar from each

segment of the path, in the limit where the size of each segment
approaches zero.
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In the work-energy theorem, Wy, = K, — K., Wi, is the work
done on the particle by the total force F. If F is the sum of
several forces F = ZF;, we can write

Whe = Z W Jsa

- K- K
where
W e = / " Foedr

is the work done by the 7th force F;.

Our discussion so far has been restricted to the case of a single
particle. However, we showed in Chap. 3 that the center of mass
of an extended system moves according to the equation of motion

F = MR
av
=M — 4.15
dt .
where V = R is the velocity of the center of mass. Integrating
Eq. (4.15) with respect to position gives

UFLdR = HMV — $MV, 4.16

where dR = V dt is the displacement of the center of mass in
time di. Equation (4.16) is the work-energy theorem for the
translational motion of an extended system; in Chaps. 6 and 7 we
shall extend the ideas of work and kinetic energy to include rota-
tional motion. Note, however, that Eq. (4.16) holds regardless of
the rotational motion of the system.

The Conical Pendulum

We discussed the motion of the conical pendulum in Example 2.8. Since
the mass moves with constant angular velocity w in a circle of constant
radius R, the kinetic energy of the mass, #mRw?, is constant. The work-
energy theorem then tells us that no net work is being done on the mass.

Furthermore, in the conical pendulum the string force and the weight
force separately do no work, since each of these forces is perpendicular
to the path of the particle, making the integrand of the work integral
zero.

It is important to realize that in the work integral fF - dr, the vector
dr is along the path of the particle. Since v = dr/dt, dr = v dt and dr
is always parallel to v.
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Escape Velocity—the General Case

In Example 4.3 we discussed the one dimensional motion of a mass m
projected vertically upward from the earth. We found that if the initial
speed is greater than v, = \/ZgRe, the mass will escape from the earth.
Suppose that we look at the problem once again, but now allow the mass
to be projected at angle « from the vertical.
The force on m, neglecting air resistance, is
GM.m

F=— ¥
r2

2

= — mg r,

e
7-2
where g = GM./R.? is the acceleration due to gravity at the earth’s sur-

face. We do not know the trajectory of the particle without solving the
problem in detail. However, any element of the path dr can be written

dr = dr#+rdoé.
Hence
Rz ~
F-dr = ——mgTF'(dTF—l-rdﬁﬁ)
r

2
—mg I_B:_ dr.
r

I

The work-energy theorem becomes

rdr
Fmv? — dmug? = —mgR2 | —
Re p2

1 1
[ R92 o ).
" (r Re>

The escape velocity is the value of vy for which r = ©, v = 0. We
find

vy = \/ZgRe

1.1 X 104 m/s,

I

as before. The escape velocity is independent of the launch direction.

We have neglected the earth’'s rotation in our analysis. In the
absence of air resistance the projectile should be fired horizontally to
the east, since the rotational speed of the earth's surface is then added
to the launch velocity.

4.6 Applying the Work-energy Theorem

In the last section we derived the work-energy theorem

Wi = Ky — K, 4.17



SEC. 4.6 APPLYING THE WORK-ENERGY THEOREM 163

and applied it to a few simple cases. In this section we shall use
it to tackle more complicated problems. However, a few com-
ments on the properties of the theorem are in order first.

To begin, we should emphasize that the work-energy theorem
is a mathematical consequence of Newton’s second law; we have
introduced no new physical ideas. The work-energy theorem is
merely the statement that the change in kinetic energy is equal
to the net work done. This should not be confused with the
general law of conservation of energy, an independent physical
law which we shall discuss in Sec. 4.12.

Possibly you are troubled by the following problem: to apply
the work-energy theorem, we have to evaluate the line integral
for work?

Wre = f:F-dr

and the evaluation of this integral depends on knowing what path
the particle actually follows. We seem to need to know every-
thing about the motion even before we use the work-energy
theorem, and it is hard to see what use the theorem would be.

In the most general case, the work integral depends on the path
followed, and since we don’'t know the path without completely
solving the problem, the work-energy theorem is useless. There
are, fortunately, two special cases of considerable practical import-
ance. For many forces of interest, the work integral does not
depend on the particular path but only on the end points. Such
forces, which include most of the important forces in physics, are
called conservative forces. As we shall discuss later in this chapter,
the work-energy theorem can be put in a very simple form when
the forces are conservative.

The work-energy theorem is also useful in cases where the
path is known because the motion is constrained. By constrained
motion, we mean motion in which external constraints act to keep
the particle on a predetermined trajectory. The roller coaster is
a perfect example. Exceptin cases of calamity, the roller coaster
follows the track because it is held on by wheels both below and
above the track. There are many other examples of constrained
motion which come readily to mind—the conical pendulum is one
(here the constraint is that the length of the string is fixed)—but
all have one feature in common—the constraining force does no
work. To see this, note that the effect of the constraint force is

1The C through the integral sign reminds us that the integral is to be evaluated
along some specific curve.
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to assure that the direction of the velocity is always tangential to
the predetermined path. Hence, constraint forces change only
the direction of v and do no work.!

The Inverted Pendulum

A pendulum consists of a light rigid rod of length [, pivoted at one end
and with mass m attached at the other end. The pendulum is released
from rest at angle ¢y, as shown. What is the velocity of m when the
rod is at angle ¢?

The work-energy theorem gives

Fmu(p)? — Fmve? = Wy 4,

Since vy = 0, we have

w(6) = (Z—W"’""")f
m

To evaluate Wy 4, the work done as the bob swings from ¢, to ¢, we
examine the force diagram. dr lies along the circle of radius I. The
forces acting are gravity, directed down, and the force of the rod, N.
Since N lies along the radius, N - dr = 0, and N does no work. The work
done by gravity is

mgl cos <<p - 7_2r> de

mgl sin ¢ de

mg - dr

where we have used |dr| =  d¢.

Ws.60 = /q: mgl sin ¢ d¢

Il

‘—mgl cos ¢ i:o

Il

mgl (cos ¢o — cos @).
The speed at ¢ is
v(¢) = [2gl (cos ¢o — cos $)I*.

The maximum velocity is obtained by letting the pendulum fall from the
top, ¢o = 0, to the bottom, ¢ = m:

Umax = Z(QZ)%-

»
1 We can prove that constraint forces do no work as follows. Suppose that the
constraint force Feonstraint Changes the velocity by an amount Av, in time At.
Av, is perpendicular to the instantaneous velocity v. The work done by Feongtraint
is Feonstraint * Ar = m(Av./Af) * (v At) =mAv,* v =0.
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This is the same speed attained by a mass falling through the same
vertical distance 2I. However, the mass on the pendulum is not travel-
ing vertically at the bottom of its path, it is traveling horizontally.

If you doubt the utility of the work-energy theorem, try solving
the last example by integrating the equation of motion. However,
the example also illustrates one of the shortcomings of the method:
we found a simple solution for the speed of the mass at any point
on the circle—we have no information on when the mass gets
there. For instance, if the pendulum is released at ¢, = 0, in
principle it balances there forever, never reaching the bottom.
Fortunately, in many problems we are not interested in time, and
even when time is important, the work-energy theorem provides
a valuable first step toward obtaining a complete solution.

Next we turn to the general problem of evaluating work done
by a known force over a given path, the problem of evaluating
line integrals. We start by looking at the case of a constant
force.

Work Done by a Uniform Force

The case of a uniform force is particularly simple. Here is how to find
the work done by a force, F = Fyh, where I7y is a constant and f is a
unit vector in some direction, as the particle moves from r, to r, along
some arbitrary path. All the steps are put in to make the procedure
clear, but with any practice this problem can be solved by inspection.

