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PREFACE

There is good reason for the tradition that students of science and
engineering start college physics with the study of mechanics:
mechanics is the cornerstone of pure and applied science. The
concept of energy, for example, is essential for the study of the
evolution of the universe, the properties of elementary particles,
and the mechanisms of biochemical reactions. The concept of
energy is also essential to the design of a cardiac pacemaker and
to the analysis of the limits of growth of industrial society. How-
ever, there are difficulties in presenting an introductory course in
mechanics which is both exciting and intellectually rewarding.
Mechanics is a mature science and a satisfying discussion of its
principles is easily lost in a superficial treatment. At the other
extreme, attempts to ‘‘enrich’” the subject by emphasizing
advanced topics can produce a false sophistication which empha-
sizes technique rather than understanding.

This text was developed from a first-year course which we taught
for a number of years at the Massachusetts Institute of Technology
and, earlier, at Harvard University. We have tried to present
mechanics in an engaging form which offers a strong base for
future work in pure and applied science. Our approach departs
from tradition more in depth and style than in the choice of topics;
nevertheless, it reflects a view of mechanics held by twentieth-
century physicists.

Our book is written primarily for students who come to the course
knowing some calculus, enough to differentiate and integrate sim-
ple functions.! It has also been used successfully in courses
requiring only concurrent registration in calculus. (For a course
of this nature, Chapter 1 should be treated as a resource chapter,
deferring the detailed discussion of vector kinematics for a time.
Other suggestions are listed in To The Teacher.) Our experi-
ence has been that the principal source of difficulty for most stu-
dentsisinlearning how to apply mathematics to physical problems,
not with mathematical techniques as such. The elements of cal-
culus can be mastered relatively easily, but the development of
problem-solving ability requires careful guidance. We have pro-
vided numerous worked examples throughout the text to help
supply this guidance. Some of the examples, particularly in the
early chapters, are essentially pedagogical. Many examples, how-
ever, illustrate principles and techniques by application to prob-
lems of real physical interest.

The first chapter is a mathematical introduction, chiefly on vec-
tors and kinematics. The concept of rate of change of a vector,

1 The background provided in “‘Quick Calculus’’ by Daniel Kleppner and Norman
Ramsey, John Wiley & Sons, New York, 1965, is adequate.
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probably the most difficult mathematical concept in the text,
plays an important role throughout mechanics. Consequently,
this topic is developed with care, both analytically and geometrically.
The geometrical approach, in particular, later proves to be invalu-
able for visualizing the dynamics of angular momentum.

Chapter 2 discusses inertial systems, Newton’s laws, and some
common forces. Much of the discussion centers on applying New-
ton’s laws, since analyzing even simple problems according to
general principles can be a challenging task at first. Visualizing
a complex system in terms of its essentials, selecting suitable
inertial coordinates, and distinguishing between forces and accel-
erations are all acquired skills. The numerous illustrative exam-
ples in the text have been carefully chosen to help develop these
skills.

Momentum and energy are developed in the following two chap-
ters. Chapter 3, on momentum, applies Newton's laws to extended
systems. Students frequently become confused when they try to
apply momentum considerations to rockets and other systems
involving flow of mass. Our approach is to apply a differential
method to a system defined so that no mass crosses its boundary
during the chosen time interval. This ensures that no contribution
to the total momentum is overlooked. The chapter concludes with
a discussion of momentum flux. Chapter 4, on energy, develops
the work-energy theorem and its application to conservative and
nonconservative forces. The conservation laws for momentum
and energy are illustrated by a discussion of collision problems.

Chapter 5 deals with some mathematical aspects of conservative
forces and potential energy; this material is not needed elsewhere
in the text, but it will be of interest to students who want a mathe-
matically complete treatment of the subject.

Students usually find it difficult to grasp the properties of angular
momentum and rigid body motion, partly because rotational motion
lies so far from their experience that they cannot rely on intuition.
As a result, introductory texts often slight these topics, despite
their importance. We have found that rotational motion can be
made understandable by emphasizing physical reasoning rather
than mathematical formalism, by appealing to geometric argu-
ments, and by providing numerous worked examples. In Chapter
6 angular momentum is introduced, and the dynamics of fixed
axis rotationis treated. Chapter 7 develops the important features
of rigid body motion by applying vector arguments to systems
dominated by spin angular momentum. An elementary treatment
of general rigid body motion is presented in the last sections of
Chapter 7 to show how Euler's equations can be developed from
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simple physical arguments. This more advanced material is
optional however; we do not usually treat it in our own course.

Chapter 8, on noninertial coordinate systems, completes the
development of the principles of newtonian mechanics. Up to
this point in the text, inertial systems have been used exclusively
in order to avoid confusion between forces and accelerations.
Our discussion of noninertial systems emphasizes their value as
computational tools and their implications for the foundations of
mechanics.

Chapters 9 and 10 treat central force motion and the harmonic
oscillator, respectively. Although no new physical concepts are
involved, these chapters illustrate the application of the principles
of mechanics to topics of general interest and importance in phy-
sics. Much of the algebraic complexity of the harmonic oscillator
is avoided by focusing the discussion on energy, and by using sim-
ple approximations.

Chapters 11 through 14 present a discussion of the principles of
special relativity and some of its applications. We attempt to
emphasize the harmony between relativistic and classical thought,
believing, for example, that it is more valuable to show how the
classical conservation laws are unified in relativity than to dwell
at length on the so-called ‘paradoxes.” Our treatment is con-
cise and minimizes algebraic complexities. Chapter 14 shows how
ideas of symmetry play a fundamental role in the formulation of
relativity. Although we have kept the beginning students in mind,
the concepts here are more subtle than in the previous chapters.
Chapter 14 can be omitted if desired; but by illustrating how sym-
metry bears on the principles of mechanics, it offers an exciting
mode of thought and a powerful new tool.

Physics cannot be learned passively; there is absolutely no sub-
stitute for tackling challenging problems. Here is where students
gain the sense of satisfaction and involvement produced by a
genuine understanding of the principles of physics. The collec-
tion of problems in this book was developed over many years of
classroom use. A few problems are straightforward and intended
for drill; most emphasize basic principles and require serious
thought and effort. We have tried to choose problems which
make this effort worthwhile in the spirit of Piet Hein’s aphorism

Problems worthy

of attack

prove their worth

by hitting back!

1 From Grooks I, by Piet Hein, copyrighted 1966, The M.I.T. Press.
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TO
THE
TEACHER

The first eight chapters form a comprehensive introduction to
classical mechanics and constitute the heart of a one-semester
course. In a 12-week semester, we have generally covered the
first 8 chapters and parts of Chapters 9 or 10. However, Chapter
5 and some of the advanced topics in Chapters 7 and 8 are usually
omitted, although some students pursue them independently.

Chapters 11, 12, and 13 present a complete introduction to special
relativity. Chapter 14, on transformation theory and four-vectors,
provides deeper insight into the subject for interested students.
We have used the chapters on relativity in a three-week short
course and also as part of the second-term course in electricity and
magnetism.

The problems at the end of each chapter are generally graded
in difficulty. They are also cumulative; concepts and techniques
from earlier chapters are repeatedly called upon in later sections
of the book. The hope is that by the end of the course the student
will have developed a good intuition for tackling new problems,
that he will be able to make an intelligent estimate, for instance,
about whether to start from the momentum approach or from the
energy approach, and that he will know how to set off on a new
tack if his first approach is unsuccessful. Many students report
a deep sense of satisfaction from acquiring these skills.

Many of the problems require a symbolic rather than a numerical
solution. This is not meant to minimize the importance of numeri-
cal work but to reinforce the habit of analyzing problems symboli-
cally. Answers are given to some problems; in others, a numerical
“answer clue' is provided to allow the student to check his sym-
bolic result. Some of the problems are challenging and require
serious thought and discussion. Since too many such problems
at once can result in frustration, each assignment should have a
mix of easier and harder problems.

Chapter 1 Although we would prefer to start a course in mechan-
ics by discussing physics rather than mathematics, there are real
advantages to devoting the first few lectures to the mathematics
of motion. The concepts of kinematics are straightforward for
the most part, and it is helpful to have them clearly in hand
before tackling the much subtler problems presented by new-
tonian dynamics in Chapter 2. A departure from tradition in this
chapter is the discussion of kinematics using polar coordinates.
Many students find this topic troublesome at first, requiring serious
effort. However, we feel that the effort will be amply rewarded.
In the first place, by being able to use polar coordinates freely,,
the kinematics of rotational motion are much easier to understand;
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the mystery of radial acceleration disappears. More important,
this topic gives valuable insights into the nature of a time-varying
vector, insights which not only simplify the dynamics of particle
motion in Chapter 2 but which are invaluable to the discussion of
momentum flux in Chapter 3, angular momentum in Chapters 6
and 7, and the use of noninertial coordinates in Chapter 8. Thus,
the effort put into understanding the nature of time-varying vectors
in Chapter 1 pays important dividends throughout the course.

If the course is intended for students who are concurrently begin-
ning their study of calculus, we recommend that parts of Chapter 1
be deferred. Chapter 2 can be started after having covered only
the first six sections of Chapter 1. Starting with Example 2.5, the
kinematics of rotational motion are needed; at this point the ideas
presented in Section 1.9 should be introduced. Section 1.7, on the
integration of vectors, can be postponed until the class has become
familiar with integrals. Occasional examples and problems involv-
ing integration will have to be omitted until that time. Section 1.8,
on the geometric interpretation of vector differentiation, is essen-
tial preparation for Chapters 6 and 7 but need not be discussed
earlier.

Chapter 2 The material in Chapter 2 often represents the stu-
dent’s first serious attempt to apply abstract principles to con-
crete situations. Newton’s laws of motion are not self-evident;
most people unconsciously follow aristotelian thought. We find
that after an initial period of uncertainty, students become accus-
tomed to analyzing problems according to principles rather than
vague intuition. A common source of difficulty at first is to con-
fuse force and acceleration. We therefore emphasize the use of
inertial systems and recommend strongly that noninertial coor-
dinate systems be reserved until Chapter 8, where their correct
use is discussed. In particular, the use of centrifugal force in
the early chapters can lead to endless confusion between inertial
and noninertial systems and, in any case, itis not adequate for the
analysis of motion in rotating coordinate systems.

Chapters 3 and 4 There are many different ways to derive the
rocket equations. However, rocket problems are not the only
ones in which there is a mass flow, so that it is important to adopt
a method which is easily generalized. It is also desirable that the
method be in harmony with the laws of conservation of momentum
or, to put it more crudely, that there is no swindle involved. The
differential approach used in Section 3.5 was developed to meet
these requirements. The approach may not be elegant, but it is
straightforward and quite general.
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In Chapter 4, we attempt to emphasize the general nature of
the work-energy theorem and the difference between conserva-
tive and nonconservative forces. Although the line integral is
introduced and explained, only simple line integrals need to be
evaluated, and general computational techniques should not be
given undue attention.

Chapter 5 This chapter completes the discussion of energy and
provides a useful introduction to potential theory and vector cal-
culus. However, it is relatively advanced and will appeal only to
students with an appetite for mathematics. The results are not
needed elsewhere in the text, and we recommend leaving this
chapter for optional use, or as a special topic.

Chapters 6 and 7 Most students find that angular momentum is
the most difficult physical concept in elementary mechanics. The
major conceptual hurdle is visualizing the vector properties of
angular momentum. We therefore emphasize the vector nature
of angular momentum repeatedly throughout these chapters. In
particular, many features of rigid body motion can be understood
intuitively by relying on the understanding of time-varying vectors
developed in earlier chapters. It is more profitable to emphasize
the qualitative features of rigid body motion than formal aspects
such as the tensor of inertia. If desired, these qualitative argu-
ments can be pressed quite far, as in the analysis of gyroscopic
nutation in Note 7.2. The elementary discussion of Euler’s equa-
tions in Section 7.7 is intended as optional reading only. Although
Chapters 6 and 7 require hard work, many students develop a phy-
sical insight into angular momentum and rigid body motion which
is seldom gained at the introductory level and which is often
obscured by mathematics in advanced courses.

Chapter 8 The subject of noninertial systems offers a natural
springboard to such speculative and interesting topics as trans-
formation theory and the principle of equivalence. From a more
practical point of view, the use of noninertial systems is an impor-
tant technique for solving many physical problems.

Chapters 9 and 10 In these chapters the principles developed
earlier are applied to two important problems, central force motion
and the harmonic oscillator. Although both topics are generally
treated rather formally, we have tried to simplify the mathematical
development. The discussion of central force motion relies heavily
on the conservation laws and on energy diagrams. The treatment
of the harmonic oscillator sidesteps much of the usual algebraic
complexity by focusing on the lightly damped oscillator. Applica-
tions and examples play an important role in both chapters.
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Chapters 11 to 14 Special relativity offers an exciting change of
pace to a course in mechanics. Our approach attempts to empha-
size the connection of relativity with classical thought. We have
used the Michelson-Morley experiment to motivate the discussion.
Although the prominence of this experiment in Einstein’s thought
has been much exaggerated, this approach has the advantage of
grounding the discussion on a real experiment.

We have tried to focus on the ideas of events and their trans-
formations without emphasizing computational aids such as dia-
grammatic methods. This approach allows us to deemphasize
many of the so-called paradoxes.

For many students, the real mystery of relativity lies not in the
postulates or transformation laws but in why transformation prin-
ciples should suddenly become the fundamental concept for gen-
erating new physical laws. This touches on the deepest and most
provocative aspects of Einstein’s thought. Chapter 14, on four-
vectors, provides an introduction to transformation theory which
unifies and summarizes the preceding development. The chapter
is intended to be optional.

Daniel Kleppner
Robert J. Kolenkow
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VECTORS AND KINEMATICS—A FEW MATHEMATICAL PRELIMINARIES

1.1 Introduction

The goal of this book is to help you acquire a deep understanding
of the principles of mechanics. The subject of mechanics is at
the very heart of physics; its concepts are essential for under-
standing the everyday physical world as wéll as phenomena on the
atomic and cosmic scales. The concepts of mechanics, such as
momentum, angular momentum, and energy, play a vital role in
practically every area of physics.

We shall use mathematics frequently in our discussion of
physical principles, since mathematics lets us express complicated
ideas quickly and transparently, and it often points the way to new
insights. Furthermore, the interplay of theory and experiment in
physics is based on quantitative prediction and measurement.
For these reasons, we shall devote this chapter to developing some
necessary mathematical tools and postpone our discussion of the
principles of mechanics until Chap. 2.

1.2 Vectors

The study of vectors provides a good introduction to the role of
mathematics in physics. By using vector notation, physical laws
can often be written in compact and simple form. (As a matter
of fact, modern vector notation was invented by a physicist,
Willard Gibbs of Yale University, primarily to simplify the appear-
ance of equations.) For example, here is how Newton’'s second
law (which we shall discuss in the next chapter) appears in
nineteenth century notation:

F, = ma,
F, = ma,
F. = ma..

In vector notation, one simply writes
F = ma.

Our principal motivation for introducing vectors is to simplify the
form of equations. However, as we shall see in the last chapter
of the book, vectors have a much deeper significance. Vectors
are closely related to the fundamental ideas of symmetry and
their use can lead to valuable insights into the possible forms of
unknown laws.
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Definition of a Vector

Vectors can be approached from three points of view—geometric,
analytic, and axiomatic. Although all three points of view are use-
ful, we shall need only the geometric and analytic approaches in
our discussion of mechanics.

From the geometric point of view, a vector is a directed line
segment. In writing, we can represent a vector by an arrow and
label it with a letter capped by a symbolic arrow. In print, bold-
faced letters are traditionally used.

In order to describe a vector we must specify both its length and
its direction. Unless indicated otherwise, we shall assume that
parallel translation does not change a vector. Thus the arrows
at left all represent the same vector.

If two vectors have the same length and the same direction
they are equal. The vectors B and C are equal:

B = C.

The length of a vector is called its magnitude. The magnitude
of a vector is indicated by vertical bars or, if no confusion will occur,
by using italics. For example, the magnitude of A is written |A|,
or simply 4. If the length of Ais V2, then |A| = 4 = V2.

If the length of a vector is one unit, we call it a unit vector. A
unit vector is labeled by a caret; the vector of unit length parallel
to Ais A, It follows that

P
A|

and conversely

A = |AJA.

The Algebra of Vectors

Multiplication of a Vector by a Scalar |f we multiply A by a positive
scalar b, the result is a new vector C = bA. The vector C is
parallel to A, and its length is b times greater. Thus € = A, and
|C| = blA|.

The result of multiplying a vector by —1 is a new vector opposite
in direction (antiparallel) to the original vector.

Multiplication of a vector by a negative scalar evidently can
change both the magnitude and the direction sense.
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Addition of Two Vectors Addition of vectors has the simple geo-
metrical interpretation shown by the drawing.