Wbu = rI’F'dl’

re
oo
= f Fon - dr
ro
N rp
= Fon . dr
re

- Foﬁ . (i /‘zb,yb,zb dz + i Tb,Yb,2b dy + i Zb,Yb,2b dz)
Z,

a,Ya,2a Za,Ya,2a Za,Ya,2a
= Foi « [i(zs — %) + i (s — ya) + k(zs — 24)]
= Foﬁ' (rb - ra)

= Focos 0 |r, — 14

For a constant force the work depends only on the net displacement,
r, — r,, not on the path followed. This is not generally the case, but
it holds true for an important group of forces, including central forces,
as the next example shows.
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Work Done by a Central Force

A central force is a radial force which depends only on the distance from
the origin. Let us find the work done by the central force F = f(r)f on
a particle which moves from r, to r,. For simplicity we shall consider
motion in a plane, for which dr = dr ¥ + r df 8. Then

Wba= fabF'dl’
= fabf(r)i-(drwrrdeé)
=/bf(r)dr.

The work is given by a simple one dimensional integral over the variable
r. Since 6 has disappeared from the problem, it should be obvious that
the work depends only on the initial and final radial distances [and, of
course, on the particular form of f(r)], not on the particular path.

For some forces, the work is different for different paths
between the initial and final points. One familiar example is
work done by the force of sliding friction. Here the force always
opposes the motion, so that the work done by friction in moving
through distance dS is dW = —fdS, where f is the magnitude
of the friction force. If we assume that f is constant, then the
work done by friction in going from r, to r, along some path is

—/r:bde
= —fS,

where S is the total length of the path. The work is negative
because the force always retards the particle. W, is never
smaller in magnitude than fS,, where S, is the distance between
the two points, but by choosing a sufficiently devious route, S can
be made arbitrarily large.

It

Wba.

A Path-dependent Line Integral

Here is a second example of a path-dependent line integral. Let
F = A(zyi + %)), and consider the integral from (0,0) to (0,1), first
along path 1 and then along path 2, as shown in the figure. The force
F has no physical significance, but the example illustrates the properties
of nonconservative forces. Since the segments of each path lie along a
coordinate axis, it is particularly simple to evaluate the integrals. For
path 1 we have

le-dr=LF-dr—i—/;F-dr—!—/;F-dr.
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Along segment a, dr = dzi, F-dr = F,dex = Azxydz. Since y =0
along the line of this integration, / F.dr = 0. Similarly, for path b,
a

Fedr=A [T yea
Jipar=a [0 v
4

3

while for path ¢,

/F-dr=A/x=0'y=1xydx
c z=1,y=1
=A/Oxdx= 4
1 2
Thus

f F-dr=1—4-—é
1 3 2

-4
6

Along path 2 we have

0,1
. = 2
sz dr Aﬂ),o y2dy
4

3
;éf F.dr.
1

The work done by the applied force is different for the two paths.

Usually the path of a line integral does not lie conveniently
along the coordinate axes but along some arbitrary curve. The
following method of evaluating a line integral in such a case is
quite general; use it if all else fails.

For simplicity we again consider motion in a plane. Generaliza-
tion to three dimensions is straightforward.

b
The problem is to evaluate fa F - dr along a specified path.

The path can be characterized by an equation of the form
g(x,y) = 0. For example, if the path is a unit circle about the
origin, then all points on the path obey z? + y2 — 1 = 0.

We can characterize every point on the path by a parameter
s which in practical problems could be (for example) distance
along the path, or angle—anything just as long as each point on
the path is associated with a value of s so that we can write
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z = x(s), y = y(s). If we move along the path a short way, so
that s changes by the amount ds, then the change in z is
dx = (dz/ds) ds, and the change in y is dy = (dy/ds) ds. Since
both z and y are determined by s, so are F, and F,. Hence, we
can write F = F.(s)i 4+ F,(s)j, and we have

fabF-dr

Il

[;’ (F.dz + F, dy)

» dz d_y]
/s ’ [Fz(s) oo T Fue) - [ ds.

We have reduced the problem to the more familiar problem of
evaluating a one dimensional definite integral. The calculation is
much simpler in practice than in theory. Here is an example.

Parametric Evaluation of a Line Integral

Evaluate the line integral of F = A (2% + zy?) from (x =0, y = 0) to
(x = 0, y = 2R) along the semicircle shown.

The natural parameter to use here is 0, since as 0 varies from 0 to =,
the radius vector sweeps out the semicircle. We have

z = Rsin 6 dx = R cos 0df F, = AR3sin3 0
y = R — cos 6) dy = Rsin 0d0 F, = AR3sin 6(1 — cos 0)?

f F.dr=A /0" [(R sin 0)3R cos 6 + R3sin 8 (1 — cos §)*R sin 0] df
= R /OF [sin® 8 cos 6 + sin? 8(1 — cos 0)?] d6.

Evaluation of the integral is straightforward. If you are interested in
carrying it through, try substituting « = cos 6.

4.7 Potential Energy

We introduced the idea of a conservative force in the last section.
The work done by a conservative force on a particle as it moves
from one point to another depends only on the end points, not
on the path between them. Hence, for a conservative force,

rrb F - dr = function of (r,) — function of (r,)
or
rI'I; F- dr — —U(rb) + U(ra)y 4.18

where U(r) is a function, defined by the above expression, known
as the potential energy function. (The reason for the sign con-
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vention will be clear in a moment.) Note that we have not proven
that U(r) exists. However, we have already seen several cases
where the work is indeed path-independent, so that we can
assume that U exists for at least a few forces.

The work-energy theorem W, = K, — K, now becomes

Wba= —Ub+ Ua
=Kb—Ka

or, rearranging,
K.+ U, = Ky + U,. 4.19

The left hand side of this equation, K, + U, depends on the
speed of the particle and its potential energy at r,; it makes no
reference to r,. Similarly, the right hand side depends on the
speed and potential energy at r,; it makes no reference to r,.
This can be true only if each side of the equation equals a con-
stant, since r, and r; are arbitrary and not specially chosen points.
Denoting this constant by E, we have

K,+U.,=Ky+ Uy, = E. 4.20

E is called the total mechanical energy of the particle, or, some-
what less precisely, the total energy. We have shown that if the
force is conservative, the total energy is independent of the posi-
tion of the particle—it remains constant, or, in the language of
physics, the energy is conserved. Although the conservation of
mechanical energy is a derived law, which means that it has basi-
cally no new physical content, it presents such a different way of
looking at a physical process compared with applying Newton’s
laws that we have what amounts to a completely new tool. Fur-
thermore, although the conservation of mechanical energy follows
directly from Newton’s laws, it is an important key to understanding
the more general law of conservation of energy, which is indepen-
dent of Newton’s laws and which vastly increases our understand-
ing of nature. When we discuss this in greater detail in Sec. 4.12,
we shall see that the conservation law for mechanical energy turns
out to be a special case of the more general law.

A peculiar property of energy is that the value of E is to a cer-
tain extent arbitrary; only changes in E have physical significance.
This comes about because the equation

Ub—Ua=—/a”F-dr
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defines only the difference in potential energy between a and b
and not the potential energy itself. We could add a constant to
U, and the same constant to U, and still satisfy the defining
equation. However, since £ = K + U, adding a constant to
U increases F by the same amount.

Illustrations of Potential Energy

We have already seen that for a uniform force or a central force
the work is path-independent. There are many other conserva-
tive forces, but by way of illustrating potential energy, here are
two examples involving these forces.

Potential Energy of a Uniform Force Field

From Example 4.7, the work done by a uniform force is W5, = Fo+ (1, — 1a)
For instance, the force on a particle of mass m due to a uniform gravita
tional field is —mgf(, so that if the particle moves from r, to r,, the change
in potential energy is

Uy — Us = — /:”(—mg)dz

mg(2 — Za).

If we adopt the convention U = 0 at ground level where z = 0, then
U(h) = mgh, where h is the height above the ground. However, a
potential energy of the form mgh + C, where C is any constant, is just
as suitable.

In Example 4.1 we considered the problem of a mass projected upward
with a given initial velocity in a region of constant gravity. Here is how
to solve the same problem by using conservation of energy.

Suppose that a mass is projected upward with initial velocity vo =
oo + vo,§ + vo:k. Find the speed at height . ’

Ko+ Uo= K@)+ U®)
Imue? + 0 = Fmou(h)? + mgh

or

v(h) = Vvt — 2gh.

Example 4.11 is trivial, since motion in a uniform force field is
easily found from F = ma. However, it does illustrate the ease
with which the energy method handles the problem. For instance,
motion in all three directions is handled at once, whereas Newton’s
law involves one equation for each component of motion.
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Potential Energy of an Inverse Square Force

Frequently we encounter central forces F = f(r)f, where f(r) is some
function of the distance to the origin. For instance, in the case of the
Coulomb electrostatic force, F o« (giq./r%)f, where ¢; and g. are the
charges of two interacting particles. The gravitational force between
two particles provides another example.

The potential energy of a particle in a central force F = f(r)f obeys

Uy — U = —/rer-dr

k)
= - /Ta fer) dr.
For an inverse square force, f(r) = A/r?% and we have
A
Uy— U= — ["Zar

ra 2
A A
Ty Ta

To obtain the general potential energy function, we replace 7, by the
radial variable r. Then

vey =2 + (Ua —é>
T Ta

-2ic
r

The constant C' has no physical meaning, since only changes in U are
significant. We are free to give C any value we like. A convenient
choice in this case is C = 0, which corresponds to taking U(®) = 0.
With this convention we have

Uy = 2
r

One of the most important forces in physics is the linear restor-
ing force, the spring force. To show that the spring force is con-
servative, consider a spring of equilibrium length r, with one end
attached at the origin. If the spring is stretched to length r
along direction ¥, it exerts a force

F(r) = —k({r — ro)r.

Since the force is central, it is conservative. The potential energy
is given by

U@r) — Ua)

~ [/ (=l = royar

3h(r — 1o)?

r
a
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Hence

U(r) = 3k(r — ro)? + C.

Conventionally, we choose the potential energy to be zero at equi-
librium: U(ry) = 0. This gives

U(r) = zk(r — ro) 4.21

When several conservative forces act on a particle, the potential
energy is the sum of the potential energies for each force. In the
next example, two conservative forces act.

Bead, Hoop, and Spring

A bead of mass m slides without friction on a vertical hoop of radius E.
The bead moves under the combined action of gravity and a spring
attached to the bottom of the hoop. For simplicity, we assume that the
equilibrium length of the spring is zero, so that the force due to the
spring is —kr, where r is the instantaneous length of the spring, as
shown.

The bead is released at the top of the hoop with negligible speed.
How fast is the bead moving at the bottom of the hoop?

At the top of the hoop, the gravitational potential energy of the bead
is mg(2R) and the potential energy due to the spring is $k(2R)* = 2kR>.
Hence the initial potential energy is

Ui = ngR —|'- ZkRz.
The potential energy at the bottom of the hoop is
U;=0.

Since all the forces are conservative, the mechanical energy is con-
stant and we have

K:+ U= K;+ U,

The initial kinetic energy is zero and we obtain
K= Us— Uy

or

$mvs? = 2mgR + 2kR2.

Hence

2
vf=2"gR+ﬁ
m
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4.8 What Potential Energy Tells Us about Force

If we are given a conservative force, it is a straightforward matter
to find the potential energy from the defining equation

Uy — U, = —ﬁr.dr,

where the integral is over any path from r, to r,. However, in
many cases it is easier to characterize a force by giving its poten-
tial energy function rather than by specifying each of its compo-
nents. In such cases we would like to use our knowledge of the
potential energy to determine what force is acting. The proce-
dure for finding the force turns out to be simple. In this sec-
tion we shall learn how to find the force from the potential energy
in a one dimensional system. The general case of three dimen-
sions can be treated by a straightforward extension of the method
developed here, but since it involves some new notation which is
more readily introduced in the next chapter, let us defer the three
dimensional case until then.

Suppose that we have a one dimensional system, such as a mass
on a spring, in which the force is F(xz) and the potential energy is

Up — U, = — / F(z) da.

Consider the change in potential energy AU as the particle moves
from some point z to « + Axz.
U + az) — U(x) = AU

= — /;H_Az F(z) dx.

For Az sufficiently small, F(z) can be considered constant over
the range of integration and we have

AU = —F(x)(x + Az — x)
= —F(x) Az

or
AU

Fi)~ — —

@ Ax

In the limit Ax — 0 we have
d

F(z) = — d—U- 4.22

The result is quite reasonable: potential energy is the negative
integral of the force, and it follows that force is the negative deriv-
ative of the potential energy.
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Stability

The result F = —dU/dx is useful not only for computing the
force but also for visualizing the stability of a system from a dia-
gram of the potential energy. For instance, in the case of a har-
monic oscillator the potential energy U = kx?%/2 is described by a
parabola.

At point a, dU/dx > 0 and so the force is negative. At point b,
dU/dx < 0 and the force is positive. At ¢, dU/dx = 0 and the
force is zero. The force is directed toward the origin no matter
which way the particle is displaced, and the force vanishes only
when the particle is at the origin. The minimum of the potential
energy curve coincides with the equilibrium position of the system.
Evidently this is a stable equilibrium, since any displacement of
the system produces a force which tends to push the particle
toward its resting point.

Whenever dU/dxz = 0, a system is in equilibrium. However,
if this occurs at a maximum of U, the equilibrium is not stable,
since a positive displacement produces a positive force, which
tends to increase the displacement, and a negative displacement
produces a negative force, which again causes the displacement
to become larger. A pendulum of length I supporting mass m
offers a good illustration of this. [f we take the potential energy
to be zero at the bottom of its swing, we see that

U(9) = mgz
= mgl(l — cos §).

The pendulum is in equilibrium for # = 0 and § = =. However,
although the pendulum will quite happily hang downward for
as long as you please, it will not hang vertically up for long.
dU/dx = 0 at § = , but U has a maximum there and the equi-
librium is not stable.

The sketch of a potential energy function makes the idea of
stability almost intuitively obvious. A minimum of a potential
energy curve is a point of stable equilibrium, and a maximum is
a point of unstable equilibrium. In more descriptive terms, the
system is stable at the bottom of a potential energy ‘‘valley,”” and
unstable at the top of a potential energy *hill.”

Alternatively, we can use a simple mathematical test to deter-
mine whether or not an equilibrium point is stable. Let U(z) be
the potential energy function for a particle. As we have shown,
the force on the particle is F = —dU/dx, and the system is in
equilibrium where dU/dxz = 0. Suppose that this occurs at some
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point zo. To test for stability we must determine whether U has
a minimum or a maximum at z,. To accomplish this we need to
examine d2U/dx? at zy. If the second derivative is positive, the
equilibrium is stable; if it is negative, the system is unstable. If
d*U/dz? = 0, we must look at higher derivatives. If all derivatives
vanish so that U is constant in a region about x,, the system is
said to be in a condition of neutral stability—no force results from
a displacement; the particle is effectively free.

u | u ! u |

|
x L x !
Xq X0 X0

2U 42U d’u

—=>0 — <0 =

dX2 dX2 dxz 0
stable unstable neutral

Energy and Stability—The Teeter Toy

The teeter toy consists of two identical weights which hang from a peg on
drooping arms, as shown. The arrangement is unexpectedly stable—
the toy can be spun or rocked with little danger of toppling over. We
can see why this is so by looking at its potential energy. For simplicity,
we shall consider only rocking motion in the vertical plane.

Let us evaluate the potential energy when the teeter toy is cocked at
angle 6, as shown in the sketch. If we take the zero of gravitational
potential at the pivot, we have

U(0) = mg[L cos 8 — lcos (o + 0)] + mg[L cos 8 — [ cos (o — 6)].

Using the identity cos (e + 6) = cos acos § F sin a sin 6, we can rewrite
U(@0) as

U(0) = 2mg cos (L — 1 cos o).
Equilibrium occurs when

U
a6

—2mg sin (L — lcos )
= 0.

The solution is § = 0, as we expect from symmetry. (We reject the solu-
tion § = 7 on the grounds that @ must be limited to values less than

X
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w/2.) To investigate the stability of the equilibrium position, we must
examine the second derivative of the potential energy. We have

azUu

ﬁ = —2mg cos 0(L — lcos o).

At equilibrium,

au

— = —2mg(L — lcos a).
N P

For the second derivative to be positive, we require L — [ cos a < 0, or
L <lcosa.

In order for the teeter toy to be stable, the weights must hang below the
pivot.