The rule is: To add B to A, place the tail of B at the head of A.
The sum is a vector from the tail of A to the head of B.

Subtraction of Two Vectors Since A — B = A 4 (—B), in order to
subtract B from A we can simply multiply it by —1 and then add.
The sketches below show how.

A+ (-B)=A-B A-B

An equivalent way to construct A — B is to place the head of B
at the head of A. Then A — B extends from the tail of A to the
tail of B, as shown in the right hand drawing above.

It is not difficult to prove the following laws. We give a geo-
metrical proof of the commutative law; try to cook up your own
proofs of the others.

A+B=B+A Commutative law
A+B+C=(A+B)+C -
c(dA) = (cd)A Associative law
(c+ d)A =cA-+dA o
(A + B) = cA + ¢B Distributive law

Proof of the Commutative law of vector addition

Although there is no great mystery to addition, subtraction,
and multiplication of a vector by a scalar, the result of ‘“multiply-
ing"” one vector by another is somewhat less apparent. Does
multiplication yield a vector, a scalar, or some other quantity?
The choice.is up to us, and we shall define two types of products
which are useful in our applications to physics.
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Scalar Product (“‘Dot” Product) The first type of product is called
the scalar product, since it represents a way of combining two
vectors to form a scalar. The scalar product of A and B is denoted
by A - B and is often called the dot product. A - B is defined by

A-B = |A| |B] cos 6.

Here 6 is the angle between A and B when they are drawn tail to
tail.

Since |B| cos 6 is the projection of B along the direction of A,
A:-B = |A| X (projection of B on A).

Similarly,

A - B = |B| x (projection of A on B).

If A-B =0, then |[A| = 0 or [B| =0, or A is perpendicular to
B (thatis, cos § = 0). Scalar multiplication is unusual in that the
dot product of two nonzero vectors can be 0.

Note that A« A = |A[%

By way of demonstrating the usefulness of the dot product, here
is an almost trivial proof of the law of cosines.

Law of Cosines
C=A+B
C-C=(A-+B)-(A+ B)
|2 = [A]* + [B]* + 2/A| [B] cos 6
This result is generally expressed in terms of the angle ¢:

C* = A% + B? — 24 B cos ¢.

(We have used cos § = cos (m — ¢) = —cos ¢.)

Work and the Dot Product

The dot product finds its most important application in the discussion of
work and energy in Chap. 4. As you may already know, the work W done
by a force F on an object is the displacement d of the object times the
component of F along the direction of d. If the force is applied at an
angle 6 to the displacement,

W = (F cos 6)d.
Granting for the time being that force and displacement are vectors,

W =F-d.
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Vector Product (‘“‘Cross” Product) The second type of product we
need is the vector product. In this case, two vectors A and B are
combined to form a third vector C. The symbol for vector product
is a cross:

C =AXxB.

An alternative name is the cross product.

The vector product is more complicated than the scalar product
because we have to specify both the magnitude and direction of
A x B. The magnitude is defined as follows: if

C=AXxB,
then
|C| = |A] |B| sin 6, °

where 6§ is the angle between A and B when they are drawn tail to
tail. (To eliminate ambiguity, 6 is always taken as the angle
smaller than =.) Note that the vector product is zero when § = 0
or m, even if |A| and |B| are not zero.

When we draw A and B tail to tail, they determine a plane. We
define the direction of C to be perpendicular to the plane of A
and B. A, B, and C form what is called a right hand triple. Imag-
ine a right hand coordinate system with A and B in the xy plane as
shown in the sketch. A lies on the x axis and B lies toward the
y axis. If A, B, and C form a right hand triple, then C lies on the
z axis. We shall always use right hand coordinate systems such as
the one shown at left. Here is another way to determine the
direction of the cross product. Think of a right hand screw with
the axis perpendicular to A and B. Rotate it in the direction which
swings A into B. C lies in the direction the screw advances.
(Warning: Be sure not to use a left hand screw. Fortunately,
they are rare. Hot water faucets are among the chief offenders;
your honest everyday wood screw is right handed.)

A result of our definition of the cross product is that

BxA= —AxB.

Here we have a case in which the order of multiplication is impor-
tant. The vector product is not commutative. (In fact, since
reversing the order reverses the sign, it is anticommutative.)
We see that

AXA=0

for any vector A.
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Examples of the Vector Product in Physics

The vector product has a multitude of applications in physics. For
instance, if you have learned about the interaction of a charged particle
with a magnetic field, you know that the force is proportional to the charge
g, the magnetic field B, and the velocity of the particle ». The force
varies as the sine of the angle between v and B, and is perpendicular to
the plane formed by v and B, in the direction indicated. A simpler way
to give all these rules is

F = qv X B.

Another application is the definition of torque. We shall develop this
idea later. For now we simply mention in passing that the torque « is
defined by

t~=rXF,

where r is a vector from the axis about which the torque is evaluated to
the point of application of the force F. This definition is consistent with
the familiar idea that torque is a measure of the ability of an applied force
to produce a twist. Note that a large force directed parallel tor produces
no twist; it merely pulls. Only F sin 0, the component of force perpen-
dicular to r, produces a torque. The torque increases as the lever arm
gets larger. As you will see in Chap. 6, it is extremely useful to associate
a direction with torque. The natural direction is along the axis of rotation
which the torque tends to produce. All these ideas are summarized in a
nutshell by the simple equation © = r X F.

Area as a Vector

We can use the cross product to describe an area. Usually one thinks
of area in terms of magnitude only. However, many applications in
physics require that we also specify the orientation of the area. For
example, if we wish to calculate the rate at which water in a stream flows
through a wire loop of given area, it obviously makes a difference whether
the plane of the loop is perpendicular or parallel to the flow. (In the latter
case the flow through the loop is zero.) Here is how the vector product
accomplishes this:

Consider the area of a quadrilateral formed by two vectors, C and D.
The area of the parallelogram A is given by

A = base X height
CD sin 6
= |c x D|.

If we think of 4 as a vector, we have

A=CXD.
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We have already shown that the magnitude of A is the area of the
parallelogram, and the vector product defines the convention for assigning
a direction to the area. The direction is defined to be perpendicular to
the plane of the area; that is, the direction is parallel to a normal to the
surface. The sign of the direction is to some extent arbitrary; we could
just as well have defined the area by A = D X C. However, once the
sign is chosen, it is unique.

1.3 Components of a Vector

The fact that we have discussed vectors without introducing a
particular coordinate system shows why vectors are so useful;
vector operations are defined without reference to coordinate
systems. However, eventually we have to translate our results
from the abstract to the concrete, and at this point we have to
choose a coordinate system in which to work.

For simplicity, let us restrict ourselves to a two-dimensional
system, the familiar zy plane. The diagram shows a vector A in
the 2y plane. The projections of A along the two coordinate
axes are called the components of A. The components of A along
the z and y axes are, respectively, 4, and 4,. The magnitude of
A is |A] = (4.2 + A,»}, and the direction of A is such that it
makes an angle 6§ = arctan (4,/4.) with the z axis.

Since the components of a vector define it, we can specify a
vector entirely by its components. Thus

A= (AxyAy)
or, more generally, in three dimensions,
A = (4,4,,4,).

Prove for yourself that |A| = (4. + 4,2 + A,%)!. The vector A
has a meaning independent of any coordinate system. However,
the components of A depend on the coordinate system being used.
To illustrate this, here is a vector A drawn in two different coordi-
nate systems. In the first case,

A=(4,0 (2 system),
while in the second
A = (0,—A) (z',y’ system).

Unless noted otherwise, we shall restrict ourselves to a single
coordinate system, so that if

A = B,
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then
A, = B, A, = B, A, = B,.

The single vector equation A = B symbolically represents three
scalar equations.

All vector operations can be written as equations for com-
ponents. For instance, multiplication by a scalar gives

cA = (cA.cA).
The law for vector addition is
A+ B =(A:c+B=nA1/+BmAz+Bz)-

By writing A and B as the sums of vectors along each of the
coordinate axes, you can verify that

A-B = A4,B, + A,B, + A,B,.

We shall defer evaluating the cross product until the next section.

Vector Algebra

Let
A= (35-7)
B = (2,7,1).

Find A + B, A — B, |A|, |B|, A- B, and the cosine of the angle between
A and B.
A+B=@B+25+7 —7-+1)
= (5,12, —6)
A—B=@3—-25—-7,—7-—1
= (1,—-2,-8)
IAI = (32 4+ 52 + 72)%‘
= V8
=911
@+ 72 + 12
Var
= 7.35
A-B=3X2+5X7-7X1
= 34
A-B 34
[A[[B]  O11)(7.35)

B]

cos (A,B) = 0.507




10

Example 1.6

z
N
- \\
Ak N
l
A/
I
|
v
|
N | Y y
Ayl \\\I /
______ N2

VECTORS AND KINEMATICS—A FEW MATHEMATICAL PRELIMINARIES

Construction of a Perpendicular Vector

Find a unit vector in the zy plane which is perpendicular to A = (3,5,1).
We denote the vector by B = (B,,B,,B;). Since B is in the zy plane,
B, = 0. For B to be perpendicular to A, we have A- B = 0.

A-B = 3B,+ 5B,

=0
Hence B, = —£B,. However, B is a unit vector, which means that
B.2 + B,2 = 1. Combining these gives B, + %B.,2=1, or B, =
3% = +0.857 and B, = —£B, = F0.514.

The ambiguity in sign of B, and B, indicates that B can point along a
line perpendicular to A in either of two directions.

1.4 Base Vectors

Base vectors are a set of orthogonal (perpendicular) unit vectors,
one for each dimension. For example, if we are dealing with the
familiar cartesian coordinate system of three dimensions, the base
vectors lie along the z, y, and z axes. The z unit vector is denoted
by i, the y unit vector by j, and the z unit vector by k.

The base vectors have the following properties, as you can

readily verify:

|
Fxl
=
|

iri=j-j
irj=j-k=k-i=0
ixj=Kk

ixk =i

kxi=ij.

We can write any vector in terms of the base vectors.
A=A+ Aj+ Ak

The sketch illustrates these two representations of a vector.
To find the component of a vector in any direction, take the dot
product with a unit vector in that direction. For instance,

A, = A-k.

It is easy to evaluate the vector product A x B with the aid of
the base vectors.

AxB = (4, + A, + AK) X (B + B,j + B.k)
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Consider the first term:

A X B = A,B(i x 1) + A.B,(i xJ) + A.Bi x k).

(We have assumed the associative law here.) Since i X i = 0,
ixj=kandixk= —j, we find

A x B = A, (B,k — B.j).

The same argument applied to the y and z components gives
A)j X B = A,(B,i — B,k)

Ak X B = A (B,j — B,j).

A quick way to derive these relations is to work out the first and
then to obtain the others by cyclically permuting «, y, 2, and
i,J, k (thatis, z—> vy, y—>z 2>z, andi—j,j—ok k—i) A
simple way to remember the result is to use the following device:

write the base vectors and the components of A and B as three
rows of a determinant,! like this

i ] k
AxB =4, A, A,
B, B, B,

= i(4,B, — A.B,) — i(4.B, — A,B.) + k(A.B, — A,B,).

For instance, if A = i + 3j — k and B = 4i 4 j + 3k, then

i j k
AXB=|1 3 -1
4 1 3

= 10i — 7j — 11k.

1.5 Displacement and the Position Vector

So far we have discussed only abstract vectors. However, the
reason for introducing vectors here is concrete—they are just
right for describing kinematical laws, the laws governing the
geometrical properties of motion, which we need to begin our dis-
cussion of mechanics. Our first application of vectors will be to
the description of position and motion in familiar three dimen-
sional space. Although our first application of vectors is to the
motion of a point in space, don't conclude that this is the only

L1f you are unfamiliar with simple determinants, most of the books listed at the
end of the chapter discuss determinants.
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application, or even an unusually important one. Many physical
quantities besides displacements are vectors. Among these are
velocity, force, momentum, and gravitational and electric fields.

To locate the position of a point in space, we start by setting up
a coordinate system. For convenience we choose a three dimen-
sional cartesian system with axes z, y, and z, as shown.

In order to measure position, the axes must be marked off in
some convenient unit of length—meters, for instance.

The position of the point of interest is given by listing the values
of its three coordinates, z1, ¥1, 21. These numbers do not repre-
sent the components of a vector according to our previous dis-
cussion. (They specify a position, not a magnitude and direction.)
However, if we move the point to some new position, zs, ys, 22
then the displacement defines a vector S with coordinates S, = z,
—xl,S,,=y2—-y1,Sz=22—-z1.

S is a vector from the initial position to the final position—it
defines the displacement of a point of interest. Note, however,
that S contains no information about the initial and final positions
separately—only about the relative position of each. Thus,
S, = 2z, — 2z, depends on the difference between the final and
initial values of the z coordinates; it does not specify 2z, or z;
separately. S is a true vector; although the values of the coordi-
nates of the initial and final points depend on the coordinate sys-

tem, S does not, as the sketches below indicate.
z (x2,¥4.25)

(x5,¥5,25)

(xl,yl,zl)

). 5%.27)

z
One way in which our displacement vector differs from a mathe-
matician’s vector is that his vectors are usually pure quantities,
with components given by absolute numbers, whereas S has the
physical dimension of length associated with it. We will use
the convention that the magnitude of a vector has dimensions
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so that a unit vector is dimensionless. Thus, a displacement of 8
m (8 meters) in the x directionisS = (8 m, 0,0). |S| = 8 m, and
$§=5/|s| =i

Although vectors define displacements rather than positions, it
is in fact possible to describe the position of a point with respect
to the origin of a given coordinate system by a special vector,
known as the position vector, which extends from the origin to the
point of interest. We shall use the symbol r to denote the
position vector. The position of an arbitrary point P at (z,y,2) is
written as

r = (ry2) =2 + yj + 2k.

Unlike ordinary vectors, r depends on the coordinate system.
The sketch to the left shows position vectors r and v’ indicating
the position of the same point in space but drawn in different
coordinate systems. If R is the vector from the origin of the
unprimed coordinate system to the origin of the primed coordi-
nate system, we have

' =r— R

In contrast, a true vector, such as a displacement S, is inde-
pendent of coordinate system. As the bottom sketch indicates,

S=r2—r1
(r; + R) — (r, + R)

’
=ty — I

1.6 Velocity and Acceleration
Motion in One Dimension

Before applying vectors to velocity and acceleration in three
dimensions, it may be helpful to review briefly the case of one
dimension, motion along a straight line.

Let x be the value of the coordinate of a particle moving along a
line. x is measured in some convenient unit, such as meters,
and we assume that we have a continuous record of position
versus time.

The average velocity v of the point between two times, ¢, and ¢,,
is defined by

2(ts) — I(tl).
ty — by

(We shall often use a bar to indicate an average of a quantity.)
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The instantaneous velocity v is the limit of the average velocity as
the time interval approaches zero.
ot 4+ A — 2(t)
= [im ——mM™—
At—0 At
The limit we have introduced in defining v is precisely that
involved in the definition of a derivative. In fact, we have!

dx
v =—
dt
In a similar fashion, the instantaneous acceleration is
L+ A — u(@)
a = lim ——=

At—0 At
. dv
T odt

The concept of speed is sometimes useful. Speed s is simply the
magnitude of the velocity: s = |v|.

Motion in Several Dimensions

Our task now is to extend the ideas of velocity and acceleration
to several dimensions. Consider a particle movingin a plane. As
time goes on, the particle traces out a path, and we suppose that
we know the particle’s coordinates as a function of time. The
instantaneous position of the particle at some time ¢; is

r(t) = [2(t),y(t1)] or r = (z1,y1),

1 Physicists generally use the Leibnitz notation dz/dt, since this is a handy form
for using differentials (see Note 1.1). Starting in Sec. 1.9 we shall use Newton’s
notation #, but only to denote derivatives with respect to time.

Y Position at time ¢, (x5.55)

r, r r-n

x1,71)
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where z; is the value of z at { = ¢;, and so forth. At time ¢, the

position is
ry = (T2,Y2).

The displacement of the particle between times ¢; and ¢, is
r, —r = (22 — 1, Y2 — Y-

We can generalize our example by considering the position at
some time ¢, and at some later time ¢ + At.T The displacement
of the particle between these times is

Ar = r(t 4+ At) — r(d).

This vector equation is equivalent to the two scalar equations
Ax = x(t + At) — x(f)
Ay =y + A1) — y(@).

The velocity v of the particle as it moves along the path is defined
to be

. Ar
v = lim —
At—0 At
_ dr
dt
which is equivalent to the two scalar equations
Axr  dx
v, = lim — = —
At—0 At di
lim Ay _ 4
v, = —_— =
Y al0 At dt

Extension of the argument to three dimensions is trivial. The

third component of velocity is

2(t + At) — 2(t) dz
v, = lim ———— = —-
At—0 At di

Our definition of velocity as a vector is a straightforward gen-
eralization of the familiar concept of motion in a straight line.
Vector notation allows us to describe motion in three dimensions
with a single equation, a great economy compared with the three
equations we would need otherwise. The equation v = dr/dt
expresses the results we have just found.

+ We will often use the quantity A to denote a difference or change, as in the

case here of Ar and At. However, this implies nothing about the size of the
quantity, which may be large or small, as we please.
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Alternatively, since r = zi -4 yj 4 2k, we obtain by simple
differentiation?

dr dr_  dy_. dz .
dt _dt'+dt’+dtk

as before.

Let the particle undergo a displacement Ar in time Af. In the
limit A{ — 0, Ar becomes tangent to the trajectory, as the sketch
indicates. However, the relation

Ar = ﬂ Al
dt
= v A,
which becomes exact in the limit At — 0, shows that v is parallel
to Ar; the instantaneous velocity v of a particle is everywhere
tangent to the trajectory.

Finding v from r

The position of a particle is given by

r = A(e*i + e~%),

where « is a constant. Find the velocity, and sketch the trajectory.
dr

v =—
dt

= A(ae*i — ae™4)

or
v, = Aoe™
vy, = —Aae

The magnitude of v is
v = (02 4 v}
— Aa(ezat + e—zm)}_

In sketching the motion of a point, it is usually helpful to look at limiting
cases. At{ = 0, we have

r@ = AG +1
v0) = ad@ — ).

1 Caution: We can neglect the cartesian unit vectors when we differentiate, since
their directions are fixed. Later we shall encounter unit vectors which can change
direction, and then differentiation is more elaborate.
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In this limit r — Ae*4, which is a

i; the speed increases without

As t— o, e*— © and ¢ % — 0.
vector along the z axis, and v— ade*
limit.

Similarly, the acceleration a is defined by

a=gx=d—%i+§0—yi+d—wﬁ
dt dt dt dt
_dPr
=

We could continue to form new vectors by taking higher deriva-
tives of r, but we shall see in our study of dynamics thatr, v, and a
are of chief interest.

Uniform Circular Motion

Circular motion plays an important role in physics. Here we look at the
simplest and most important case—uniform circular motion, which is
circular motion at constant speed.

Conslider a particle moving in the zy plane according tor = r(cos witi +
sin wij), where r and w are constants. Find the trajectory, the velocity,
and the acceleration.

|r] = [r? cos? wt + r? sin? wi]t

Using the familiar identity sin? @ + cos? 0 = 1,

L

Il

[r*(cos? wt -+ sin? wi)]}

r = constant.

Ii

The trajectory is a circle.

The particle moves counterclockwise around the circle, starting from
(r,0) at t = 0. It traverses the circle in a time T such that w7 = 2.
w is called the angular velocity of the motion and is measured in radians
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per second. T, the time required to execute one complete cycle, is
called the period.

dr
vV = —
dt
= rw(—sin wil 4 cos wij)
We can show that v is tangent to the trajectory by calculating v - r:
v.r = r2w(—sin wt cos wt + cos wt sin wt)
= 0.

Since v is perpendicular to r, it is tangent to the circle as we expect.
Incidentally, it is easy to show that |[v| = 7w = constant.
av
a=—
dt

rw? —cos wii — sin wtj]

I

= —wr

The acceleration is directed radially inward, and is known as the centripetal
acceleration. We shall have more to say about it shortly.

A Word about Dimension and Units

Physicists call the fundamental physical units in which a quantity
is measured the dimension of the quantity. For example, the
dimension of velocity is distance/time and the dimension of
acceleration is velocity/time or (distance/time)/time = distance/
time?. As we shall discuss in Chap. 2, mass, distance, and time
are the fundamental physical units used in mechanics.

To introduce a system of units, we specify the standards of
measurement for mass, distance, and time. Ordinarily we mea-
sure distance in meters and time in seconds. The units of velocity
are then meters per second (m/s) and the units of acceleration
are meters per second? (m/s2).

The natural unit for measuring angle is the radian (rad). The
angle 0 in radians is S/r, where S is the arc subtended by 6 in a
circle of radius r:

S
g = —.
”

2r rad = 360°. We shall always use the radian as the unit of
angle, unless otherwise stated. For example, in sin wi, wt is in
radians. w therefore has the dimensions 1/time and the units
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radians per second. (The radian is dimensionless, since it is the
ratio of two lengths.)

To avoid gross errors, it is a good idea to check to see that both
sides of an equation have the same dimensions or units. For
example, the equation v = are** is dimensionally correct; since
exponentials and their arguments are always dimensionless, « has
the units 1/s, and the right hand side has the correct units, meters
per second.

1.7 Formal Solution of Kinematical Equations

Dynamics, which we shall take up in the next chapter, enables us
to find the acceleration of a body directly. Once we know the
acceleration, finding the velocity and position is a simple matter of
integration. Here is the formal integration procedure.

If the acceleration is known as a function of time, the velocity
can be found from the defining equation
av(t)

i a(t)

by integration with respect to time. Suppose we want to find v(¢;)
given the initial velocity v(t;) and the acceleration a(f). Dividing
the time interval t; — ¢, into n parts At = (t1 — o)/,

V(t1) = V(o) + Av(fo + Af) + Av(to + 2A8) + - - - + Av(£)

=~ V(o) + a(ty + Af) At + a(to + 248 AL + - - - + a(ty) AL,
since Av(t) = a(t) At. Taking the x component,
v(t1) = v(to) + a.(to + AL At + - - - + a.(ty) AL

The approximation becomes exact in the limit n — «(Af{ — 0),
and the sum becomes an integral:

vult) = va(to) + ﬁ :‘ ax(t) di.

The y and z components can be treated similarly. Combining the
results,

0D + 0] + oK = vt + [ 00
+ 000 + [ ) dt] + oktak + [ aut) dt &
or

vt = vt + [ ) d.
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This result is the same as the formal integration of dv = a dt.
t1 171
My = ﬁ a(t) dt
ty
vt — ) = [ a

Sometimes we need an expression for the velocity at an arbi-
trary time ¢, in which case we have

V() = vo + [ : a(t) dt'.

Il

The dummy variable of integration has been changed from ¢ to ¢/
to avoid confusion with the upper limit¢{. We have designated the
initial velocity v(¢)) by v, to make the notation more compact.
When ¢ = ¢, v(f) reduces tov,, as we expect.

Finding Velocity from Acceleration

A Ping-Pong ball is released near the surface of the moon with velocity
vo = (0,5,—3) m/s. It accelerates (downward) with acceleration
a = (0,0,—2) m/s% Find its velocity after 5 s.

The equation

v(t) = vo + /t: a(t’) dt’

is equivalent to the three component equations
V(1) = voz + /;) t ax(t’) dt’

vy (1) = voy + /0 ‘ a,(t’) dt/

0i(t) = vo: + ﬁ) " a.t) dr.

Taking these equations in turn with the given values of v, and a, we
obtain at{ = 5s:

v, =0m/s

v, =5m/s

v, = —3 + /05 (—2)dt' = —13 m/s.

Position is found by a second integration. Starting with

ar(t)
W - V(t),

we find, by an argument identical to the above,

o) = ro + A ‘v ar.
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A particularly important case is that of uniform acceleration. If
we take a = constant and ¢, = 0, we have

v({t) = v, + at
and
t
o) = ro + /0 (Vo + at’) dt’
or
r(t) = ry -+ Vol + %atZ.

Quite likely you are already familiar with this in its one dimen-
sional form. For instance, the z component of this equation is

T = 2o + Vot + Fa,t?

where v, is the x component of vo. This expression is so familiar
that you may inadvertently apply it to the general case of varying
acceleration. Don't! It only holds for uniform acceleration. In
general, the full procedure described above must be used.

Motion in a Uniform Gravitational Field

Suppose that an object moves freely under the influence of gravity so
that it has a constant downward acceleration g. Choosing the z axis
vertically upward, we have
a = —gk.
If the object is released at { = 0 with initial velocity v, we have
T = Zo + Voil
= yO + DOyt
20 + vot — Egt2.

<
|

Without loss of generality, we can let r, = 0, and assume that vy, = 0.
(The latter assumption simply means that we choose the coordinate
system so that the initial velocity is in the 2z plane.) Then

T = Vgl
z = vot — gt
The path of the object is shown in the sketch. We can eliminate time

from the two equations for £ and z to obtain the trajectory.

Vo
z = 22 x — g ; x?
Yoz 200,
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This is the well-known parabola of free fall projectiie motion. How-
ever, as mentioned above, uniform acceleration is not the most general
case.

Nonuniform Acceleration—The Effect of a Radio Wave
on an lonospheric Electron

The ionosphere is a region of electrically neutral gas, composed of posi-
tively charged ions and negatively charged electrons, which surrounds
the earth at a height of approximately 200 km (120 mi). [f a radio wave
passes through the ionosphere, its electric field accelerates the charged
particle. Because the electric field oscillates in time, the charged
particles tend to jiggle back and forth. The problem is to find the motion
of an electron of charge —e and mass m which is initially at rest, and
which is suddenly subjected to an electric field E = E; sin wt (w is the
frequency of oscillation in radians per second).

The law of force for the charge in the electric field is F = —¢E, and by
Newton’s second law we have a = F/m = —¢E/m. (If the reasoning
behind this is a mystery to you, ignore it for now. It will be clear later.
This example is meant to be a mathematical exercise—the physics is an
added dividend.) We have

—eE
m

—eEg

sin wt.

E, is a constant vector and we shall choose our coordinate system so
that the z axis lies along it. Since there is no acceleration in the y or
2 directions, we need consider only the x motion. With this understand-
ing, we can drop subscripts and write a for a,.

—eE .
a(t) = % sin wt = ao sin wt
m
where
—6E0
ao = ——
m
Then

o(t) = vo + /O Caty dt

t
= vy + ﬁ) ao sin wt’ dt’

Qo
= vy — — cos wt’

¢ a
=vo——°(coswt—1)
w 0 W
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and

8
I

20 -+ ﬁ)t o’y dt’
=z + /;t [vo —\%)(cos wt' — 1)] dt’

It

x0+(vo+i‘—°>t—@sin wt.
w 2

w
We are given that z, = vy = 0, so we have

x=g9t—ﬂ)sinwt.
w w?

The result is interesting: the second term oscillates and corresponds
to the jiggling motion of the electron, which we predicted. The first
term, however, corresponds to motion with uniform velocity, so in addi-
tion to the jiggling motion the electron starts to drift away. Can you see
why?

1.8 More about the Derivative of a Vector

In Sec. 1.6 we demonstrated how to describe velocity and accelera-
tion by vectors. In particular, we showed how to differentiate the
vector r to obtain a new vector v = dr/dt. We will want to dif-
ferentiate other vectors with respect to time on occasion, and so
it is worthwhile generalizing our discussion.

Consider some vector A(f) which is a function of time. The
change in A during the interval from ¢ to ¢t 4 At is

AA = A(l + Af) — A(D).

In complete analogy to the procedure we followed in differentiat-
ing r in Sec. 1.6, we define the time derivative of A by
gf\_ im At + At) — A(t)

dt A'HO At

It is important to appreciate that dA/dt is a new vector which
can be large or small, and can point in any direction, depending on
the behavior of A.

There is one important respect in which dA/dt differs from the
derivative of a simple scalar function. A can change in both
magnitude and direction—a scalar function can change only in
magnitude. This difference is important. The figure illustrates
the addition of a small increment AA to A. In the first case AA is
parallel to A; this leaves the direction unaltered but changes the
magnitude to |A| + |AA|. In the second, AA is perpendicular
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to A. This causes a change of direction but leaves the magni-
tude practically unaltered.

In general, A will change in both magnitude and direction.
Even so, it is useful to visualize both types of change taking place
simultaneously. In the sketch to the left we show a small incre-
ment AA resolved into a component vector AA; parallel to A and a
component vector AA, perpendicular to A. In the limit where we
take the derivative, AA; changes the magnitude of A but not its
direction, while AA, changes the direction of A but not its mag-
nitude.

Students who do not have a clear understanding of the two ways
a vector can change sometimes make an error by neglecting one
of them. For instance, if dA/dt is always perpendicular to A, A
must rotate, since its magnitude cannot change; its time depend-
ence arises solely from change in direction. The illustrations
below show how rotation occurs when AA is always perpendicular
to A. The rotational motion is made more apparent by drawing

Contrast this with the case where AA is always parallel to A.

A’ A" A

A AA A’ AA’ A" Aill

Drawn from a common origin, the vectors look like this:

A"
> A"
A’

_-——-———.A
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The following example relates the idea of rotating vectors to cir-
cular motion.

Circular Motion and Rotating Vectors

In Example 1.8 we discussed the motion given by
r = r(cos wii + sin wij).

The velocity is

v = rw(—sin wii + cos wij).

Since

r-v = r2w(—cos wt sin wt 4 sin wt cos wt)
=0,
we see that dr/dt is perpendicular tor. We conclude that the magnitude

of r is constant, so that the only possible change in r is due to rotation.
Since the trajectory is a circle, this is precisely the case: r rotates about

the origin.
We showed earlier that a = —w?%. Since r-v = 0, it follows that
a-v= —wr-v=0and dv/dt is perpendicular to v. This means that

the velocity vector has constant magnitude, so that it too must rotate if
it is to change in time.

That v indeed rotates is readily seen from the sketch, which shows v
at various positions along the trajectory. In the second sketch the same

velocity vectors are drawn from a common origin. It is apparent that
each time the particle completes a traversal, the velocity vector has swung
around through a full circle.

Perhaps you can show that the acceleration vector also undergoes
uniform rotation.

Suppose a vector A(f) has constant magnitude A. The only
way A(f) can change in time is by rotating, and we shall now
develop a useful expression for the time derivative dA/dt of such a
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rotating vector. The direction of dA/dt is always perpendicular
to A. The magnitude of dA/dt can be found by the following
geometrical argument.

The change in A in the time interval ¢ to ¢ + At is

AA = A(t + Af) — A(D).
Using the angle A# defined in the sketch,

Ab
|AAI = 24 sin 7

For A0 < 1, sin AG/2 = AG/2, as discussed in Note 1.1. We have
Af
|AA| =~ 24 —
2
=A Af
and
BA| a0
At | At
Taking the limit At — 0,
dA a6
o4
dt dt

d@/dt is called the angular velocity of A.
For a simple application of this result, let A be the rotating
vector r discussed in Examples 1.8 and 1.12. Then 6§ = wt and

dr d

7 =7r—(wf) = rw or v = row.

Returning now to the general case, a change in A is the result
of a rotation and a change in magnitude.

AA = AA; + AA.

For A6 sufficiently small,

|AA, | = 4 Af
,AA"' = AA
and, dividing by At and taking the limit,
dA, do
el R R
dt dt

[d_@ _d4
dt | dt
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dA,/dt is zero if A does not rotate (d6/dt = 0), and dA;/dt is zero
if A is constant in magnitude.

We conclude this section by stating some formal identities in
vector differentiation. Their proofs are |eft as exercises. Let
the scalar ¢ and the vectors A and B be functions of time. Then

d de dA

ZZ(cA) = = A ==

aP =g htey
ii~(A B)—d—A B+A dB
dt T dt dt

d A dB
L AxB) =2 xBtAax
g AXB = XBHAX

In the second relation, let A = B. Then

d dA

Z (A = 2A - —

@) dt’

and we see again thatif dA/dt is perpendicular to A, the magnitude
of A is constant.

1.9 Motion in Plane Polar Coordinates

Polar Coordinates

Rectangular, or cartesian, coordinates are well suited to describing
motion in a straight line. For instance, if we orient the coordinate
system so that one axis lies in the direction of motion, then only a
single coordinate changes as the point moves. However, rec-
tangular coordinates are not so useful for describing circular
motion, and since circular motion plays a prominent role in physics,
it is worth introducing a coordinate system more natural to it.

We should mention that although we can use any coordinate
system we like, the proper choice of a coordinate system can
vastly simplify a problem, so that the material in this section is
very much in the spirit of more advanced physics. Quite likely
some of this material will be entirely new to you. Be patient if it
seems strange or even difficult at first. Once you have studied
the examples and worked a few problems, it will seem much more
natural.

Our new coordinate system is based on the cylindrical coordi-
nate system. The z axis of the cylindrical system is identical to
that of the cartesian system. However, position in the xzy plane is
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described by distance r from the z axis and the angle 6 that »
makes with the z axis. These coordinates are shown in the
sketch. We see that

r =7z + y?
# = arctan Y.
z

Since we shall be concerned primarily with motion in a plane,
we neglect the z axis and restrict our discussion to two dimensions.
The coordinates r and 6 are called plane polar coordinates. In the
following sections we shall learn to describe position, velocity, and
acceleration in plane polar coordinates.

The contrast between cartesian and plane polar coordinates is
readily seen by comparing drawings of constant coordinate lines
for the two systems.