4.9 Energy Diagrams

We can often find the most interesting features of the motion of
a one dimensional system by using an energy diagram, in which the
total energy K and the potential energy U are plotted as functions
of position. The kinetic energy K = E — U is easily found by
inspection. Since kinetic energy can never be negative, the
motion of the system is constrained to regions where U < E.

Here is the energy diagram for a harmonic oscillator. The
potential energy U = ka?/2 is a parabola centered at the origin.
Since the total energy is constant for a conservative system, E is
represented by a horizontal straight line. Motion is limited to the
shaded region where E > U, the limits of the motion, x; and x;
in the sketch, are sometimes called the turning points.

Here is what the diagram tells us. The kinetic energy,
K = E — U, is greatest at the origin. As the particle flies past
the origin in either direction, it is slowed by the spring and comes
to a complete rest at one of the turning points x;, z.. The par-
ticle then moves toward the origin with increasing kinetic energy,
and the cycle is repeated.

The harmonic oscillator provides a good example of bounded
motion. As FE increases, the turning points move farther and
farther off, but the particle can never move away freely. If E is
decreased, the amplitude of motion decreases, until finally for
E = 0 the particle lies at rest at z = 0.

Quite a different behavior occurs if U does not increase indefi-
nitely with distance. For instance, consider the case of a particle
constrained to a radial line and acted on by a repulsive inverse
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square law force A¥/r2. Here U = A/r, where A is positive.
There is a distance of closest approach, rnin, as shown in the dia-
gram, but the motion is not bounded for large r since U decreases
with distance. If the particle is shot toward the origin, it gradually
loses kinetic energy until it comes momentarily to rest at ruin.
The motion then reverses and the particle moves out toward
infinity. The final and initial speeds at any point are identical;
the collision merely reverses the velocity.

With some potentials, either bounded or unbounded motion can
occur depending upon the energy. For instance, consider the
interaction between two atoms. At large separations, the atoms
attract each other weakly with the van der Waals force, which
varies as 1/r7. As the atoms approach, the electron clouds begin
to overlap, producing strong forces. In this intermediate region
the force is either attractive or repulsive depending on the details
of the electron configuration. If the force is attractive, the poten-
tial energy decreases with decreasing r. At very short distances
the atoms always repel each other strongly, so that U increases
rapidly as » becomes small.

The energy diagram for a typical attractive two atom system is
shown in the sketch. For positive energy, £ > 0, the motion is
unbounded, and the atoms are free to fly apart. As the diagram
indicates, the distance of closest approach, ruin, does not change
appreciably as E is increased. The steep slope of the potential
energy curve at small » means that the atoms behave like hard
spheres—rnin is not sensitive to the energy of collision.

The situation is quite different if £ is negative. Then the motion
is bounded for both small and large separations; the atoms never
approach closer than r, or move farther apart than . A bound
system of two atoms is, of course, a molecule, and our sketch rep-
resents a typical diatomic molecule energy diagram. If two atoms
collide with positive energy, they cannot form a molecule unless
some means is available for losing enough energy to make E nega-
tive. In general, a third body is necessary to carry off the excess
energy. Sometimes the third body is a surface, which is the rea-
son surface catalysts are used to speed certain reactions. For
instance, atomic hydrogen is quite stable in the gas phase even
though the hydrogen molecule is tightly bound. However, if a
piece of platinum is inserted in the hydrogen, the atoms imme-
diately join to form molecules. What happens is that hydrogen
atoms tightly adhere to the surface of the platinum, and if a colli-
sion occurs between two atoms on the surface, the excess energy
is released to the surface, and the molecule, which is not strongly
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attracted to the surface, leaves. The energy delivered to the sur-
face is so large that the platinum glows brightly. A third atom
can also carry off the excess energy, but for this to happen the
two atoms must collide when a third atom is nearby. Thisis a rare
event at low pressures, but it becomes increasingly important at
higher pressures. Another possibility is for the two atoms to lose
energy by the emission of light. However, this occurs so rarely
that it is usually not important.

4.10 Small Oscillations in a Bound System

The interatomic potential we discussed in the last section illus-
trates an important feature of all bound systems; at equilibrium
the potential energy has a minimum. As a result, nearly every
bound system oscillates like a harmonic oscillator if it is slightly
perturbed from its equilibrium position. This is suggested by the
appearance of the energy diagram near the minimum—U has
the parabolic shape of a harmonic oscillator potential. If the total
energy is low enough so that the motion is restricted to the region
where the curve is nearly parabolic, as illustrated in the sketch,
the system must behave like a harmonic oscillator. It is not diffi-
cult to prove this. .

As we have discussed in Note 1.1, any “‘well behaved’’ function
f(z) can be expanded in a Taylor’s series about a point z,. Thus

@) = f(zo) + (@ — 2)f'(x0) + 2(x — z0)*f"(@0) + -+ - .
Suppose that we expand U (r) about r,, the position of the poten-
tial minimum. Then

aru

2
dr?

+...

T0

au 1
U(r) = U(ro) + (r — 7o) —&— + “2' (r — 79)?

70

However, since U is a minimum at ro, (dU/dr) |,, = 0. Further-
more, for sufficiently small displacements, we can neglect the
terms beyond the third in the power series. In this case,

2

1 d
U@) = U(ro) + > (r — r0)? o

This is the potential energy of a harmonic oscillator,
ka?
U(z) = constant + >
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We can even identify the effective spring constant:
axu
k —

= 4.23
dr? |,

Molecular Vibrations

Suppose that two atoms of masses m; and m, are bound together in a
molecule with energy so low that their separation is always close to the
equilibrium value 7. With the parabola approximation, the effective
spring constant is k = (d?U/dr?) |,,. How can we find the vibration
frequency of the molecule?

Consider the two atoms connected by a spring of equilibrium length
r9 and spring constant k, as shown below. The equations of motion are

miF, = k(r — 1)
Moty = —k(r — 19),

where r = r, — r; is the instantaneous separation of the atoms. We
can find the equation of motion for r by dividing the first equation by m;
and the second by m,, and subtracting. The result is

7‘2_T1=T‘=—k(i+"1—>(7‘—'7‘0)

my me
or

. k
= ——(r—=ro,

where u = mymy/(m; + ms). u has the dimension of mass and is called
the reduced mass.

By analogy with the harmonic oscillator equation & = — (k/m)(x — o)
for which the frequency of oscillation is w = V'k/m, the vibrational fre-
quency of the molecule is

K
w = —_—
7
Y LN

dr? |rg i

This vibrational motion, characteristic of all molecules, can be identified
by the light the molecule radiates. The vibrational frequencies typically
lie in the near infrared (3 X 10!® Hz), and by measuring the frequency
we can find the value of d?U /dr? at the potential energy minimum. For
the HCl molecule, the effective spring constant turns out to be 5 X 10°
dynes/cm = 500 N/m (roughly 31b/in). For large amplitudes the higher
order terms in the Taylor's series start to play a role, and these lead to
slight departures of the oscillator from its ideal behavior. The slight
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‘‘anharmonicities’’ introduced by this give further details on the shape
of the potential energy curve.

Since all bound systems have a potential energy minimum at
equilibrium, we naturally expect that all bound systems behave
like harmonic oscillators for small displacements (unless the mini-
mum is so flat that the second derivative vanishes there also).
The harmonic oscillator approximation therefore has a wide range
of applicability, even down to internal motions in nuclei.

Once we have identified the kinetic and potential energies of a
bound system, we can find the frequency of small oscillations by
inspection. For the elementary case of a mass on a spring we
have

U = }ka?
K = 3mi?
and

In many problems, however, it is more natural to write the ener-
gies in terms of a variable other than linear displacement. For
instance, the energies of a pendulum are

U = mgl(1 — cos ) = 3mglo?

K = imli*62.

More generally, the energies may have the form

U = 14492
3Aq% + constant 1.24
K = 3B¢?,

where ¢ represents a variable appropriate to the problem. By
analogy with the mass on a spring, we expect that the frequency
of motion of the oscillator is

A
w = \/% 4.25

To show explicitly that any system whose energy has the form

of Eq. (4.24) oscillates harmonically with a frequency \/A/B, note
that the total energy of the system is

E=K+4+U
= $Bg? + $Aq* + constant.
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Since the system is conservative, F is constant. Differentiating
the energy equation with respect to time gives

dE

AE _ pii + A

i 4¢ + Aqg
=0

or

.A+§ _0

i+5a=0

Hence ¢ undergoes harmonic motion with frequency \/A/B.

Small Oscillations

In Example 4.14 we determined the stability criterion for a teeter toy. In
this example we shall find the period of oscillation of the toy when it is
rocking from side to side.

From Example 4.14, the potential energy of the teeter toy is

U@ = —A cos 0,

where A = 2mg(l cos @« — L). For stability, A > 0. If we expand U(0)
about 8 = 0, we have

02
U@y = —4 (1_E+ - )

sincecos § =1— 62/2+ - - . Thus,
U@) = —A + %462

To find the kinetic energy, let s be the distance of each mass from the
pivot, as shown in the sketch. If the toy rocks with angular speed 6, the
speed of each mass is sf, and the total kinetic energy is
K = 3(m)s*62

= 1B¢:,
where B = 2ms?.
Hence the frequency of oscillation is

\/A

w = —

B
_ g cos a — L) 1
=N
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We found in Example 4.14 that for stability [cos @ — L > 0. Equation
(1) shows that as [ cos @« — L approaches zero, w approaches zero, and
the period of oscillation becomes infinite. In the limitlcosa — L =0,
the system is in neutral equilibrium, and if [ cos'a — L < 0, the system
becomes unstable. Thus, a low frequency of oscillation is associated
with the system operating near the threshold of stability. This is a
general property of stable systems, because a low frequency of oscillation
corresponds to a weak restoring force. For instance, a ship rolled by a
wave oscillates about equilibrium. For comfort the period of the roll
should be long. This can be accomplished by designing the hull so that
its center of gravity is as high as possible consistent with stability. Low-
ering the center of gravity makes the system ‘‘stiffer.”” The roll becomes
quicker and less comfortable, but the ship becomes intrinsically more
stable.

4.11 Nonconservative Forces

We have stressed conservative forces and potential energy in this
chapter because they play an important role in physics. However,
in many physical processes nonconservative forces like friction are
present. Let's see how to extend the work-energy theorem to
include nonconservative forces.

Often both conservative and nonconservative forces act on the
same system. For instance, an object falling through the air
experiences the conservative gravitational force and the noncon-
servative force of air friction. We can write the total force F as

F = Fo 4 Fre

where F°¢ and Frc are the conservative and the nonconservative
forces respectively. Since the work-energy theorem is true
whether or not the forces are conservative, the total work done
by F as the particle moves from a to b is

b
Wbatotal — -¢’ F-. dl’

f’rc-dr+ fibF“c-dr
—Up + Uo + Wyoe.

Il

Here U is the potential energy associated with the conservative
force and Wy2c is the work done by the nonconservative force.
The work-energy theorem, W,tetal = K, — K,, now has the form

—Uy+ U, + Wy = Ky, — K,
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or

Kb + Ub - (Ka + Ua) = Wbanc- 4-26

If we define the total mechanical energy by £ = K + U, as
before, then E is no longer a constant but instead depends on
the state of the system. We have

Ey, — E, = Wire. 4.27

This result is a generalization of the statement of conservation of
mechanical energy which we discussed in Sec. 4.7. If noncon-
servative forces do no work, £y = E,, and mechanical energy is
conserved. However, this is a special case, since nonconserva-
tive forces are often present. Nevertheless, energy methods
continue to be useful; we simply must be careful not to omit the
work done by the nonconservative forces, Wy»c. Here is an
example.

Block Sliding down Inclined Plane

A block of mass M slides down a plane of angle §. The problem is to
find the speed of the block after it has descended through height 4,
assuming that it starts from rest and that the coefficient of friction u is
constant.

Initially the block is at rest at height 4; finally the block is moving with
speed v at height 0. Hence

Ua = Mgh Ub =0
K.=0 Ky, = $Mv?
E, = Mgh  E, = #Mv.

The nonconservative force is f = uN = uMgcos 6. Hence, the non-
conservative work is

b
/ f-dr
a
= —fs,
where sis the distance the block slides. The negative sign arises because

the direction of f is always opposite to the displacement, so that f . dr =
—fdr. Using s = h/sin 6, we have

Wbanc

I

Whane

—ulMg cos 6

sin 6

= —ucot § Mgh.
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The energy equation E, — E, = Wy," becomes
$0Mv2 — Mgh = —ucot 6 Mgh,

which gives

v = [2(1 — u cot )ghlt.

Since all the forces acting on the block are constant, the expression
for v could easily be found by applying our results for motion under uni-
form acceleration; the energy method does not represent much of a
shortcut here. The power of the energy method lies in its generality.
For instance, suppose that the coefficient of friction varies along the
surface so that the friction force is f = u(x)Mg cos . The work done
by friction is

Wiane = — Mg cos 8 [b,u(x) dz,

and the final speed is easily found. In contrast, there is no simple way
to find the speed by integrating the acceleration with respect to time.

4.12 The General Law of Conservation of Energy

As far as we know, the basic forces of nature, such as the force
of gravity and the forces of electric and magnetic interactions, are
conservative. This leads to a puzzle; if fundamental forces are
conservative, how can nonconservative forces arise? The resolu-
tion of this problem lies in the point of view we adopt in describing
a physical system, and in our willingness to brocaden the concept
of energy.

Consider friction, the most familiar nonconservative force.
Mechanical energy is lost by friction when a block slides across a
table, but something else occurs: the block and the table get
warmer. However, there was no reference to temperature in
our development of the concept of mechanical energy; a block of
mass M moving with speed v has kinetic energy +Mv? whether
the block is hot or cold. The fact that a block sliding across a
table warms up does not affect our conclusion that mechanical
energy is lost. Nevertheless, if we look carefully, we find that the
heating of the system bears a definite relation to the energy dis-
sipated. The British physicist James Prescott Joule was the
first to appreciate that heat itself represents a form of energy.
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By a series of meticulous experiments on the heating of water by
a paddle wheel driven by a falling weight, he showed that the loss
of mechanical energy by friction is accompanied by the appearance
of an equivalent amount of heat. Joule concluded that heat must
be a form of energy and that the sum of the mechanical energy
and the heat energy of a system is conserved.

We now have a more detailed picture of heat energy than was
available to Joule. We know that solids are composed of atoms
held together by strong interatomic forces. Each atom can oscil-
late about its equilibrium position and has mechanical energy in
the form of kinetic and potential energies. As the solid is heated,
the amplitude of oscillation increases and the average energy of
each atom grows larger. The heat energy of a solid is the mechan-
ical energy of the random vibrations of the atoms.

There is a fundamental difference between mechanical energy
on the atomic level and that on the level of everyday events. The
atomic vibrations in a solid are random; at any instant there are
atoms moving in all possible directions, and the center of mass of
the block has no tendency to move on the average. Kinetic energy
of the block represents a collective motion; when the block moves
with velocity v, each atom has, on the average, the same velocity v.

Mechanical energy is turned into heat energy by friction, but
the reverse process is never observed. No one has ever seen a
hot block at rest on a table suddenly cool off and start moving,
although this would not violate conservation of energy. The
reason is that collective motion can easily become randomized.
For instance, when a block hits an obstacle, the collective trans-
lational motion ceases and, under the impact, the atoms start to
jitter more violently. Kinetic energy has been transformed to
heat energy. The reverse process where the random motion of
the atoms suddenly turns to collective motion is so improbable
that for all practical purposes it never occurs. Itis for this reason
that we can distinguish between the heat energy and the mechan-
ical energy of a chunk of matter even though on the atomic scale
the distinction vanishes.