Xx = constant
y varies 6 = constant
y y = constant y r varies
;varxes / r = constant
1 AR - 0 varies
N N 4
R J':—t—j_—‘Tﬂ— SO ASAN
/ < \ \

—T{—]._I ] _{_ . LS X>\ V) .
! I [ | T RS ] ]
_| _l___ I L [ S <>7\/ /

j = _1—1— I \){/\\/\\l‘\/\/\/{ !
I T *HT NI
_t_ | _| .]— \>/ s

—t Tttt T
Cartesian Plane polar

The lines of constant z and of constant y are straight and per-
pendicular to each other. Lines of constant 8 are also straight,
directed radially outward from the origin. In contrast, lines of
constant r are circles concentric to the origin. Note, however,
that the lines of constant 6 and constant r are perpendicular
wherever they intersect.

In Sec. 1.4 we introduced the base vectors i and j which point in
the direction of increasing x and increasing y, respectively. In
a similar fashion we now introduce two new unit vectors, f and 8,
which pointinthe direction of increasing r andincreasingf. There
is an important difference between these base vectors and the
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cartesian base vectors: the directions of ¥ and ﬁvary with position,
whereas i and j have fixed directions. The drawing shows this by
illustrating both sets of base vectors at two points in space.
Because t and 8 vary with position, kinematical formulas can look
more complicated in polar coordinates thanin the cartesian system.
(It is not that polar coordinates are complicated, it is simply that
cartesian coordinates are simpler than they have a right to be.
Cartesian coordinates are the only coordinates whose base vectors
have fixed directions.)

Although ¥ and 8 vary with position, note that they depend on 4
only, not on . We can think of ¥ and 8 as being functionally
dependent on 6.

The drawing shows the unit vectors i, j and ¥, 8 at a point in the
xy plane. We see that

¥ =1ficosf+jsinég
6 = —isin 9+ jcosé.

Before proceeding, convince yourself that these expressions are
reasonable by checking them at a few particularly simple points,
such as 9 = 0, and /2. Also verify that ¥ and 8 are orthogonal
(i.e., perpendicular) by showing that ¥ - 8 = 0.

It is easy to verify that we indeed have the same vector r no
matter whether we describe it by cartesian or polar coordinates.
In cartesian coordinates we have

r = 2i + yj,

and in pdlar coordinates we have

r = rt.

If we insert the above expression for ¥, we obtain

2i + yj = r(icos 6 + j sin 6).

We can separately equate the coefficients of i and j to obtain
r = 7rcosf y =rsin#,

as we expect.
The relation

r=rr

is sometimes confusing, because the equation as written seems to
make no reference to the angle . We know that two parameters
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are needed to specify a position in two dimensional space (|n
cartesian coordinates they are r and y), but the equatnon r =t
seems to contain only the quantity ». The answer is that ris not
a fixed vector and we need to know the value of § to tell how tis
oriented as well as the value of r to tell how far we are from the
origin. Although 6 does not occur explicitly in 7t, its value must be
known to fix the direction of ¥. This would be apparent if we
wrote r = rr(6) to emphasize the dependence of ron 6. How-
ever, by common convention r is understood to stand for ¥(6).
The orthogonality of ¥ and 8 plus the fact that they are unit
vectors, [r| = 1, |8] = 1, means that we can continue to evaluate
scalar products in the simple way we are accustomed to. If

A=A, + 446 and B = B,t + B.b,
then
A-B = A,B, + AB,.

Of course, the ¥'s and the &'s must refer to the same point in
space for this simple rule to hold. ‘

Velocity in Polar Coordinates

Now let us turn our attention to describing velocity with polar
coordinates. Recall that in cartesian coordinates we have

d . R
= — (11 )
dt( + yi)
= a1 + 9j.
(Remember that & stands for dux/dt.)
The same vector, v, expressed in polar coordinates is given by
v = 0h)
= — (r
dt

7r+7;l~t-

The first term on the right is obviously the component of the
velocity directed radially outward. We suspect that the second
term is the component of velocity in the tangential (8) direction.
This is indeed the case. However to prove it we must evaluate
dr/dt. Since this step is slightly tricky, we shall do |t three dif-
ferent ways. Take your pick!
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Evaluating dt/dt

Method 1 We can invoke the ideas of the last section to find
dr/dt. Since t is a unit vector, its magnitude is constant and
dr/dt is perpendicular to r; as 8 increases, r rotates.

[AF| =~ |F| A0 = A6,

(Y

At At

and, taking the limit, we obtain

dr _de

at| — dt

As the sketch shows, as 6 increases, ¥ swings in the 8 direction,
hence

dr
dt

= 68.

If this method is too casual for your taste, you may find methods
2 or 3 more appealing.

Method 2

t=1icosf+jsing

We note that i and j are fixed unit vectors, and thus cannot
vary in time. 6, on the other hand, does vary as r changes.
Using

i(co 6)—<icos 9)@
dat " = \as dt

= —sin 640
and
g(sin 0) = (i sin 0) ﬂg
dt do dt
= cos 6 6,
we obtain
g=i§t(cos(9)+jgt(sin 0)

= —isin66 + jcos b
(—isin 6 + jcos 6) 6.
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However, recall that —isin 8 + jcos § = 8. We obtain

Method 3
The drawing shows r at two different times, ¢ and ¢ + At. The
coordinates are, respectively, (r,6) and (» 4+ Ar, 6 + Af). Note
that the angle between ¥; and r, is equal to the angle between
8, and 8.; this angle is 6, — 6; = A@.

The change in ¥ during the time At is illustrated by the lower
drawing. We see that

AF = 8, sin A6 — ¥, (1 — cos Af).

Hence

AF . sinAfd . (1 — cos Af)
0, — I
At At At
8 AG — (A8 + - - - : 3(A0)? — FL (A0 + - - )
-_ ’
! Al : Al

where we have used the series expansions discussed in Note 1.1.
We need to evaluate

dr . AF

— = lim —-

dt a0 Al

In the limit At — 0, Ad also approaches zero, but A§/At approaches
the limit d/dt. Therefore

. A6

lim — (A6)» =0 n > 0.

At—0

The term in r entirely vanishes in the limit and we are left with

T _ 4
dt '

as before. We also need an expression for dd/dt. You can use
any, or all, of the arguments above to prove for yourself that

®_ s
dt '
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Since you should be familiar with both results, let’'s summarize
them together:

o
dt
5,
dt '

And now, we can return to our problem. On page 30 we showed
that

-~

v d ¥ ¢F+rdr
=——7‘ — —_—
dt dt

Using the above results, we can write this as

v = 7t + r68.

As we surmised, the second term is indeed in the tangential
(that is, 6) direction. We can get more insight into the meaning

of each term by considering special cases where only one com-
ponent varies at a time.

Case 1 }

Case 2

1. 6 = constant, velocity is radial. If 6 is a constant, § = 0, and
v = 7t. We have one dimensional motion in a fixed radial
direction.

2. r = constant, velocity is tangential. In this case v = r69.
Since r is fixed, the motion lies on the arc of a circle. The
speed of the point on the circle is 7§, and it follows that v = 768.

For motion in general, both r and 6 change in time.
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The next three examples illustrate the use of polar coordinates
to describe velocity.

Circular Motion and Straight Line Motion in Polar Coordinates

A particle moves in a circle of radius b with angular velocity 6 = o, where
o is a constant. (a has the units radians per second2) Describe
the particle’s velocity in polar coordinates.

Since r = b = constant, v is purely tangential and v = bath. The
sketches show f, §, and v at a time £, and at a later time ¢,.

v
t=1,
t=t, A
i ——T=~\0! A T~
- ~
// A " ':2 // \\
/ \ / N\
b \
/ \ é 2 o \
/ 0 0, a
\ [ |
; ! | \ I
\ / \ /
\ // \ Y,
\\ Y \ /
N e v AN s
\\\h}-/// \\— ’//

The particle is located at the position

r=b 6=60+/;t9dt=60+%at2.

If the particle is on the = axis att = 0, §, = 0. The particle’s position
vector is r = br, but as the sketches indicate, § must be given to specify
the direction of F.

Consider a particle moving with constant velocity v = ui along the
line y = 2. Describe v in polar coordinates.

v = of + ved.
From the sketch,

v, = u cos 0
vg = —usin 6

v = u cos OF — u sin 60.

As the particle moves to the right, § decreases and ¥ and 6 cha nge direc-
tion. Ordinarily, of course, we try to use coordinates that make the
problem as simple as possible; polar coordinates are not well suited here.
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Velocity of a Bead on a Spoke

A bead moves along the spoke of a wheel at constant speed u meters per
second. The wheel rotates with uniform angular velocity § = w radians
per second about an axis fixed in space. At¢ = 0 the spoke is along the
z axis, and the bead is at the origin. Find the velocity at time ¢

a. In polar coordinates

b. In cartesian coordinates.

a. We have r = ut, # = u, § = w. Hence
v = 7iF + 760 = uF + utwd.

To specify the velocity completely, we need to know the direction of
fand 0. This is obtained fromr = (r,0) = (ut,wt).

b. In cartesian coordinates, we have

v, = v, cos 0 — vy sin 6

Uy v, sin 6 -+ vy cos 6.

Since v, = u, vy = rw = ulw, § = wt, we obtain
v = (u cos wt — ulw sin wii + (u sin wt + utw cos wt)j.

Note how much simpler the result is in plane polar coordinates.

Off-center Circle

A particle moves with constant speed v around a circle of radius . Find
its velocity vector in polar coordinates using an origin lying on the circle.
With this origin, v is no longer purely tangential, as the sketch indicates.

= —uv sin BF + v cos 88
—v sin 6F + v cos 60.

<
|
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The last step follows since 8 and 6 are the base angles of an isosceles
triangle and are therefore equal. To complete the calculation, we must
find 6 as a function of time. By geometry, 26 = wt or § = wt/2, where
w = v/b.

Acceleration in Polar Coordinates

Our final task is to find the acceleration. We differentiate v
to obtain

d

a=—v
dt

=d%(ﬁ+r(9§)
TIPSRy ST SO
B dt dt

If we substitute the results for dr/dt and d8/dt from page 33, we
obtain

a

it + 708 + 768 + r66 — ré%
G — r6)r + (rf + 276)8.

The term it is a linear acceleration in the radial direction due
to change in radial speed. Similarly, 768 is a linear acceleration
in the tangential direction due to change in the magnitude of the
angular velocity.

The term —rf% is the centripetal acceleration which we
encountered in Example 1.8. Finally, 2768 is the Coriolis accel-
eration. Perhaps you have heard of the Coriolis force, a ficti-
tious force which appears to act in a rotating coordinate system,
and which we shall study in Chap. 8. The Coriolis acceleration
that we are discussing here is a real acceleration which is present
when 7 and 6 both change with time.

The expression for acceleration in polar coordinates appears
complicated. However, by looking at it from the geometric point
of view, we can obtain a more intuitive picture.

The instantaneous velocity is

It

v =it + 768 = v, F + v40.
Let us look at the velocity at two different times, treating the radial
and tangential terms separately.

The sketch at left shows the radial velocity 7t = v,F at two differ-
ent instants. The change Av, has both a radial and a tangential
component. As we can see from the sketch (or from the dis-
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cussion at the end of Sec. 1.8), the radial component of Av, is
Av,t and the tangential component is v, A68. The radial com-
ponent contributes

. Av, . v . .
lim r) = r = ir
At—0 At dt

to the acceleration. The tangential component contributes

i ( A"a) D5 — d0
im (v, — =9, — 0 = 766,
At—0 At dt
which is one-half the Coriolis acceleration. We see that half the
Coriolis acceleration arises from the change of direction of the
radial velocity.

The tangential velocity 768 = v, can be treated similarly. The
change in direction of 8 gives Avy, an inward radial component
—uvp ABr. This contributes

- A6 . " ‘a
lim —vg— r) = —uvefr = —ré%,
At—0 At

which we recognize as the centripetal acceleration. Finally, the
tangential component of Av, is Aved. Since vy = 76, there are
two ways the tangential speed can change. If § increases by
Ad, vg increases by r Af. Second, if r increases by Ar, vy increases
by Arf. Hence Avy, = r A6 + Ar 6, and the contribution to the
acceleration is

. Avg . A Ar \ .

lim (— lim (r— 4+ —16)86

at—0 \ Af At—0 At At

(r6 + #6)8.

The second term is the remaining half of the Coriolis acceleration;

we see that this part arises from the change in tangential speed
due to the change in radial distance.

Il

Acceleration of a Bead on a Spoke

A bead moves outward with constant speed u along the spoke of a wheel.
It starts from the center at¢{ = 0. The angular position of the spoke is
given by @ = wi, where wis a constant. Find the velocity and acceleration.

v =7 + r68
We are given that # = u and § = w. The radial position is given by

r = ut, and we have

v = uf + wwb.
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The acceleration is
a = @G — r00F + (6 + 27/0)8
= —utw’ + 2uwb.

The velocity is shown in the sketch for several different positions of the
wheel. Note that the radial velocity is constant. The tangential acceler-
ation is also constant—can you visualize this?

S
2
LS
v, // 3
/
\A
/
’l)r T
vg _-0=%
~
/ |gv -~
A -
v, // vy
L)

vg

Radial Motion without Acceleration

A particle moves with § = w = constant and 7 = reef, where 7, and
are constants. We shall show that for certain values of 3, the particle
moves with a, = 0.

a =@ — rf2F + (rf + 2/6)8
= (B2roeB! — roeflw?)i + 2Browebd.

If 8 = *w, the radial part of avanishes.

It is very surprising at first that when r = reef! the particle moves with
zero radial acceleration. The error is in thinking that # makes the only
contribution to a,; the term —r6? is also part of the radial acceleration,
and cannot be neglected.

The paradox is that even though a, = 0, the radial velocity v, =7 =
rowebt is increasing rapidly with time. The answer is that we can be
misled by the special case of cartesian coordinates; in polar coordinates,

v # [a,(t) dt,

because [a.(t) dt does not take into account the fact that the unit vectors
f and 0 are functions of time.



51

r==-
! '

[—

Note 1.1

=L+l

NOTE 1.1 MATHEMATICAL APPROXIMATION METHODS 39

Mathematical Approximation Methods

Occasionally in the course of solving a problem in physics you may find
that you have become so involved with the mathematics that the physics
is totally obscured. In such cases, itis worth stepping back for a moment
to see if you cannot sidestep the mathematics by using simple approxi-
mate expressions instead of exact but complicated formulas. If you
have not yet acquired the knack of using approximations, you may feel
that there is something essentially wrong with the procedure of substitut-
ing inexact results for exact ones. However, this is not really the case,
as the following example illustrates.

Suppose that a physicist is studying the free fall of bodies in vacuum,
using a tall vertical evacuated tube. The timing apparatus is turned on
when the falling body interrupts a thin horizontal ray of light located a
distance L below the initial position. By measuring how long the body
takes to pass through the light beam, the physicist hopes to determine
the local value of g, the acceleration due to gravity. The falling body in
the experiment has a height [

For a freely falling body starting from rest, the distance s traveled in
time ¢ is

s = 32,

which gives

2
t= \/— Vs.

d
The time interval £, — ¢, required for the body to fall from s; = L centi-
meters to s, = (L + [) centimeters is

bt = \/E Vo=V

g
2 — e
= \/—(\/L +1 -V
g
If t, — t; is measured experimentally, g is given by

(o (VEEL= VY
(2 — 1)

This formula is exact under the stated conditions, but it may not be the
most useful expression for our purposes.
Consider the factor

VL +1-+/L

In practice, L will be large compared with [ (typical values might be L =
100 cm, I = 1 cm). Our factor is the small difference between two large
numbers and is hard to evaluate accurately by using a slide rule or ordi-

nary mathematical tables. Here is a simple approach, known as the
method of power series expansion, which enables us to evaluate the factor
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to any accuracy we please. As we shall discuss formally later in this Note,
the quantity \/1 + z can be written in the series form

\/1+z=1+%x—%x2+ﬁ;x3—|—

for —1 < z < 1. Furthermore, if we cut off the series at some point, the
error we incur by this approximation is of the order of the first neglected
term. We can put the factor in a form suitable for expansion by first

extracting \/ Z:
VIFI-VI=VI (\/I% -1)

The dimensionless ratio I/ L plays the part of x in our expansion. Expand-
ing \/1 + I/L in the series form gives

i) v
3
IORIORIORES

We see that if [/L is much smaller than 1, the successive terms decrease
rapidly. The first term in the bracket, 3(I/L), is the largest term, and
extracting it from the bracket yields

RGO R ONORE

b ]

Our expansion is now in its final and most useful form. The first
factor, l/(Z\/L), gives the dominant behavior and is a useful first approx-
imation. Furthermore, writing the series as we have, with leading term
1, shows clearly the contributions of the successive powers of [/L. For
example, if [/L = 0.01, the term 3(l/L)? = 1.2 X 1075 and we make a
fractional error of about 1 part in 105 by retaining only the preceding
terms. In many cases this accuracy is more than enough. For instance,
if the time interval ¢, — £, in the falling body experiment can be measured
to only 1 part in 1,000, we gain nothing by evaluating \/L + 11— \/L to
greater accuracy than this. On the other hand, if we require greater
accuracy, we can easily tell how many terms of the series should be
retained.