We now recognize that in addition to mechanical energy and
heat there are many other forms of energy. These include the
radiant energy of light, the energy of nuclear forces, and, as we
shall discuss in Chap. 13, the energy associated with mass. Itis
apparent that the concept of energy is much wider than the simple
idea of kinetic and potential energy of a mechanical system. We
believe that the total energy of a system is conserved if all forms
of energy are taken into account.
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4.13 Power

Power is the time rate of doing work. If a force F acts on a body
which undergoes a displacement dr, the work is dW = F - dr and
the power delivered by the force is

p=W _ .
dt dt
=F-.v.

The unit of power in the S| system is the watt (W).
1W=1J/s.

In the cgs system, the unit of power is the erg/s = 10~7 W; it has
no special name. The unit of power in the English system is the
horsepower (hp). The horsepower is most commonly defined as
550 ft-lb/s, but slightly different definitions are sometimes encoun-
tered. The relation between the horsepower and the watt is

1hp = 746 W.

This is a discouraging number for builders of electric cars; the
average power obtainable from an ordinary automobile storage
battery is only about 350 W.

The power rating of an engine is a useful indicator of its per-
formance. For instance, a small motor with a system of reduction
gears can raise a large mass M any given height, but the process
will take a long time; the average power delivered is low. The
power required is Mgv, where v is the weight’'s upward speed.
To raise the mass rapidly the power must be large.

A human being in good condition can develop between 3 to 1 hp
for 30 s or so, for example while running upstairs. Over a period
of 8 hours (h), however, a husky man can do work only at the rate
of about 0.2 hp = 150 W. The total work done in 8 h is then
(150)(8)(3,600) = 4.3 X 10¢J = 1,000 kcal. The kilocalorie, approx-
imately equal to 4,200 J, is-often used to express the energy avail-
able from food. A normally active person requires 2,000 to 3,000
kcal/d. (In dietetic work the kilocalorie is sometimes called the
‘“large’’ calorie, but more often simply the calorie.)

The power production of modern industrialized nations corre-
sponds to several thousand watts per person (United States: 6,000
W per person; India: 300 W per person). The energy comes pri-
marily from the burning of fossil fuels, which are the chief source
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of energy at present. In principle, we could use the sun’s energy
directly. When the sun is overhead, it supplies approximately
1,000 W/m? (= 1 hp/yd?) to the earth’s surface. Unfortunately,
present solar cells are costly and inefficient, and there is no
economical way of storing the energy for later use.

4.14 Conservation Laws and Particle Collisions

Much of our knowledge of atoms, nuclei, and elementary particles
has come from scattering experiments. Perhaps the most dra-
matic of these was the experiment performed in 1911 by Ernest
Rutherford in which alpha particles (doubly ionized helium atoms)
were scattered from atoms of gold in a thin foil. By studying how
the number of scattered alpha particles varied with the deflection
angle, Rutherford was led to the nuclear model of the atom. The
techniques of experimental physics have advanced considerably
since Rutherford’s time. A high energy particle accelerator sev-
eral miles long may appear to have little in common with Ruther-
ford's tabletop apparatus, butits purpose is the same—to discover
the interaction forces between particles by studying how they
scatter.

Finding the interaction force from a scattering experiment is a
difficult task. Furthermore, the detailed description of collisions
on the atomic scale generally requires the use of quantum
mechanics. Nevertheless, there are constraints on the motion
arising from the conservation laws of momentum and energy
which are so strong that they are solely responsible for many of
the features of scattering. Since the conservation laws can be
applied without knowing the interactions, they play a vital part in
the analysis of collision pheanomena.

In this section we shall see how to apply the conservation laws
of momentum and energy to scattering experiments. No new
physical principles are involved; the discussion is intended to
illustrate ideas we have already introduced.

Collisions and Conservation Laws

The drawings below show three stages during the collision of two
particles. In (a), long before the collision, each particle is effec-
tively free, since the interaction forces are generally important
only at very small separations. As the particles approach, (b),
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the momentum and energy of each particle change due to the
interaction forces. Finally, long after the collision, (c), the par-
ticles are again free and move along straight lines with new direc-
tions and velocities. Experimentally, we usually know the initial
velocities v; and vs; often one particle is initially at rest in a target
and is bombarded by particles of known energy. The experiment
might consist of measuring the final velocities v} and v with suit-
able particle detectors.

)

Since external forces are usually negligible, the total momentum
is conserved and we have

P; = P,. 4,28
For a two body collision, this becomes
MVy + My = mV; + m,V;. 4,29

Equation (4.29) is equivalent to three scalar equations. We have,
however, six unknowns, the components of v; and v;. The energy
equation provides an additional relation between the velocities, as
we now show,

Elastic and Inelastic Collisions

Consider a collision on a linear air track between two riders of
equal mass which interact via good coil springs. Suppose that
initially rider 1 has speed v as shown and rider 2 is at rest. After
the collision, 1 is at rest and 2 moves to’the right with speed v.
It is clear that momentum has been conserved and that the total
kinetic energy of the two bodies, M»?/2, is the same before and
after the collision. A collision in which the total kinetic energy is
unchanged is called an elastic collision. A collision is elastic if the
interaction forces are conservative, like the spring force in our
example.
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As a second experiment, take the same two riders and replace
the springs by lumps of sticky putty. Let 2 be initially at rest.
After the collision, the riders stick together and move off with
speed v’. By conservation of momentum, Mv = 2Mv’, so that
v = v/2. The initial kinetic energy of the system is Mv?/2, but
the final kinetic energy is 2M)'2/2 = Mv?/4. Evidently in this
collision the kinetic energy is only half as much after the collision
as before. The kinetic energy has changed because the inter-
action forces were nonconservative. Part of the energy of the
collective motion was transformed to random heat energy in the
putty during the collision. A collision in which the total kinetic
energy is not conserved is called an inelastic collision.

Although the total energy of the system is always conserved in
collisions, part of the kinetic energy may be converted to some
other form. To take this into account, we write the conservation
of energy equation for collisions as

K, =K, + Q, 4.30

where Q@ = K; — K, is the amount of kinetic energy converted
to another form. For a two body collision, Eq. (4.30) becomes
Fmw? + dmaws? = Im? 4+ dmyvy’ + Q. 4.31
In most collisions on the everyday scale, kinetic energy is lost and
Q is positive. However, @ can be negative if internal energy of
the system is converted to kinetic energy in the collision. Such
collisions are sometimes called superelastic, and they are important
in atomic and nuclear physics. Superelastic collisions are rarely
encountered in the everyday world, but one example would be the
collision of two cocked mousetraps.

Collisions in One Dimension

If we have a two body collision in which the particles are con-
strained to move along a straight line, the conservation laws, Eqs.
(4.29) and (4.31), completely determine the final velocities, regard-
less of the nature of the interaction forces. With the velocities
shown in the sketch, the conservation laws give

Momentum:
mwy + Mmavy = My + myv;. 4.32a
Energy:

/ ’
Fmawi? + maws? = dmyu® + tme,? + Q. 4.32b
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These equations can be solved for v} and v, in terms of my, m,,
v1, vy, and . The next example illustrates the process.

Elastic Collision of Two Balls

Consider the one dimensional elastic collision of two balls of masses m;
and m,, with my, = 3m;. Suppose that the balls have equal and opposite
velocities v before the collision; the problem is to find the final velocities.
The conservation laws yield

mw — 3mw = mu] + 3mw, 1

12 192
amw? + F@mw? = gmwy’ + F@m vy’ 2

I

We can eliminate v{ using Eq. (1):
vy = —2v — 3v,. 3
Inserting this in Eq. (2) gives
4v? = (—2v — 303)% + 3u,>
= 402 4 12w} + 12032

or
0 = 12vvy + 12052 4
Equation (4) has two solutions: v; = —vand v; = 0. The corresponding

values of v{ can be found from Eq. (3).

Solution 1:
’

vy =0

4

Vg = —U.
Solution 2:
vy = —2v
v; = 0.

We recognize that solution 1 simply restates the initial conditions: we
always obtain such a ‘‘solution’ in this type of problem because the initial
velocities evidently satisfy the conservation law equations.

Solution 2 is the interesting one. It shows that after the collision, m,
is moving to the left with twice its original speed and the heavier ball is
at rest.