Practicing physicists make mathematical approximations freely (when
justified) and have no compunctions about discarding negligible terms.
The ability to do this often makes the difference between being stymied

I
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by impenetrable algebra and arithmetic and successfully solving a
problem.
Furthermore, series approximations often allow us to simplify compli-
cated algebraic expressions to bring out the essential physical behavior.
Here are some helpful methods for making mathematical approxi-
mations.

1 THE BINOMIAL SERIES

n — 1)x2+n(n — 1)(n —Z)xs
2! 3!
nn—1- " @m—FkFk+1)

+__|_ k! xk__l_...

A+ay =1+ nz + 2

This series is valid for —1 < z < 1, and for any value of n. (If nis
an integer, the series terminates, the last term being z*.) The series
is exact; the approximation enters when we truncate it. For n = %, as
in our example,

A+ =1+3r -3+ &2+ -+ —1<z<L
If we need accuracy only to O(x?) (order of z%), we have
A+ ) =1+ 3z — ta2 + 0@,

where the term O(z3) indicates that terms of order 2% and higher are not
being considered. As a rule of thumb, the error is approximately the
size of the first term dropped.

The series can also be applied if |z| > 1 as follows:

1 n
a+ay = x"(l +—)
z
1 — 1) [1\2
- xn[1+n—+n——(" )<—) + - ]
z 2! z
Examples:
1 1 =1+ 2z)!
142
=l—-x+2?2—23+ -1<z<1
1
2. =01 —-2x)!
T2 ( )
=l4+z+22+28+ - —1<z<1
3. (1,001 = (1,000 + 1) = 1,000%(1 + 0.001)}
= 10[1 + 0.001(%) + - - ]
=~ 10(1.0003) = 10.003
4, 2 ! : for small z, this expression is zero to first

" Vitz Vi-o
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approximation. However, this approximation may not be adequate.
Using the binomial series, we have

1

1
Vi+tz Vi—z

2

=2—(—3z+%22+ )
—Q+3rt+da2+ )

= —3z2

Notice that the terms linear in x also cancel. To obtain a nonvanishing

result we had to go to a high enough order, in this case-to order z2. [t

is clear that for a correct result we have to expand all terms to the same
order.

2 TAYLOR'S SERIES!

Analogous to the binomial series, we can try to represent an arbitrary
function f(z) by a power series in z:

0
f@) = a0+ a1z + ax4- - - - = z ak.
k=0
For x = 0 we must have
f(o) = Qo.
Assuming for the moment that it is permissible to differentiate, we have
af

— = f'(x) = a, + 2ax + - *
dz

Evaluating at x = 0 we have
= f7
a (@) L=0-

Continuing this process, we find
1
= f)
Ak P J® (x) ’zzo.

where f®(z) is the kth derivative of f(z). For the sake of a less cum-
bersome notation, we often write f*(0) to stand for f® (z) o but bear
=

in mind that f®(0) means that we should differentiate f(z) k times and
then set x equal to 0.

The power series for f(x), known as a Taylor series, can then be
expressed formally as

2 3
f@) = f©) + f'©Ox + f"(O)% T f”’(o)% e

This series, if it converges, allows us to find good approximations to f(z)
for small values of x (that is, for values of z near zero). Generalizing,

2
@+ ) = f@) + f'@zx + f"(a)% 4+

1 Taylor's series is discussed in most elementary calculus texts. See the list at
the end of the chapter.
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gives us the behavior of the function in the neighborhood of the point a.
An alternative form for this expression is

¢ — a)
@y = f@) + f' ()¢ — a) + f”(a)—ZI— + -

Our formal manipulations are valid only if the series converges. The
range of convergence of a Taylor series may be —o <2 < « for
some functions (such as e*) but quite limited for other functions. (The
binomial series converges only if —1 < z < 1.) The range of conver-
gence is hard to find without considering functions of a complex vari-
able, and we shall avoid these questions by simply assuming that we are
dealing with simple functions for which the range of convergence is either
infinite or is readily apparent. Here are some examples:

a. The Trigonometric Functions
Let f(x) = sin z, and expand about x = 0.
f(0) = sin (@) =0
10y = cos (0) = 1
£7(0) = —sin(0) = 0

f"'(0) = —cos (0) = —1, etc.
Hence
1 1 1
i = —_—— 3 P S Y § o e
sinx T 3!x —|—-5!x 7|x—|— .
Similarly

1 1
=1 — =22 opd
cos T ™ z? 4 m z
These expansions converge for all values of x but are particularly use-
ful for small values of z. To O(x?), sinx = x, cosx = 1 — x2/2.
The figure below compares the exact value for sin 2 with a Taylor
series in which successively higher terms are included. Note how each

7/
1 // 1
T ———— [~ =x-= =5
4z SN ‘\\ YEXTHX X
\ ~o 4
\ N o
\
\
3|0° 6|0° 90° 120° \ 150° 180° (degrees)
] | |
0fo T | 1 T N\ |
0.5 1.0 1.5 2.0 2.5 3.0 (radians)
\
|- \\ y=sinx
1
-1 y=x- g%
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term increases the range over which the series is accurate. If an infinite
number of terms are included, the Taylor series represents the function
accurately everywhere.

b. The Binomial Series
We can derive the binomial series introduced in the last section by letting

f@) =@+ z).
Then
floy=1
@) =nd 40 =n
f70) = n(n — 1)
f®QO =nmn —1)n —2) -+ - (n —k +1)

a+

1+nx+%n(n—1)x2+ s

T R D LS TR

c. The Exponential Function
If we let f(z) = e%, we have f’(z) = f(z), by the definition of the expo-
nential function. Similarly f®(x) = f(z). Since f(0) = ¢* = 1, we have

1 1
z = el 1 3
e 1+x+2!x +3!x+ .

This series converges for all values of z.

A useful result from the theory of the Taylor series is that if the series
converges at all, it represents the function so well that we are allowed to
differentiate or integrate the series any number of times. For example,

d . . d 1 1
%(snnx)—£<x~§—!xa+5—!x5+ >

1 1
—_— 2 — 4
! Z!Z +4!x+

= COS T.

Furthermore, the Taylor series for the product of two functions is the
product of the individual series:

1 1 1 1
i = —_— 3 5 —_—— 2 — 4
sinxcos (:c 3!x +5!x+ ><1 Z!x +4!x+ )

1 1 1 1 1
=‘x‘(a+z)“<a+ﬁ+a)“ o
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I
RTINS

! A G0 AT
_E[(Zx) e T ]

= 1 sin (2x
= 2[ )]

The Taylor series sometimes comes in handy in the evaluation of inte-
grals. To estimate

1.1 e?
/ — dz,
1 z

1+ z. We then have

let 2

1.1 ¢* 0.1 e(1t2)
/ —dz = / dx
1 2 0 14z

0.1 e*
- (e)/O 14 xdx

_ 01 (1+ 2)
= (e)/0 a1 dx

=~ 0.1e.

The approximation should be better than 1 part in 100 or so, for z always
lies in the interval 0 < x < 0.1. In this range, ¢ =1+ z is a good
approximation to two or three significant figures.

3 DIFFERENTIALS

Consider f(x), a function of the independent variable z. Often we need
to have a simple approximation for the change in f(z) when z is changed
to z 4+ Az. Let us denote the change by Af = f(x 4+ Az) — f(z). It
is natural to turn to the Taylor series. Expanding the Taylor series for
f(x) about the point z gives

1
Je + Az) = f@) + F'@ Az + o f@ At

where, for example, f'(z) stands for df/dx evaluated at the point z.
Omitting terms of order (Ax)? and higher yields the simple linear approx-
imation

Af = f(xz 4+ Az) — f(x) = f'(z) Az.

This approximation becomes increasingly accurate the smaller the
size of Az. However, for finite values of Ax, the expression

Af = ['(z) Az
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has to be considered to be an approximation. The graph at left shows
a comparison of Af = f(x + Az) — f(z) with the linear extrapolation
f'(x) Az. 1t is apparent that Af, the actual change in f(z) as z is
changed, is generally not exactly equal to Af for finite Ax.

As a matter of notation, we use the symbol dr to stand for Az, the
increment in . dz is known as the differential of z; it can be as large or
small as we please. We define df, the differential of f, by

df = f'(x) dz.

This notation is illustrated in the lower drawing. Note that dx and
Az are used interchangeably. On the other hand, df and Af are different
quantities. df is a differential defined by df = f/(x) dx, whereas Af is
the actual change f(x + dx) — f(z). Nevertheless, when the linear
approximation is justified in a problem, we often use df to represent
Af. We can always do this when eventually a limit will be taken. Here
are some examples.

1. d(sin 8) = cos 6 d6.

2. d(ze**) = (e=* + 2x%=") dx.

3. Let V be the volume of a sphere of radius r:
V = $mrd

dV = 4wr? dr.

4. What is the fractional increase in the volume of the earth if its average
radius, 6.4 X 10 m, increases by 1 m?

av. _ Amrtdr
4 S’
_ 3
r
3
= ———— =47 X 1077,
6.4 X 108

One common use of differentials is in changing the variable of integra-
tion. For instance, consider the integral

b
/ ze®" dz.
a

A useful substitution is £ = 22. The procedure is first to solve for z in
terms of ¢,

z =V

and then to take differentials:

L
t

1
dr = - dt.
2
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This result is exact, since we are effectively taking the limit. The original
integral can now be written in terms of {:

b 11
/ ze=' dx = h\/te‘ - ——dt =%/he‘dt
a t 2\/t ty

where ¢, = a? and {, = b2

Some References to Calculus Texts

A very popular textbook is G. B. Thomas, Jr., ‘““Calculus and Analytic
Geometry,” 4th ed., Addison-Wesley Publishing Company, Inc., Reading,
Mass.

The following introductory texts in calculus are also widely used:

M. H. Protter and C. B. Morrey, ‘‘Calculus with Analytic Geometry,”
Addison-Wesley Publishing Company, Inc., Reading, Mass.

A. E. Taylor, ‘Calculus with Analytic Geometry,”” Prentice-Hall, Inc.,
Englewood Cliffs, N.J.

R. E. Johnson and E. L. Keokemeister, ‘‘Calculus With Analytic Geometry,"’
Allyn and Bacon, Inc., Boston.

A highly regarded advanced calculus text is R. Courant, ‘‘Differential and
Integral Calculus,” Interscience Publishing, Inc., New York.

If you need to review calculus, yo‘u may find the following helpful: Daniel
Kleppner and Norman Ramsey, ‘‘Quick Calculus,” John Wiley & Sons,
Inc., New York.

1.1 Given two vectors, A = (2i — 3j + 7k) and B = (5i + j -+ 2k), find:
(a) A+ B;(b) A—B;(c) A-B; (d) AX B.

Ans. (a) 7i — 2j + 9k; (c) 21
1.2 Find the cosine of the angle between

A=Q@ +j+k and B = (—2i — 3j — k).
Ans. —0.805

1.3 The direction cosines of a vector are the cosines of the angles it
makes with the coordinate axes. The cosine of the angles between the
vector and the z, y, and z axes are usually called, in turn «, B, and 7.
Prove that o? + (32 + % = 1, using either geometry or vector algebra.

1.4 Show that if |[A — B| = |A + B|, then A is perpendicular to B.

1.5 Prove that the diagonals of an equilateral parallelogram are per
pendicular.

1.6 Prove the law of sines using the cross product. It should only take
a couple of lines. (Hint: Consider the area of a triangle formed by A,
B, C, where A+ B 4+ C = 0.)
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1.7 Let & and b be unit vectors in the zy plane making angles 6 and
¢ with the z axis, respectively. Show that 4 = cos 6i + sin j, b =
cos ¢i + sin ¢, and using vector algebra prove that
cos (8 — ¢) = cos B cos ¢ + sin @ sin ¢.
1.8 Find a unit vector perpendicular to
A=(@{+j—k) and B = (2i —j + 3k).
Ans. fi = +Qi — 55 — 3k)/V/38

1.9 Show that the volume of a parallelepiped with edges A, B, and C is
given by A - (B X C). ’
1.10 Consider two points located at r; and r,, separated by distance
r = |r; —ry]. Find a vector A from the origin to a point on the line
between r, and r, at distance xr from the point at r;, where z is somge
number.
1.11 Let A be an arbitrary vector and let h be a unit vector in some fixea
direction. Show that A = (A - f)a + (A X A) X n.
1.12 The acceleration of gravity can be measured by projecting a body
upward and measuring the time that it takes to pass two given points
in both directions.

Show that if the time the body takes to pass a horizontal line 4 in both
directions is T4, and the time to go by a second line B in both directions
is T'p, then, assuming that the acceleration is constant, its magnitude is

8h
_—
TA2 - T32
where A is the height of line B above line A.

g =

1.13 An elevator ascends from the ground with uniform speed. At
time T, a boy drops a marble through the floor. The marble falls with
uniform acceleration g = 9.8 m/s?, and hits the ground T, seconds
later. Find the height of the elevator at time T',.

Ans.clue. T, =Ty =4s, h =392 m

1.14 A drum of radius R rolls down a slope without slipping. Its axis
has acceleration a parallel to the slope. What is the drum’'s angular
acceleration a?

1.15 By relative velocity we mean velocity with respect to a specified
coordinate system. (The term velocity, alone, is understood to be rela-
tive to the observer’s coordinate system.)

a. A point is observed to have velocity v, relative to coordinate system
A. What is its velocity relative to coordinate system B, which is displaced
from system A by distance R? (R can change in time.)

Ans.vp = Vyu — dR/dt

b. Particles a and b move in opposite directions around a circle with-
angular speed w, as shown. At ¢ = 0 they are both at the pointr = [j,
where [ is the radius of the circle.

Find the velocity of a relative to b.
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1.16 A sportscar, Fiasco |, can accelerate uniformly to 120 mi/h in 30 s.
Its maximum braking rate cannot exceed 0.7g. What is the minimum
time required to go & mi, assuming it begins and ends at rest? (Hint:
A graph of velocity vs. time can be helpful.)

1.17 A particle moves in a plane with constant radial velocity # = 4 m/s.
The angular velocity is constant and has magnitude § = 2rad/s. When
the particle is 3 m from the origin, find the magnitude of (a) the velocity
and (b) the acceleration.

Ans. (a) v = V52 m/s
1.18 The rate of change of acceleration is sometimes known as ‘‘jerk."”
Find the direction and magnitude of jerk for a particle moving in a circle
of radius R at angular velocity w. Draw a vector diagram showing the
instantaneous position, velocity, acceleration, and jerk.

1.19 A tire rolls in a straight line without slipping. Its center moves
with constant speed V. A small pebble lodged in the tread of the tire
touches the road at ¢ = 0. Find the pebble’'s position, velocity, and
acceleration as functions of time.

1.20 A particle moves outward along a spiral. Its trajectory is given
by r = Af, where A is a constant. A = (1/7) m/rad. 6 increases in
time according to 6 = «at?/2, where « is a constant.

a. Sketch the motion, and indicate the approximate velocity and accel-
eration at a few points.

b. Show that the radial acceleration is zero when 6 = 1/\/2 rad.

c. At what angles do the radial and tangential accelerations have equal
magnitude?
1.21 A boy stands at the peak of a hill which slopes downward uniformly
at angle ¢. At what angle 6 from the horizontal should he throw a rock
so that it has the greatest range?

Ans. clue. If ¢ = 60°, 6 = 15°
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NEWTON’S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

2.1 Introduction

Our aim in this chapter is to understand Newton's laws of motion.
From one point of view this is a modest task: Newton’s laws are
simple to state and involve little mathematical complexity. Their
simplicity is deceptive, however. As we shall see, they combine
definitions, observations from nature, partly intuitive concepts,
and some unexamined assumptions on the properties of space
and time. Newton's statement of the laws of motion left many
of these points unclear. It was not until two hundred years after
Newton that the foundations of classical mechanics were care-
fully examined, principally by Ernst Mach,! and our treatment is
very much in the spirit of Mach.

Newton's laws of motion are by no means self-evident. In
Aristotle’s system of mechanics, a force was thought to be needed
to maintain a body in uniform motion. Aristotelian mechanics
was accepted for thousands of years because, superficially, it
seemed intuitively correct. Careful reasoning from observation
and a real effort of thought was needed to break out of the
aristotelian mold. Most of us are still not accustomed to think-
ing in newtonian terms, and it takes both effort and practice to
learn to analyze situations from the newtonian point of view. We
shall spend a good deal of time in this chapter looking at applica-
tions of Newton's laws, for only in this way can we really come to
understand them. However, in addition to deepening our under-
standing of dynamics, there is an immediate reward—we shall be
able to analyze quantitatively physical phenomena which at first
sight may seem incomprehensible.

Although Newton’s laws provide a direct introduction to classical
mechanics, it should be pointed out that there are a number of
other approaches. Among these are the formulations of Lagrange
and Hamilton, which take energy rather than force as the funda-
mental concept. However, these methods are physically equiva-
lent to the newtonian approach, and even though we could use
one of them as our point of departure, a deep understanding of
Newton’s laws is an invaluable asset to understanding any system-
atic treatment of mechanics.

A word about the validity of newtonian mechanics: possibly you
already know something about modern physics—the development
early in this century of relativity and quantum mechanics. [f so,

1 Mach'’s text, *“The Science of Mechanics’ (1883), translated the arguments from
Newton's ‘“Principia’’ into a more logically satisfying form. His analysis of the
assumptions of newtonian mechanics played a major role in the development ot
Einstein’s special theory of relativity, as we shall see in Chap. 10.
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you know that there are important areas of physics in which new-
tonian mechanics fails, while relativity and quantum mechanics
succeed. Briefly, newtonian mechanics breaks down for systems
moving with a speed comparable to the speed of light, 3 X 108 m/s,
and it also fails for systems of atomic dimensions or smaller where
quantum effects are significant. The failure arises because of
inadequacies in classical concepts of space, time, and the nature
of measurement. A natural impulse might be to throw out class-
ical physics and proceed directly to modern physics. We do not
accept this point of view for several reasons. In the first place,
although the more advanced theories have shown us where class-
ical physics breaks down, they also show us where the simpler
methods of classical physics give accurate results. Rather than
make a blanket statement that classical physics is right or wrong,
we recognize that newtonian mechanics is exceptionally useful in
many areas of physics but of limited applicability in other areas.
For instance, newtonian physics enables us to predict eclipses cen-
turies in advance, but is useless for predicting the: motions of
electrons in atoms. [t should also be recognized that because
classical physics explains so many everyday phenomena, it is an
essential tool for all practicing scientists and engineers. Further-
more, most of the important concepts of classical physics are pre-
served in modern physics, albeit in altered form.

2.2 Newton’s Laws

It is important to understand which parts of Newton’s laws are
based on experiment and which parts are matters of definition.
In discussing the laws we must also learn how to apply them, not
only because this is the bread and butter of physics but also
because this is essential for a real understanding of the under-
lying concepts.

We start by appealing directly to experiment. Unfortunately,
experiments in mechanics are among the hardest in physics
because motion in our everyday surroundings is complicated by
forces such as gravity and friction. To see the physical essen-
tials, we would like to eliminate all disturbances and examine very
simple systems. One way to accomplish this would be to enroll
as astronauts, for in the environment of space most of the every-
day disturbances are negligible. However, lacking the resources
to put ourselves in orbit, we settle for second best, a device
known as a linear air track, which approximates ideal conditions,
but only in one dimension. (Although it is not clear that we can
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learn anything about three dimensional motion from studying
motion in one dimension, happily this turns out to be the case.)

Air jets

Compressed air

Leveling screw

Linear air track

The linear air track is a hollow triangular beam perhaps 2 m
long, pierced by many small holes which emit gentle streams of
air. A rider rests on the beam, and when the air is turned on, the
rider floats on a thin cushion of air. Because of the air suspen-
sion, the rider moves with negligible friction. (The reason for this
is that the thin film of air has a viscosity typically 5,000 times less
than a film of oil.) If the track is leveled carefully, and if we elim-
inate stray air currents, the rider behaves as if it were isolated in
its motion along the track. The rider moves along the track free
of gravity, friction, or any other detectable influences.

Now let’'s observe how the rider behaves. (Try these experi-
ments yourself if possible.) Suppose that we place the rider on
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the track and carefully release it from rest. As we might expect,
the rider stays at rest, at least until a draft hits it or somebody
bumps the apparatus. (Thisisn’t too surprising, since we leveled
the track until the rider stayed put when left at rest.) Next, we
give the rider a slight shove and then let it move freely. The
motion seems uncanny, for the rider continues to move along
slowly and evenly, neither gaining nor losing speed. This is con-
trary to our everyday experience that moving bodies stop moving
unless we push them. The reason is that in everyday motion,
friction usually plays an important role. For instance, the air
track rider comes to a grinding halt if we turn off the air and let
sliding friction act. Apparently the friction stops the motion.
But we are getting ahead of ourselves; let us return to the
properly functioning air track and try to generalize from our
experience.

It is possible to make a two dimensional air table analogous to
the one dimensional air track. (A smooth sheet of glass with a
flat piece of dry ice on it does pretty well. The evaporating dry
ice provides the gas cushion.) We find again that the undisturbed
rider moves with uniform velocity. Three dimensional isolated
motion is hard to observe, short of going into space, but let us for
the moment assume that our experience in one and two dimen-
sions also holds in three dimensions. We therefore surmise that
an object moves uniformly in space provided there are no external
influences.

Newton’s First Law

In our discussion of the air track experiments, we glossed over an
important point. Motion has meaning only with respect to a par-
ticular coordinate system, and in describing motion it is essential
to specify the coordinate system we are using. For example, in
describing motion along the air track, we implicitly used a coor-
dinate system fixed to the track. However, we are free to choose
any coordinate system we please, including systems which are
moving with respect to the track. In a coordinate system moving
uniformly with respect to the track, the undisturbed rider moves
with constant velocity. Such a coordinate system is called an
inertial system. Not all coordinate systems are inertial; in a coor-
dinate system accelerating with respect to the track, the undis-
turbed rider does not have constant velocity. However, it is
always possible to find a coordinate system with respect to which



56

NEWTON’S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

isolated bodies move uniformly. This is the essence of Newton’'s
first law of motion.

Newton’s first law of motion is the assertion that inertial systems
exist.

Newton’s first law is part definition and part experimental fact.
Isolated bodies move uniformly in inertial systems by virtue of the
definition of an inertial system. In constrast, thatinertial systems
exist is a statement about the physical world.

Newton's first law raises a number of questions, such as what
we mean by an ‘“isolated body,’’ but we will defer these temporarily
and go on.

Newton’s Second Law

We now turn to how the rider on the air track behaves when it is
no longer isolated. Suppose that we pull the rider with a rubber
band. Nothing happens while the rubber band is loose, but as
soon as we pull hard enough to stretch the rubber band, the rider
starts to move. If we move our hand ahead of the rider so that
the rubber band is always stretched to the same standard length,
we find that the rider moves in a wonderfully simple way; its
velocity increases uniformly with time. The rider moves with con-
stant acceleration.

Now suppose that we try the same experiment with a different
rider, perhaps one a good deal larger than the first. Again, the
same rubber band stretched to the standard length produces a
constant acceleration, but the acceleration is different from that
in the first case. Apparently the acceleration depends not only
on what we do to the object, since presumably we do the
same thing in each case, but also on some property of the object,
which we call mass.

We can use our rubber band experiment to define what we mean
by mass. We start by arbitrarily saying that the first body has a
mass mi. (m;could be one unit of mass or x units of mass, where
x is any number we choose.) We then define the mass of the
second body to be

431
Mo = My —
42}

where a, is the acceleration of the first body in our rubber band
experiment and a, is the acceleration of the second body.
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Continuing this procedure, we can assign masses to other
objects by measuring their accelerations with the standard
stretched rubber band. Thus

ay
mz = my —

az

a; etc.
my = My —

Ay

Although this procedure is straightforward, there is no obvious
reason why the quantity we define this way is particularly impor-
tant. For instance, why not consider instead some other prop-
erty, call it property Z, such that Z, = Z(a1/a2)?? The reason
is that mass is useful, whereas property Z (or most other quan-
tities you try) is not. By making further experiments with the
air track, for instance by using springs or magnets instead of a
rubber band, we find that the ratios of accelerations, hence the
mass ratios, are the same no matter how we produce the uni-
form accelerations, provided that we do the same thing to each
body. Thus, mass so defined turns out to be independent of
the source of acceleration and appears to be an inherent prop-
erty of a body. Of course, the actual mass value of an individual
body depends on our choice of mass unit. The important thing
is that two bodies have a unique mass ratio.

Our definition of mass is an example of an operational definition.
By operational we mean that the definition is dominantly in terms
of experiments we perform and not in terms of abstract concepts,
such as ‘“‘mass is a measure of the resistance of bodies to a change
in motion.”” Of course, there can be many abstract concepts hid-
den in apparently simple operations. For instance, when we mea-
sure acceleration, we tacitly assume that we have a clear under-
standing of distance and time. Although our intuitive ideas are
adequate for our purposes here, we shall see when we discuss
relativity that the behavior of measuring rods and clocks is itself
a matter for experiment.

A second troublesome aspect of operational definitions is that
they are limited to situations in which the operations can actually
be performed. In practice this is usually not a problem; physics
proceeds by constructing a chain of theory and experiment which
allows us to employ convenient methods of measurement ulti-
mately based on the operational definitions. For instance, the
most practical way to measure the mass of a mountain is to
observe its gravitational pull on a test body, such as a hanging
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plumb bob. According to the operational definition, we should
apply a standard force and measure the mountain’s acceleration.
Nevertheless, the two methods are directly related conceptually.

We defined mass by experiments on laboratory obiects; we can-
not say a priori whether the results are consistent on a much
larger or smaller scale. In fact, one of the major goals of physics
is to find the limitations of such definitions, for the limitations
normally reveal new physical laws. Nevertheless, if an opera-
tional definition is to be at all useful, it must have very wide appli-
cability. For instance, our definition of mass holds not only for
everyday objects on the earth but also, to a very high degree, for
planetary motion, motion on an enormously larger scale. It
should not surprise us, however, if eventually we find situations
in which the operations are no longer useful.

Now that we have defined mass, let us turn our attention to
force.

We describe the operation of acting on the test mass with a
stretched rubber band as ‘‘applying’’ a force. (Note that we have
sidestepped the question of what a force is and have limited our-
selves to describing how to produce it—namely, by stretching a
rubber band by a given amount.) When we apply the force, the
test mass accelerates at some rate, a. If we apply two standard
stretched rubber bands, side by side, we find that the mass accel-
erates at the rate 2a, and if we apply them in opposite directions,
the acceleration is zero. The effects of the rubber bands add
algebraically for the case of motion in a straight line.

We can establish a force scale by defining the unit force as the
force which produces unit acceleration when applied to the unit
mass. It follows from our experiments that F units of force
accelerate the unit mass by F' units of acceleration and, from our
definition of mass, it will produce F X (1/m) units of acceleration
in mass m. Hence, the acceleration produced by force F acting
on mass m is ¢ = F/m or, in a more familiar order, F = ma. In
the International System of units (SI), the unit of force is the new-
ton (N), the unit of mass is the kilogram (kg), and acceleration is
in meters per second? (m/s?. Units are discussed further in
Sec. 2.3.

So far we have limited our experiments to one dimension.
Since acceleration is a vector, and mass, as far as we know, is a
scalar, we expect that force is also a vector. It is natural to think
of the force as pointing in the direction of the acceleration it pro-
duces when acting alone. This assumption appears trivial, but
it is not—its justification lies in experiment. We find that forces
obey the principle of superposition: The acceleration produced by
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several forces acting on a body is equal to the vector sum of the
accelerations produced by each of the forces acting separately.
Not only does this confirm the vector nature of force, but it also
enables us to analyze problems by considering one force at a
time.

Combining all these observations, we conclude that the total
force F on a body of mass m is F = ZF;, where F; is the 7th applied
force. |If a is the net acceleration, and a; the acceleration due to
F; alone, then we have

F = ZF;
= Zma;
= mZai
= ma

or

F = ma.

This is Newton's second law of motion. It will underlie much of
our subsequent discussion.

It is important to understand clearly that force is not merely
a matter of definition. For instance, if the air track rider starts
accelerating, it is not sufficient to claim that there is a force acting
defined by F = ma. Forces always arise from interactions between
systems, and if we ever found an acceleration without an inter-
action, we would be in a terrible mess. Itis the interaction which
is physically significant and which is responsible for the force.
For this reason, when we isolate a body sufficiently from its sur-
roundings, we expect the body to move uniformly in an inertial
system. Isolation means eliminating interactions. You may
question whether it is always possible to isolate a body. For-
tunately, as far as we know, the answer is yes. All known inter-
actions decrease with distance. (The forces which extend over
the greatest distance are the familiar gravitational and Coulomb
forces. They decrease as 1/72, where r is the distance. Most
forces decrease much more rapidly. For example, the force
between separated atoms decreases as 1/r’.) By moving the
test body sufficiently far from everything else, the interactions
can be reduced as much as desired.

Newton’s Third Law

The fact that force is necessarily the result of an interaction
between two systems is made explicit by Newton’s third law. The
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third law states that forces always appear in pairs: if body b exerts
force F, on body a, then there must be a force F, acting on body
b, due to body a, such that F, = —F,. There is no such thing as
a lone force without a partner. As we shall see in the next chap-
ter, the third law leads directly to the powerful law of conservation
of momentum.

We have argued that a body can be isolated by removing it
sufficiently far from other bodies. However, the following prob-
lem arises. Suppose that an isolated body starts to accelerate
in defiance of Newton’s second law. What prevents us from
explaining away the difficulty by attributing the acceleration to
carelessness in isolating the system? If this option is open to us,
Newton's second law becomes meaningless. We need an inde-
pendent way of telling whether or not there is a physical interac-
tion on a system. Newton’s third law provides such a test. If
the acceleration of a body is the result of an outside force, then
somewhere in the universe there must be an equal and opposite
force acting on another body. If we find such a force, the
dilemma is resolved; the body was not completely isolated. The
interaction may be new and interesting, but as long as the forces
are equal and opposite, Newton's laws are satisfied.

If an isolated body accelerates and we cannot find some external
object which suffers an equal and opposite force, then we are in
trouble. As far as we know this has never occurred. Thus New-
ton's third law is not only a vitally important dynamical tool, but
it is also an important logical element in making sense of the first
two laws.

Newton’s second law F = ma holds true only in inertial systems.
The existence of inertial systems seems almost trivial to us, since
the earth provides a reasonably good inertial reference frame for
everyday observations. However, there is nothing trivial about
the concept of an inertial system, as the following example shows.

Astronauts in Space—Inertial Systems and Fictitious Forces

Two spaceships are moving in empty space chasing an unidentified
flying object, possibly a flying saucer. The captains of the two ships,
A and B, must find out if the saucer is flying freely or if it is accelerating.
/A, B, and the saucer are all moving along a straight line.

The captain of A sets to work and measuresthe distance to the saucer
as a function of time. In principle, he sets up a coordinate system along
the line of motion with his ship as origin and notes the position of the
saucer, which he calls z4(¢). (In practice he uses his radar set to mea-
sure the distance to the saucer.) From z4(f{) he calculates the velocity
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v4 = Z4 and the acceleration a4 = #4. The results are shown in the
sketches. The captain of .1 concludes that the saucer has a positive
acceleration a4 = 1,000 m/s?. He therefore assumes that its engines
are on and that the force on the saucer is

Fa=asdl
1,000.1/ newtons,

I

where ./ is the saucer's mass in kilograms.

The captain of B goes through the same procedure. He finds that the
acceleration is ag = 950 m/s? and concludes that the force on the saucer
is
FB = aBJ[

= 950.1/ newtons.

This presents a serious problem. There is nothing arbitrary about
force; if different observers obtain different values for the force, at
least one of them must be mistaken. The captains of .1 and B have
confidence in the laws of mechanics, so they set about resolving the dis-
crepancy. In particular, they recall that Newton’s laws hold only in iner-
tial systems. How can they decide whether or not their systems are
inertial?

«A's captain sets out by checking to see if all his engines are off. Since
they are, he suspects that he is not accelerating and that his spaceship
defines an inertial system. To check that this is the case, he undertakes
a simple but sensitive experiment. He observes that a pencil, carefully
released at rest, floats without motion. He concludes that the pencil's
acceleration is negligible and that he is in an inertial system. The rea-
soning is as follows: as long as he holds the pencil it must have the same
instantaneous velocity and acceleration as the spaceship. However,
there are no forces acting on the pencil after it is released, assuming
that we can neglect gravitational or electrical interactions with the space-
ship, air currents, etc. The pencil, then, can be presumed to represent
an isolated body. If the spaceship is itself accelerating, it will catch up
with the pencil—the pencil will appear to accelerate relative to the cabin.
Otherwise, the spaceship must itself define an inertial system.