Collisions and Center of Mass Coordinates

It is almost always simpler to treat three dimensional collision
problems in the center of mass (C) coordinate system than in the
laboratory (L) system.
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Consider two particles of masses m; and m,, and velocities v;
and v,. The center of mass velocity is

V= mivy + m2V2~

my + me
As shown in the velocity diagram at left, V lies on the line joining
vy and v,.

The velocities in the C system are

Vie =V, — V

and

Vo v, — V

vy —va)
= ———— (V1 — V).
my ++ my

vy, and v, lie back to back along the relative velocity vector
V = V; — Vj
The momenta in the C system are

Pic = MiVy
mime
= ——— (Vi — V)
my + Mma
= /.Lv
P2c = MoV
—MmiMme
=——""—(V1 —Vy)
my + mq

= —uV.

Here u = mymy/(m; + my) is the reduced mass of the system.
We encountered the reduced mass for the first time in Example
4.15. As we shall see in Chap. 9, it is the natural unit of mass in
a two particle system. The total momentum in the C system is
zero, as we expect.

The total momentum in the L system is

miVi + MoVo = (ml + m2)v
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and since total momentum is conserved in any collision, V is con-
stant. We can use this result to help visualize the velocity vectors
before and after the collision.

Sketch (a) shows the trajectories and velocities of two colliding
particles. In sketch (b) we show the initial velocities in the . and
C systems. All the vectors lie in the same plane. v, and v,
must be back to back since the total momentum in the C system
is zero. After the collision, sketch (c), the velocities in the C sys-
tem are again back to back. This sketch also shows the final
velocities in the lab system. Note that the plane of sketch ¢ is
not necessarily the plane of sketch a. Evidently the geometrical
relation between initial and final velocities in the L system is quite
complicated. Fortunately, the situation in the C system is much
simpler. The initial and final velocities in the C system deter-
mine a plane known as the plane of scattering. Each particle is
deflected through the same scattering angle © in this plane. The
interaction force must be known in order to calculate ®, or con-
versely, by measuring the deflection we can learn about the inter-
action force. However, we shall defer these considerations and
simply assume that the interaction has caused some deflection in
the C system.

An important simplification occurs if the collision is elastic.
Conservation of energy applied to the C' system gives, for elastic
collisions,

1 /2 /2
M1 + $Mavat = Fmuvy; 4 Fmyvyh.
Since momentum is zero in the C system, we have
M1 — Mave = 0
’ r_
MV — Myby, = 0.

Eliminating vs, and v;, from the energy equation gives

my? my?

1 — /2

7<m1+— vt = F\mi+ — )i
ma me

or
/
Vie = Uy,
Similarly,
4
Voe = Uy

In an elastic collision, the speed of each particle in the C system is
the same before and after the collision. Thus, the velocity vectors
simply rotate in the scattering plane.
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In many experiments, one of the particles, say m.,, is initially at
rest in the laboratory. In this case

m

V=2

my + mq
and

V19=V1—v

= ——V]
my + my

The sketches show v; and v, before and after the collision in
the C and L systems. 6, and 6, are the laboratory angles of the
trajectories of the two particles after the collision. The velocity

diagrams can be used to relate 6; and 6, to the scattering angle
.

Limitations on Laboratory Scattering Angle

Consider the elastic scattering of a particle of mass m; and velocity v;
from a second particle of mass m, at rest. The scattering angle ® in
the C system is unrestricted, but the conservation laws impose limitations
on the laboratory angles, as we shall show.

The center of mass velocity has magnitude

mivy

V= 1
my + me
and is parallel to v;. The initial velocities in the C system are
Uz
Vieg= ———V;
my + mz
2
mi v
Ve, = — — V1.
my + me

Suppose m; is scattered through angle © in the C system.
From the velocity diagram we see that the laboratory scattering angle
of the incident particle is given by

’ .
vy, Sin ©

tan 01 == =
V + v, cos ©
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Since the scattering is elastic, v3, = ;.. Hence

V1, Sin ©
V + vi.cos ©
sin ®

- (V/v1c) + cos ®

tan 6, =

From Egs. (1) and (2), V/vi, = mi/m.. Therefore

sin ©
tanfy = —m-
(m1/m3z) + cos ®
The scattering angle ® depends on the details of the interaction, butin
general it can assume any value. If m; < m,, it follows from Eq. (3) or
the geometric construction in sketch (a) that 6, is unrestricted. How-
ever, the situation is quite different if m; > m,. In this case 6, is never
greater than a certain angle 0y ... As sketch (b) shows, the maximum
value of 6; occurs when v{ and v;n are both perpendicular. In this case
SiN 01, max = V1o/V = mo/m1. I my 3> My, 01, mex = M2/m; and the maxi-
mum scattering angle approaches zero.

Increasing ©

(a)

Physically, a light particle at rest cannot appreciably deflect a massive
particle. The incident particle tends to continue in its forward direction
no matter how the light target particle recoils.

Problems 4.1 A small block of mass m starts from rest and slides along a friction-
less loop-the-loop as shown in the left-hand figure on the top of the next
page. What should be the initial height z, so that m pushes against
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the top of the track (at a) with a force equal to its weight?
Ans. z = 3R

4.2 A block of mass 1/ slides along a hotizontal table with speed u,.
At z = 0 it hits a spring with spring constant k and begins to experience
a friction force (see figure above right). The coefficient of friction is
variable and is given by u = bz, where bis a constant. Find the loss
in mechanical energy when the block has first come momentarily to rest.

4.3 A simple way to measure the speed of a bullet is with a ballistic
pendulum. As illustrated, this consists of a wooden block of mass M
into which the bullet is shot. The block is suspended from cables of
length [, and the impact of the bullet causes it to swing through a maxi-
mum angle ¢, as shown. The initial speed of the bullet is », and its
mass is m.

a. How fast is the block moving immediately after the bullet comes to
rest? (Assume that this happens quickly.)

b. Show how to find the velocity of the bullet by measuring m, 1/, [,
and ¢.
Ans. (b) v = [(m + M)/m] V29l — cos ¢)

4.4 A small cube of mass m slides down a circular path of radius R cut
into a large block of mass 1/, as shown at left. 17 rests on a table, and
both blocks move without friction. The blocks are initially at rest, and
m starts from the top of the path.

Find the velocity v of the cube as it leaves the block.

Ans. clue. If m = M, v = VgR

45 Mass m whirls on a frictionless table, held to circular motion by a
string which passes through a hole in the table. The string is slowly
pulled through the hole so that the radius of the circle changes from [;
to l;. Show that the work done in pulling the string equals the increase
in kinetic energy of the mass.
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7

4.6 A small block slides from rest from the top of a frictionless sphere
of radius R (see above left). How far below the top z does it lose con-
tact with the sphere? The sphere does not move. Ans. R/3

4.7 A ring of mass M hangs from a thread, and two beads of mass m
slide on it without friction (see above right). The beads are released
simultaneously from the top of the ring and slide down opposite sides.
Show that the ring will start to rise if m > 337 /2, and find the angle at
which this occurs. Ans. clue. f M =0, 6§ = arccos %

4.8 The block shown in the drawing is acted on by a spring with spring
constant k and a weak friction force of constant magnitude f. The block
is pulled distance xo, from equilibrium and released. It oscillates many
times and eventually comes to rest.

a. Show that the decrease of amplitude is the same for each cycle of
oscillation.

b. Find the number of cycles n the mass oscillates before coming to
rest. Ans. n = Ykxo/f) — 1] = kxo/Af

4,9 A simple and very violent chemical reactionis H + H— H,; 4+ 5 eV.
(1 eV =16 X 1071 J, a healthy amount of energy on the atomic scale.)
However, when hydrogen atoms collide in free space they simply bounce
apart! The reason is that it is impossible to satisfy the laws of conserva-
tion of momentum and conservation of energy in a simple two body colli-
sion which releases energy. Can you prove this? You might start by
writing the statements of conservation of momentum and energy. (Be
sure to include the energy of reaction in the energy equation, and get
the sign right.) By eliminating the final momentum of the molecule
from the pair of equations, you should be able to show that the initial
momenta would have to satisfy an impossible condition.