The determination of the force on the saucer by the captain of 4
must be correct because .1 is in an inertial system. But what can we
say about the observations made by the captain of B? To answer this
problem, we look at the relation of x4 and 2. From the sketch,

e
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zat) = zp(t) + X (),

where X (¢) is the position of B relative to A. Differentiating twice with
respect to time, we have

is = &g+ X. 1
Since system .l is inertial, Newton’s second law for the saucer is
Fu“e = Miy, 2

where F.. is the true force on the saucer.
What about the observations made by the captain of B? The apparent
force observed by B is

FB.apparent = AIIB 3
Using the results of (1) and (2), we have

FB,appurent = Mis — J‘{X
= Fue — MX. 4

B will not measure the true force unless X = 0. However, X = 0
only when B moves uniformly with respect to A. As we suspect, this is
not the case here. The captain of B has accidently left on a rocket
engine, and he is accelerating away from A at 50 m/s?.  After shutting
off the engine, he obtains the same value for the force on the saucer
as does A.

Although we considered only motion along a line in Example
2.1, it is easy to generalize the result to three dimensions. If Ris
the vector from the origin of an inertial system to the origin of
another coordinate system, we have

Fapparent = Firue — MR.

If R = 0, then Fapparens = Firuer Which means that the second coor-
dinate system is also inertial. In fact, we have merely proven
what we asserted earlier, namely, that any system moving uni-
formly with respect to an inertial system is also inertial.

Sometimes we would like to carry out measurements in non-
inertial systems. What can we do to get the correct equations of
motion? The answer lies in the relation Fopparens = Firue — MR.
We can think of the last term as an additional force, which we
call a fictitious force. (The term fictitious indicates that there is
no real interaction involved.) We then write

Fapparent = Ftrue + Fficticiousy
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where Fiictitions = —MR. Here M is the mass of the particle and
R is the acceleration of the noninertial system with respect to any
inertial system.

Fictitious forces are useful in solving certain problems, but they
must be treated with care. They generally cause more confusion
then they are worth at this stage of your studies, and for that rea-
son we shall avoid them for the present and agree to use inertial
systems only. Later on, in Chap. 8, we shall examine fictitious
forces in detail and learn how to deal with them.

Although Newton's laws can be stated in a reasonably clear
and consistent fashion, it should be realized that there are
fundamental difficulties which cannot be argued away. We shall
return to these in later chapters after we have had a chance to
become better acquainted with the concepts of newtonian physics.
Some points, however, are well to bear in mind now.

1. You have had to take our word that the experiments we used
to define mass and to develop the second law of motion really give
the results claimed. It should come as no surprise (although it
was a considerable shock when it was first discovered) that this
is not always so. For instance, the mass scale we have set up is
no longer consistent when the particles are moving at high speeds.
It turns out that instead of the mass we defined, called the rest

mass M, a more useful quantity is m = mo/\/l — v%/c?, where
¢ is the speed of light and v is the speed of the particle. For the
case v < ¢, m and m, differ negligibly. The reason that our table-
top experiments did not lead us to the more general expression
for mass is that even for the largest everyday velocities, say the
velocity of a spacecraft going around the earth, v»/c = 3 X 1075,
and m and m, differ by only a few parts in 10%°.

2. Newton’s laws describe the behavior of point masses. In the
case where the size of the body is small compared with the inter-
action distance, this offers no problem. For instance, the earth
and sun are so small compared with the distance between them
that for many purposes their motion can be adequately described
by considering the motion of point masses located at the center of
each. However, the approximation that we are dealing with point
masses is fortunately not essential, and if we wish to describe the
motion of large bodies, we can readily generalize Newton’s laws,
as we shall do in the next chapter. It turns out to be not much
more difficult to discuss the motion of a rigid body composed of
1024 atoms than the motion of a single point mass.
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3. Newton’s laws deal with particles and are poorly suited for
describing a continuous system such as a fluid. We cannot
directly apply F = ma to a fluid, for both the force and the mass
are continuously distributed. However, newtonian mechanics can
be extended to deal with fluids and provides the underlying prin-
ciples of fluid mechanics.

One system which is particularly troublesome for our present
formulation of newtonian mechanics is the electromagnetic field.
Paradoxes can arise when such a field is present. For instance,
two charged bodies which interact electrically actually interact via
the electric fields they create. The interaction is not instanta-
neously transmitted from one particle to the other but propagates
at the velocity of light. During the propagation time there is an
apparent breakdown of Newton’s third law; the forces on the
particles are not equal and opposite. Similar problems arise in
considering gravitational and other interactions. However, the
problem lies not so much with newtonian mechanics as with its
misapplication. Simply put, fields possess mechanical properties
like momentum and energy which must not be overlooked. From
this point of view there is no such thing as a simple two particle
system. However, for many systems the fields can be taken
into account and the paradoxes can be resolved within the new-
tonian framework.

2.3 Standards and Units

Length, time, and mass play a fundamental role in every branch
of physics. These quantities are defined in terms of certain fun-
damental physical standards which are agreed to by the scientific
community. Since a particular standard generally does not have
a convenient size for every application, a number of systems of
units have come into use. For example, the centimeter, the ang-
strom, and the yard are all units of length, but each is defined in
terms of the standard meter. There are a number of systems of
units in widespread use, the choice being chiefly a matter of cus-
tom and convenience. This section presents a brief description
of the current standards and summarizes the units which we shall
encounter.

The Fundamental Standards

The fundamental standards play two vital roles. In the first
place, the precision with which these standards can be defined
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and reproduced limits the ultimate accuracy of experiments. In
some cases the precision is almost unbelievably high—time, for
instance, can be measured to a few parts in 10*2 In addition,
agreeing to a standard for a physical quantity simultaneously pro-
vides an operational definition for that quantity. For example,
the modern view is that time is what is measured by clocks, and
that the properties of time can be understood only by observing
the properties of clocks. This is not a trivial point; the rates of
all clocks are affected by motion and by gravity (as we shall discuss
in Chaps. 8 and 12), and unless we are willing to accept the fact
that time itself is altered by motion and gravity, we are led into
contradictions.

Once a physical quantity has been defined in terms of a mea-
surement procedure, we must appeal to experiment, not to pre-
conceived notions, to understand its properties. To contrast this
viewpoint with a nonoperational approach, consider, for example,
Newton’s definition of time: ‘‘Absolute, true, and mathematical
time, of itself, and from its own nature, flows equally without rela-
tion to anything external.”” This may be intuitively and philo-
sophically appealing, but it is hard to see how such a definition
can be applied. The idea is metaphysical and not of much use in
physics.

Once we have agreed on the operation underlying a particular
physical quantity, the problem is to construct the most precise
practical standard. Until recently, physical standards were man-
made, in the sense that they consisted of particular objects to
which all other measurements had to be referred. Thus, the
unit length, the meter, was defined to be the distance between two
scratches on a platinum bar. Such man-made standards have a
number of disadvantages. Since the standard must be carefully
preserved, actual measurements are often done with secondary
standards, which causes a loss of accuracy. Furthermore, the
precision of a man-made standard is intrinsically limited. In the
case of the standard meter, precision was found to be limited by
fuzziness in the engraved lines which defined the meter interval.
When more accurate optical techniques for locating position were
developed in the latter part of the nineteenth century, it was rea-
lized that the standard meter bar was no longer adequate.

Length is now defined by a natural, rather than man-made,
standard. The meter is defined to be a given multiple of the
wavelength of a particular spectral line. The advantage of such
a unit is that anyone who has the required optical equipment can
reproduceit. Also, as the instrumentation improves, the accuracy
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of the standard will correspondingly increase. Most of the stan-
dards of physics are now natural.

Here is a brief account of the current status of the standards of
length, time, and mass.

Length The meter was intended to be one ten-millionth of the dis-
tance from the equator to the pole of the earth along the Dunkirk-
Barcelona line. This cannot be measured accurately (in fact it
changes due to distortions of the earth), and in 1889 it was agreed
to define the meter as the separation between two scratches in a
platinum-iridium bar which is preserved at the International
Bureau of Weights and Measures, Sévres, France. In 1960 the
meter was redefined to be 1,650,763.73 wavelengths of the orange-
red line of krypton 86. The accuracy of this standard is a few
parts in 108.

Recent advances in laser techniques provide methods which
should allow the velocity of light to be measured to better than 1
part in 108. Itis likely that the velocity of light will replace length
as a fundamental quantity. In this case the unit of length would
be derived from velocity and time.

Time Time has traditionally been measured in terms of rotation of
the earth. Until 1956 the basic unit, the second, was defined as
1/86,400 of the mean solar day. Unfortunately, the period of
rotation of the earth is not very uniform. Variations of up to
one partin 107 per day occur due to atmospheric tides and changes
in the earth’s core. The motion of the earth around the sun is
not influenced by these perturbations, and until recently the mean
solar year was used to define the second. Here the accuracy was
a few parts in 10°. Fortunately, time can now be measured in
terms of a natural atomic frequency. In 1967 the second was
defined to be the time required to execute 9,192,631,770 cycles of

a hyperfine transition in cesium 133. This transition frequency
can be reliably measured to a few parts in 10!?, which means

that time is by far the most accurately determined fundamental
quantity.

Mass Of the three fundamental units, only mass is defined in
terms of a mwn-made standard. Originally, the kilogram was
defined to be the mass of 1,000 cubic centimeters of water at a
temperature of 4 degrees Centigrade. The definition is difficult to
apply, and in 1889 the kilogram was defined to be the mass of a
platinume-iridium cylinder which is maintained at the International
Bureau of Weights and Measures. Secondary standards can be
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compared with it to an accuracy of one partin 10°. Perhaps some-
day we will learn how to define the kilogram in terms of a natural
unit, such as the mass of an atom. However, at present nobody
knows how to count reliably the large number of atoms needed
to constitute a useful sample. Perhaps you can discover a
method.

Systems of Units

Although the standards for mass, length, and time are accepted
by the entire scientific community, there are a variety of systems
of units which differ in the scaling factors. The most widely
used system of units is the International System, abbreviated Sl
(for Systéme International d'Unités). It is the legal system in
most countries. The SI units are meter, kilogram, and second;
S| replaces the former mks system. The related cgs system,
based on the centimeter, gram, and second, is also commonly
used. A third system, the English system of units, is used for non-
scientific measurements in Britain and North America, although
Britain is in the process of switching to the metric system. It is
essential to know how to work problems in any system of units.
We shall work chiefly with S| units, with occasional use of the cgs
system and one or two lapses into the English system.

Here is a table listing the names of units in the SI, cgs, and
English systems.

SI CGS ENGLISH
Length 1 meter (m) 1 centimeter (cm) 1 foot (ft)
Mass 1 kilogram (kg) 1 gram (g) 1 slug
Time 1 second (s) 1 second (s) 1 second (s)
Acceleration 1 m/s? 1 cm/s? 1 ft/s?
Force 1 newton (N) 1 dyne 1 pound (Ib)
=1 kg'm/s? =1gcm/s? = 1 slug-ft/s?

Some useful relations between these units systems are:

1m = 100cm lin = & ft = 2.54 cm
1 kg = 1000 g 1 slug =~ 14.6 kg
1 N = 10% dyne 1N ~ 0.224 b

The word pound sometimes refers to a unit of mass. In this con-
text it stands for the mass which experiences a gravitational force
of one pound at the surface of the earth, approximately 0.454 kg.
We shall avoid this confusing usage.
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2.4 Some Applications of Newton’s Laws

Newton’s laws are meaningless equations until we know how to
apply them. A number of steps are involved which, once learned,
are so natural that the procedure becomes intuitive. Our aim in
this section is to outline a method of analyzing physical problems
and to illustrate it by examples. A note of reassurance lest you
feel that matters are presented too dogmatically: There are many
ways of attacking most problems, and the procedure we suggest
is certainly not the only one. In fact, no cut-and-dried procedure
can ever substitute for intelligent analytical thinking. However,
the systematic method suggested here will be helpful in getting
started, and we urge you to master it even if you should later
resort to shortcuts or a different approach.
Here are the steps:

1. Mentally divide the system? into smaller systems, each of which
can be treated as a point mass.

2. Draw a force diagram for each mass as follows:
a. Represent the body by a point or simple symbol, and label it.
b. Draw a force vector on the mass for each force acting on it.

Point 2b can be tricky. Draw only forces acting on the body,
not forces exerted by the body. The body may be attached to
strings, pushed by other bodies, etc. We replace all these physi-
cal interactions with other bodies by a system of forces; according
to Newton’s laws, only forces acting on the body influence its
motion.

As an example, here are two blocks at rest on a table top.
The force diagram for A is shown at left. F; is the force exerted
on block A by block B, and W 4 is the force of gravity on A, called
the weight.

Similarly, we can draw the force diagram for block B. Wp is
the force of gravity on B, N is the normal (perpendicular) force
exerted by the table top on B, and F, is the force exerted by 4
on B. There are no other physical interactions that would pro-
duce a force on B.

It is important not to confuse a force with an acceleration; draw
only real forces. Since we are using only inertial systems for the
present, all the forces are associated with physical interactions.
For every force you should be able to answer the question, ‘“What

1 We use ‘“‘system’ here to mean a collection of physical objects rather than a
coordinate system. The meaning should be clear from the context.
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exerts this force on the body?’’ (We shall see how to use so-called
fictitious forces in Chap. 8.1)

3. Introduce a coordinate system. The coordinate system must
be inertial—that is, it must be fixed to an inertial frame. With
the force diagram as a guide, write separately the component
equations of motion for each body. By equation of motion we
mean an equation of the form Fy, + Fo, + - - - = Ma,, where
the z component of each force on the body is represented by a
term on the left hand side of the equation. The algebraic sign
of each component must be consistent with the force diagram
and with the choice of coordinate system.

For instance, returning to the force diagram for block 4, New-
ton’s second law gives

Fi + W, = may.

Since F; = Fij, Wy, = —W 4], we have
0 =my(@as):

and

Fi— W4 = mu@s),.

The x equation of motion is trivial and normally we omit it, writing
simply

Fl - WA = MaQy4.
The equation of motion for B is
N—Fz— WB = Mpapg.

4, If two bodies in the same system interact, the forces between
them must be equal and opposite by Newton’s third law. These
relations should be written explicitly.

For example, in the case of the two blocks on the tabletop,
F, = —F,. Hence

F1=F2.

Note that Newton’s third law never relates two forces acting on
the same body; forces on two different bodies must be involved.

1 The most notorious fictitious force is the centrifugal force. Long experience has
shown that using this force before one has a really solid grasp of Newton’s laws
invariably causes confusion. Besides, it is only one of several fictitious forces
which play a role in rotating systems. For both these reasons, we shall strictly
avoid centrifugal forces for the present.
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5. In many problems, bodies are constrained to move along cer-
tain paths. A pendulum bob, for instance, moves in a circle, and
a block sliding on a tabletop is constrained to move in a plane.
Each constraint can be described by a kinematical equation known
as a constraint equation. Write each constraint equation.

Sometimes the constraints are implicit in the statement of the
problem. For the two blocks on the tabletop, there is no vertical
acceleration, and the constraint equations are

(@s)y =0 (ag)y =0

6. Keep track of which variables are known and which are
unknown. The force equations and the constraint equations
should provide enough relations to allow every unknown to be
found. If an equation is overlooked, there will be too few equa-
tions for the unknowns.

Completing the problem of the two blocks on the table, we have

Fl— WA = MaQa
N'- Fz— WB = Mpap

F,=F, From Newton’s third law

} Equations of motion

aA=0

ag = 0 }Constralnt equations

All that remains is the mathematical task of solving the equations.
We find

F1=F2=WA
N=WA+WB.

Here are a few examples which illustrate the application of
Newton's laws.

The main point of the first example is to help us distinguish
between the force we apply to an object and the force it exerts on
us. Physiologically, these forces are often confused. If you
push a book across a table, the force you feel is not the force
that makes the book move; it is the force the book exerts on you.
According to Newton’s third law, these two forces are always
equal and opposite. |If one force is limited, so is the other.

The Astronauts’ Tug-of-war

Two astronauts, initially at rest in free space, pull on either end of a
rope. Astronaut Alex played football in high school and is stronger than
astronaut Bob, whose hobby was chess. The maximum force with which
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Alex can pull, Fu, is larger than the maximum force with which Bob can
pull, Fz. Their masses are M 4 and 1/ 3, and the mass of the rope, 17,
is negligible. Find their motion if each pulls on the rope as hard as hecan.

Here are the force diagrams. For clarity, we show the rope as a line.

My M, Mp
> - 7 z IIII77777
' '
Fy F, Fg Fp
—_— —_ —_
24 a, 4.

Note that the forces /4 and Fp exerted by the astronauts act on the
rope, not on the astronauts. The forces exerted by the rope on the
astronauts are F,' and F5'. The diagram shows the directions of
the forces and the coordinate system we have adopted; acceleration to
the right is positive.

By Newton's third law,

F:i = FA 1
F;; = FB.

The equation of motion for the rope is

Fg—F4 = M,a,. 2

Only motion along the line of the rope is of interest, and we omit the
equations of motion in the remaining two directions. There are no con-
straints, and we proceed to the solution.