410 A block of mass M on a horizontal frictionless table is connected
to a spring (spring constant k), as shown.

The block is set in motion so that it oscillates about its equilibrium
point with a certain amplitude A,. The period of motion is Ty =

2r VM /k.
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a. A lump of sticky putty of mass m is dropped onto the block. The
putty sticks without bouncing. The putty hits M at the instant when the
velocity of M is zero. Find

(1) The new period
(2) The new amplitude
(3) The change in the mechanical energy of the system

b. Repeat part a, but this time assume that the sticky putty hits M
at the instant when M has its maximum velocity.

4,11 A chain of mass M and length [ is suspended vertically with its
lowest end touching a scale. The chain is released and falls onto the
scale.
What is the reading of the scale when a length of chain, z, has fallen?
(Neglect the size of individual links.)
Ans. clue. The maximum reading is 31 g

4.12 During the Second World War the Russians, lacking sufficient para-
chutes for airborne operations, occasionally dropped soldiers inside bales
of hay onto snow. The human body can survive an average pressure on
impact of 30 Ib/in2.

Suppose that the lead plane drops a dummy bale equal in weight to a
loaded one from an altitude of 150 ft, and that the pilot observes that it
sinks about 2 ft into the snow. If the weight of an average soldier is
144 1b and his effective area is 5 ft?, is it safe to drop the men?

4.13 A commonly used potential energy function to describe the inter-
action between two atoms is the Lennard-Jones 6,12 potential

()

a. Show that the radius at the potential minimum is ry, and that the
depth of the potential well is e.

b. Find the frequency of small oscillations about equilibrium for 2
identical atoms of mass m bound to each other by the Lennard-Jones
interaction.

Ans. w = 12 V'e/ro*m
4,14 A bead of mass m slides without friction on a smooth rod along the
z axis. The rod is equidistant between two spheres of mass M. The
spheres are located at x = 0, y = *+a as shown, and attract the bead
gravitationally.

a. Find the potential energy of the bead.

b. The bead is released at x = 3a with velocity v, toward the origin.
Find the speed as it passes the origin.

c. Find the frequency of small oscillations of the bead about the
origin.
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4.15 A particle of mass m moves in one dimension along the positive x
axis. It is acted on by a constant force directed toward the origin with
magnitude B, and an inverse square law repulsive force with magnitude
4 /x2.

a. Find the potential energy function U(x).

b. Sketch the energy diagram for the system when the maximum
kinetic energy is Ko = #muv,.

c. Find the equilibrium position, .
d. What is the frequency of small oscillations about z,?

416 An 1,800-lb sportscar accelerates to 60 mi/h in 8 s. What is the
average power that the engine delivers to the car’'s motion during this
period?

417 A snowmobile climbs a hill at 15 mi/hr. The hill has a grade of 1
ft rise for every 40 ft. The resistive force due to the snow is 5 percent of
the vehicle’s weight. How fast will the snowmobile move downhill, assum-
ing its engine delivers the same power?

Ans. 45 mi/h

4.18 A 160-lb man leaps into the air from a crouching position. His
center of gravity rises 1.5 ft before he leaves the ground, and it then rises
3 ft to the top of his leap. What power does he develop assuming that
he pushes the ground with constant force?

Ans. clue. More than 1 hp, less than 10 hp

4.19 The man in the preceding problem again leaps into the air, but this
time the force he applies decreases from a maximum at the beginning
of the leap to zero at the moment he leaves the ground. As a reason-
able approximation, take the force to be F = Fy cos wt, where F, is the
peak force, and contact with the ground ends when wt = w/2. Find the
peak power the man develops during the jump.

4.20 Sand runs from a hopper at constant rate dm/dt onto a horizontal
conveyor belt driven at constant speed V by a motor.
a. Find the power needed to drive the belt.

b. Compare the answer to a with the rate of change of kinetic energy
of the sand. Can you account for the difference?

4.21 A uniform rope of mass N\ per unit length is coiled on a smooth
horizontal table. One end is pulled straight up with constant speed
Vo.

a. Find the force exerted on the end of the rope as a function of
height y.

b. Compare the power delivered to the rope with the rate of change
of the rope’s total mechanical energy.

4.22 A ball drops to the floor and bounces, eventually coming to rest.
Collisions between the ball and floor are inelastic; the speed after each
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collision is e times the speed before the collision where ¢ <1, (e is
called the coefficient of restitution.) 1f the speed just before the first
bounce is vy, find the time to come to rest.

Ans. clue. If v, =5m/s, e =05, thenT=1s

4.23 A small ball of mass m is placed on top of a ‘‘superball’’ of mass
M, and the two balls are dropped to the floor from height 2. How high
does the small ball rise after the collision? Assume that collisions with
the superball are elastic, and that m << M. To help visualize the prob-
lem, assume that the balls are slightly separated when the superball hits
the floor. (If you are surprised at the result, try demonstrating the
problem with a marble and a superball.)

4.24 Cars B and C are at rest with their brakes off. Car A plows into
B at high speed, pushing B into C. If the collisions are completely
inelastic, what fraction of the initial energy is dissipated in car C? Ini-
tially the cars are identical.

4.25 A proton makes a head-on collision with an unknown particle at
rest. The proton rebounds straight back with 4 of its initial kinetic
energy.

Find the ratio of the mass of the unknown particle to the mass of the
proton, assuming that the collision is elastic.

426 A particle of mass m and initial velocity v, collides elastically with
a particle of unknown mass M coming from the opposite direction as
shown at left below. After the collision m has velocity v,/2 at right angles
to the incident direction, and 3/ moves off in the direction shown in the
sketch. Find the ratio A{/m.

4.27 Particle A of mass m has initial velocity v,. After colliding with
particle B of mass 2m initially at rest, the particles follow the paths shown
in the sketch at right below. Find 6.
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4.28 A thin target of lithium is bombarded by helium nuclei of energy
FEy. The lithium nuclei are initially at rest in the target but are essen-
tially unbound. When a helium nucleus enters a lithium nucleus, a
nuclear reaction can occur in which the compound nucleus splits apart
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into a boron nucleus and a neutron. The collision is inelastic, and the
final kinetic energy is less than E, by 2.8 MeV. (1 MeV = 10¢ eV =
1.6 X 10713 J). The relative masses of the particles are: helium, mass
4; lithium, mass 7; boron, mass 10; neutron, mass 1. The reaction can
be symbolized

Li + *He — 1°B + 'n — 2.8 MeV.

a. What is Eo, ihresholer the minimum value of E, for which neutrons
can be produced? What is the energy of the neutrons at this threshold?
Ans. Neutron energy = 0.15 MeV

b. Show that if the incident energy falls in the range Eo,inresnoa <
Ey < Eo, threshola + 0.27 MeV, the neutrons ejected in the forward direc-
tion do not all have the same energy but must have either one or the
other of two possible energies. (You can understand the origin of the
two groups by looking at the reaction in the center of mass system.)

4.29 A ‘'superball” of mass m bounces back and forth between two sur-
faces with speed v,. Gravity is neglected and the collisions are perfectly

elastic.
2 V a. Find the average force F on each wall.
v Ans. F = mvo?/l
. S ®
j/,é 14 v b. If one surface is slowly moved toward the other with speed V < v,
/
,Z/] Y the bounce rate will increase due to the shorter distance between colli-
Z) x

% sions, and because the ball's speed increases when it bounces from the
//j moving surface. Find F in terms of the separation of the surfaces, z.
(Hint: Find the average rate at which the ball's speed increases as the
surface moves.)

~

Ans. F = (mvy2/l)(l/x)?
c. Show that the work needed to push the surface from [ to = equals
the gain in kinetic energy of the ball. (This problem illustrates the
mechanism which causes a gas to heat up as it is compressed.)
430 A particle of mass m and velocity v, collides elastically with a par-
ticle of mass M initially at rest and is scattered through angle ® in the
center of mass system.
a. Find the final velocity of m in the laboratory system.
Ans. vy = [vo/(m + M)](m? + M? 4 2mM cos ©)}
b. Find the fractional loss of kinetic energy of m.
Ans. clue. If m = M, (Ko — K;)/Ko = (1 — cos 0)/2