Since the mass of the rope, M,, is negligible, we take A/, =0 in
Eq. (2). This gives Fg — 'y =0 or

Fp = F4.

The total force on the rope is F3 to the right and F'4 to the left. These
forces are equal in magnitude, and the total force on the rope is zero.
In general, the total force on any body of negligible mass must be effec-
tively zero; a finite force acting on zero mass would produce an infinite
acceleration.

Since Fp = F4, Eq. (1) gives Fiy = F4 = Fz = F’5. Hence

’ ’
I;YA = I’YB.

The astronauts each pull with the same force. Physically, there is a
limit to how hard Bob can grip the rope; if Alex tries to pull too hard,
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the rope slips through Bob’s fingers. The force Alex can exert is limited
by the strength of Bob's grip. If the rope were tied to Bob, Alex could
exert his maximum pull.

The accelerations of the two astronauts are

Fy
My
_p;;
M3
_p;l.
My

ap =

The negative sign means that ap is to the left. In many problems the
directions of some acceleration or force components are initially unknown.
In writing the equations of motion, any choice is valid, provided we are
consistent with the convention assumed in the force diagram. If the
solution yields a negative sign, the acceleration or force is opposite to
the direction assumed.

The next example shows that in order for a compound system
to accelerate, there must be a net force on each part of the
system.

Freight Train

Three freight cars of mass M are pulled with force I’ by a locomotive.
Friction is negligible. Find the forces on each car.

Before drawing the force diagram, it is worth thinking about the system
as a whole. Since the cars are joined, they are constrained to have the
same acceleration. Since the total mass is 3]/, the acceleration is

Fc
3

A force diagram for the last car is shown at the left. W is the
weight and N is the upward force exerted by the track. The vertical
acceleration is zero, so that N = W. F, is the force exerted by the
next car. We have

[

F, = Ma

= r
3M

r

3
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Now let us consider the middle car. The vertical forces are as before,
and we omit them. F; is the force exerted by the last car, and F', is the
force exerted by the first car. The equation of motion is

F, — F{ = Ma.
By Newton's third law, F{ = I, = F/3. Since a = F/3}{, we have

F\  F
M — -
<3M> *3

oF
3

11‘2

I

I

The horizontal forces on the first car are F, to the right, and

ry=r =

to the left. Each car experiences a total force F'/3 to the right.
Here is a slightly more general way to look at the problem. Consider
a string of N cars, each of mass A, pulled by a force . The accelera-

1 2 3 N-1) N

tionisa = F/(NM). To find the force F, pulling the last n cars, note
that F, must give the mass nM an acceleration ¥ /(NM). Hence

F, = nM—F——
NM

iyl
N

The force is proportional to the number of cars pulled.

In systems composed of several bodies, the accelerations are
often related by constraints. The equations of constraint can
sometimes be found by simple inspection, but the most general
approach is to start with the coordinate geometry, as shown in the
next example.



74 NEWTON'S LAWS—THE FOUNDATIONS OF NEWTONIAN MECHANICS

Example 2.4 Constraints

a. WEDGE AND BLOCK

A block moves on a wedge which in turns moves on a horizontal table,
as shown in the sketch. The wedge angle is §. How are the accelera-
tions of the block and the wedge related?

As long as the wedge is in contact with the table, we have the trivial
constraint that the vertical acceleration of the wedge is zero. To find
the less obvious constraint, let X be the horizontal coordinate of the end
of the wedge and let z and y be the horizontal and vertical coordinates of
the block, as shown. Let & be the height of the wedge.

From the geometry, we see that

hoy : . (x — X) = (h — y)cotb.
X Differentiating twice with respect to time, we obtain the equation of
constraint
i — X = —jjcot 8. 1

A few comments are in order. Note that the coordinates are inertial.
We would have trouble using Newton's second law if we measured the
position of the block with respect to the wedge; the wedge is accelerating
and cannot specify an inertial system. Second, unimportant parameters,
like the height of the wedge, disappear when we take time derivatives,
but they can be useful in setting up the geometry. Finally, constraint
equations are independent of applied forces. For example, even if fric-
tion between the block and wedge affects their accelerations, Eq. (1) is
valid as long as the bodies are in contact.

44 b. MASSES AND PULLEY
Two masses are connected by a string which passes over a pulley accel-
\ erating upward at rate A, as shown. Find how the accelerations of the
R bodies are related. Assume that there is no horizontal moticn.
We shall use the coordinates shown in the drawing. The length of
the string, [, is constant. Hence, if y, is measured to the center of the
pulley of radius R,
K l=7R 4+ @ — y1) + ¥» — y2). 2
14
Differentiating twice with respect to time, we find the constraint condition
0=2§, =41 — g
2 Using 4 = §j,, we have
Y1 1 "
A= 3@ + G2
Y2
c. PULLEY SYSTEM
The pulley system shown on the opposite page is used to hoist the block.

7. 7  How does the acceleration of the end of the rope compare with the
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acceleration of the block? Using the coordinates indicated, the length of
the rope is given by

l=X4+7R 4+ (X —h)+ 7R + (x — ),
where R is the radius of the pulleys. Hence
X = —%i.

The block accelerates half as fast as the hand, and in the opposite
direction.

Our examples so far have involved linear motion only. Let us
look at the dynamics of rotational motion.

A particle undergoing circular motion must have a radial accel-
eration. This sometimes causes confusion, since our intuitive
idea of acceleration usually relates to change in speed rather than
to change in direction of motion. For this reason, we start with as
simple an example as possible.

Block on String 1

Mass m whirls with constant speed v at the end of a string of length £.
Find the force on m in the absence of gravity or friction.

The only force on m is the string force T, which acts toward the center,
as shown in the diagram. It is natural to use polar coordinates. Note
that according to the derivation in Sec. 1.9, the radial acceleration is
a. = ¥ — rf2, where 8 is the angular velocity. a, is positive outward.
Since T is directed toward the origin, T = —TF and the radial equation
of motion is

—T = ma,
m(@F — ré?).

#=R =0and § = v/R. Hence a, = —R@/R)* = —v*/R and

7= ™
R

Note that T is directed toward the origin; there is no outward force
on m. If you whirl a pebble at the end of a string, you feel an cutward
force. However, the force you feel does not act on the pebbile, it acts
on you. This force is equal in magnitude and opposite in direction to
the force with which you pull the pebble, assuming the string’s mass to
be negligible.

In the following example both radial and tangential acceleration
play a role in circular motion.
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Block on String 2

Mass m is whirled on the end of a string length B. The motion is in a
vertical plane in the gravitational field of the earth. The forces on m
are the weight IV down, and the string force T toward the center. The
instantaneous speed is v, and the string makes angle 6 with the hori-
zontal. Find T and the tangential acceleration at this instant.

The lower diagram shows the forces and unit vectors ¥ and 6. The
radial force is —T — W sin 6, so the radial equation of motion is

—(T + W sin )

ma,
= m( — ré?). 1
The tangential force is — W cos 6. Hence

— W cos 0 = may
= m(rf + 2r6). 2
Since r = R = constant, a, = —R(#2?) = —v%/R, and Eq. (1) gives

2
T=ﬁ—ﬂ’sin0.
R

The string can pull but not push, so that T cannot be negative. This
requires that my2/R > W sin §. The maximum value of W sin 6 occurs
when the mass is vertically up; in this case mv?/R > W. If this condi-
tion is not satisfied, the mass does not follow a circular path but starts to
fall; 7 is no longer zero.

The tangential acceleration is given by Eq. (2). Since # = 0 we have

a9=R9
_ Wecos 0‘

m

The mass does not move with constant speed; it accelerates tangentially.
On the downswing the tangential speed increases, on the upswing it
decreases.

The next example involves rotational motion, translational
motion, and constraints.

The Whirling Block

A horizontal frictionless table has a small hole in its center. Block 4 on
the table is connected to block B hanging beneath by a string of negligible
mass which passes through the hole.

Initially, B is held stationary and .4 rotates at constant radius 7, with
steady angular velocity wo. If B is released at { = 0, what is its accel-
eration immediately afterward?

The force diagrams for A and B after the moment of release are shown
in the sketches.



6\
LA
/
//
T
Mp z
VWB

Example 2.8

SEC. 2.4 SOME APPLICATIONS OF NEWTON’S LAWS n

The vertical forces acting on A are in balance and we need not consider
them. The only horizontal force acting on A is the string force T. The
forces on B are the string force T and the weight 1175.

It is natural to use polar coordinates r, 6 for 4, and a single linear
coordinate z for B, as shown in the force diagrams. As usual, the unit
vector F is radially outward. The equations of motion are

—T = MG — rf?2) Radial 1
0 = Ma@0 + 2#)  Tangential 2
Wp—T = Mp? Vertical. 3

Since the length of the string, [, is constant, we have
r+z=1 4

Differentiating Eq. (4) twice with respect to time gives us the constraint
equation

= —2Z 5

The negative sigh means that if A moves inward, B falls. Combining
Egs. (1), (3), and (5), we find

5= VVB - A{ATGZ.
M4+ Mp

It is important to realize that although acceleration can change instan-
taneously, velocity and position cannot. Thus immediately after B is
released, r = rpand § = w,. Hence

WB —_ ﬂf,«ﬂ‘owoz.

50) =
‘0 My + Ms

2(0) can be positive, negative, or zero depending on the value of the
numerator in Eq. (6); if wg is large enough, block B will begin to rise after
release.

The apparently simple problem in the next example has some
unexpected subtleties.

The Conical Pendulum

Mass M hangs by a massless rod of length [ which rotates at constantangular
frequency w, as shown in the drawing on the next page. The mass moves
with steady speed in a circular path of constant radius. Find «, the angle the
string makes with the vertical.

We start with the force diagram. T is the string force and 1V is the
weight of the bob. (Note that there are no other forces on the bob. |f
this is not clear, you are most likely confusing an acceleration with a
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force—a serious error.) The vertical equation of motion is
Tcosa— W =0

because y is constant and § is therefore zero.
To find the horizontal equation of motion note that the bob is accel-

erating in the F direction at rate a, = —w?. Then
—Tsina = —Mrw 2
Since r = [ sin o we have
T sin o = Mlw? sin « 3
or
T = Mlw 4

Combining Egs. (1) and (3) gives
Mlw?cos a = .

As we shall discuss in Sec. 2.5, 1I" = g, where }M is the mass and ¢

is known as the acceleration due to gravity. We obtain
cos o = 9.
lw?

This appears to be the desired solution. For w — «, cos « — 0 and
a — m/2. At high speeds the bob flies out until it is almost horizontal.
However, at low speeds the solution does not make sense. As w—0,
our solution predicts cos a — «, which is nonsense since cos a < 1.
Something has gone wrong. Here is the trouble.

Our solution predicts cos a > 1 for w < \/g/l. When w = \/g/l,
cos @ = 1 and sin a = 0; the bob simply hangs vertically. In going from
Eq. (2) to Eq. (3) we divided both sides of Eq. (2) by sin a and, in this case
we divided by 0, which is not permissible. However, we see that we have
overlooked a second possible solution, namely, sin @ = 0, T' = TI", which
is true for all values of w. The solution corresponds to the pendulum
hanging straight down. Here is a plot of the complete solution.

Physically, for w < V' g/l the only acceptable solution is « =0,

cosa = 1. Forw > V g/l there are two acceptable solutions:
l.cosa =1

2. cosa =

Solution 1 corresponds to the bob rotating rapidly but hanging verti-
cally. Solution 2 corresponds to the bob flying around at an angle with
the vertical. For w > V g/l, solution 1 is unstable—if the system is in
that state and is slightly perturbed, it will jump outward. Can you see
why this is so?
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The moral of this example is that you have to be sure that the mathe-
matics makes good physical sense.

2.5 The Everyday Forces of Physics

When a physicist sets out to design an accelerator, he uses the
laws of mechanics and his knowledge of electric and magnetic
forces to determine the paths that the particles will follow. Pre-
dicting motion from known forces is an important part of physics
and underlies most of its applications. Equally important, how-
ever, is the converse process of deducing the physical interaction
by observing the motion; this is how new laws are discovered. A
classic example is Newton’s deduction of the law of gravitation
from Kepler's laws of planetary motion. The current attempt to
understand the interactions between elementary particles from
high energy scattering experiments provides a more contemporary
illustration.

Unscrambling experimental observations to find the force can be
difficult. In a facetious mood, Eddington once said that force is
the mathematical expression we put into the left hand side of
Newton's second law to obtain results that agree with observed
motions. Fortunately, force has a more concrete physical reality.

Much of our effort in the following chapters will be to learn how
systems behave under applied forces. If every pair of particles
in the universe had its own special interaction, the task would be
impossible. Fortunately, nature is kinder than this. As far as
we know, there are only four fundamentally different types of
interactions in the universe: gravity, electromagnetic interactions,
the so-called weak interaction, and the strong interaction.

Gravity and the electromagnetic interactions can act over a
long range because they decrease only as the inverse square of
the distance. However, the gravitational force always attracts,
whereas electrical forces can either attract or repel. In large
systems, electrical attraction and repulsion cancel to a high
degree, and gravity alone is left. For this reason, gravitational
forces dominate the cosmic scale of our universe. In contrast,
the world immediately around us is dominated by the electrical
forces, since they are far stronger than gravity on the atomic
scale. Electrical forces are responsible for the structure of atoms,
molecules, and more complex forms of matter, as well as the
existence of light.

The weak and strong interactions have such short ranges that
they are important only at nuclear distances, typically 1075 m.
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They are negligible even at atomic distances, 107! m. As its
name implies, the strong interaction is very strong, much stronger
than the electromagnetic force at nuclear distances. It is the
“‘glue’ that binds the atomic nucleus, but aside from this it has
little effect in the everyday world. The weak interaction plays a
less dramatic role; it mediates in the creation and destruction of
neutrinos—particles of no mass and no charge which are essential
to our understanding of matter but which can be detected only by
the most arduous experiments.

Our object in the remainder of the chapter is to become familiar
with the forces which are important in everyday mechanics. Two
of these, the forces of gravity and electricity, are fundamental and
cannot be explained in simpler terms. The other forces we shall
discuss, friction, the contact force, and the viscous force, can be
understood as the macroscopic manifestation of interatomic
forces.

Gravity, Weight, and the Gravitational Field

Gravity is the most familiar of the fundamental forces. It has
close historical ties to the development of mechanics; Newton
discovered the law of universal gravitation in 1666, the same year
that he formulated his laws of motion. By calculating the motion
of two gravitating particles, he was able to derive Kepler’'s empiri-
cal laws of planetary motion. (By accomplishing all this by age
26, Newton established a tradition which still maintains—that great
advances are often made by young physicists.)

According to Newton’'s law of gravitation, two particles attract
each other with a force directed along their line of centers. The
magnitude of the force is proportional to the product of the masses
and decreases as the inverse square of the distance between the
particles.

In verbal form the law is bulky and hard to use. However. we
can reduce it to a simple mathematical expression.

Consider two particles, a and b, with masses M, and M3, respec-
tively, separated by distance r. Let F, be the force exerted on
particle b by particle a. Our verbal description of the magnitude
of the force is summarized by

GM.M
[Fs| = —7;—”

G is a constant of proportionality called the gravitational constant.
Its value is found by measuring the force between masses in a
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known geometry. The first measurements were performed by
Henry Cavendish in 1771 using a torsion balance. The modern
value of G is 6.67 X 101! N-m2/kg?. (G is the least accurately
known of the fundamental constants. Perhaps you can devise a
new way to measure it more precisely.) Experimentally, G is the
same for all materials—aluminum, lead, neutrons, or what have
you. For this reason, the law is called the universal law of
gravitation.

The gravitational force between two particles is central (along
the line of centers) and attractive. The simplest way to describe
these properties is to use vectors. By convention, we introduce
a vector r,, from the particle exerting the force, particle a in this
case, to the particle experiencing the force, particle b. Note that
[tas| = 7. Using the unit vector ¥, = ru/7, we have

GM M, .

F(, = Yab.

r2

The negative sign indicates that the force is attractive. The force
on a due to b is

GM My . GM M, .
Fa = - 2 Fyo = 5 Fop = —Fb,
r r
since fy, = —rs. The forces are equal and opposite, and New-

ton’s third law is automatically satisfied.

The gravitational force has a unique and mysterious property.
Consider the equation of motion of particle b under the gravita-
tional attraction of particle a.

GM .My .
Fb = - Yap
72
= M;,a,,
or
GM, .
Ay = — —— ra.
7'2

The acceleration of a particle under gravity is independent of its
mass! There is a subtle point connected with our cancelation of
M3, however. The ““mass’’ (gravitational mass) in the law of gravi-
tation, which measures the strength of gravitational interaction, is
operationally distinct from the ‘“mass’’ (inertial mass) which char-
acterizes inertia in Newton’s second law. Why gravitational mass
is proportional to inertial mass for all matter is one of the great
mysteries of physics. However, the proportionality has been



