Integration Bee

Eran Reches

I. PROBLEM

Calculate the following integral

$$
\begin{equation*}
I=\int_{0}^{\pi} e^{\cos x} \cos (\sin x) \cos n x \mathrm{~d} x \tag{1}
\end{equation*}
$$

II. SOLUTION

A. First Method

By noticing that the integrand is even, one can extend the integration domain to be symmetric

$$
\begin{equation*}
I=\frac{1}{2} \int_{-\pi}^{\pi} e^{\cos x} \cos (\sin x) \cos n x \mathrm{~d} x \tag{2}
\end{equation*}
$$

The next step is to shift the integration domain by substituting $u=x+\pi$

$$
\begin{equation*}
I=\frac{(-1)^{n}}{2} \int_{0}^{2 \pi} e^{\cos (u-\pi)} \cos (\sin (u-\pi)) \cos n u \mathrm{~d} u \tag{3}
\end{equation*}
$$

Using Euler's identity $e^{i t}=\cos t+i \sin t$ we can further simplify this integral

$$
\begin{equation*}
I=\frac{(-1)^{n}}{2} \int_{0}^{2 \pi} e^{\cos (u-\pi)} \mathcal{R}\left[e^{i \sin (u-\pi)}\right] \cos n u \mathrm{~d} u=\mathcal{R}\left[\frac{(-1)^{n}}{2} \int_{0}^{2 \pi} e^{e^{i(u-\pi)}} \cos n u \mathrm{~d} u\right] \tag{4}
\end{equation*}
$$

Now we are getting to the interesting part. Recall that

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i m x} \mathrm{~d} x=2 \pi \delta_{m, 0} \tag{5}
\end{equation*}
$$

We will use this integral, together with the following series expansion

$$
\begin{equation*}
e^{e^{i(u-\pi)}}=\sum_{m=0}^{\infty} \frac{(-1)^{m} e^{i m u}}{m!} \tag{6}
\end{equation*}
$$

Substituting Eq. (6) in Eq. (4) yields

$$
\begin{equation*}
I=\mathcal{R}\left[\frac{(-1)^{n}}{2} \int_{0}^{2 \pi} \sum_{m=0}^{\infty} \frac{(-1)^{m} e^{i m u}}{m!} \cos n u \mathrm{~d} u\right] \tag{7}
\end{equation*}
$$

Now using Eq. (5)

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i m u} \cos n u \mathrm{~d} u=\int_{0}^{2 \pi} e^{i m u}\left[\frac{e^{i n u}+e^{-i n u}}{2}\right] \mathrm{d} u=\pi\left[\delta_{m,-n}+\delta_{m, n}\right] \tag{8}
\end{equation*}
$$

and inserting back into Eq. (7)

$$
\begin{equation*}
I=\mathcal{R}\left[\frac{(-1)^{n}}{2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!} \pi\left[\delta_{m,-n}+\delta_{m, n}\right]\right] \tag{9}
\end{equation*}
$$

If $n=0$, then

$$
\begin{equation*}
I(n=0)=\frac{1}{2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!} 2 \pi \delta_{m, 0}=\pi \tag{10}
\end{equation*}
$$

and if $n \neq 0$

$$
\begin{equation*}
I(n \neq 0)=\frac{(-1)^{n}}{2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!} \pi \delta_{m,|n|}=\frac{\pi}{2|n|!} \tag{11}
\end{equation*}
$$

Combining results, we finally have

$$
I(n)=\left\{\begin{array}{cc}
\pi & n=0 \tag{12}\\
\frac{\pi}{2|n|!} & n \neq 0
\end{array}\right.
$$

B. Second Method

Another way is to use complex integration methods. Starting again with Eq. (4) and substituting $z=e^{i u}$ we arrive at

$$
\begin{equation*}
I=\mathcal{I}\left[\frac{(-1)^{n}}{4} \int_{C(0,1)} e^{-z}\left(z^{n-1}+z^{-n-1}\right) \mathrm{d} z\right] \tag{13}
\end{equation*}
$$

where $C(0,1)$ is the unit circle in the complex plane. This integral can be easily solved by means of Cauchy's residue theorem to give

$$
\begin{equation*}
I=\mathcal{I}\left[\frac{(-1)^{n}}{4} \cdot 2 \pi i \operatorname{Res}\left(e^{-z}\left(z^{n-1}+z^{-n-1}\right), z=0\right)\right] \tag{14}
\end{equation*}
$$

Calculating the residues is pretty straight-forward

$$
\begin{equation*}
\operatorname{Res}\left(e^{-z}\left(z^{n-1}+z^{-n-1}\right), z=0\right)=\left.\frac{1}{(-n)!} \frac{\mathrm{d}^{-n} e^{-z}}{\mathrm{~d} z^{-n}}\right|_{z=0}+\left.\frac{1}{n!} \frac{\mathrm{d}^{n} e^{-z}}{\mathrm{~d} z^{n}}\right|_{z=0} \tag{15}
\end{equation*}
$$

In Eq. (15) we have used the formula for the residue of a function with a pole of order m, given by $\operatorname{Res}\left(f(z), z=z_{0}\right)=\left.\frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right)\right|_{z=z_{0}}$. In doing so, we follow the convention that a derivative of negative order is zero. This gives

$$
\operatorname{Res}\left(e^{-z}\left(z^{n-1}+z^{-n-1}\right), z=0\right)=\left\{\begin{array}{cc}
2 & n=0 \tag{16}\\
\frac{(-1)^{n}}{|n|!} & n \neq 0
\end{array}\right.
$$

in turn yielding the same result as before

$$
I=\left\{\begin{array}{cl}
\pi & n=0 \tag{17}\\
\frac{\pi}{2|n|!} & n \neq 0
\end{array}\right.
$$

C. Third Method

Notice that our integral is in fact the coefficients of the cosine components in the Fourier series representation of the function $f(x)=e^{\cos x} \cos (\sin x)$. In other words, writing

$$
\begin{equation*}
e^{\cos x} \cos (\sin x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos n x+b_{n} \sin n x\right] \tag{18}
\end{equation*}
$$

our integral is

$$
\begin{equation*}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x \rightarrow I=\frac{\pi}{2} a_{n} \tag{19}
\end{equation*}
$$

This expansion is easily achieved by noting that

$$
\begin{equation*}
e^{\cos x} \cos (\sin x)=\mathcal{R}\left[e^{e^{i x}}\right]=\mathcal{R}\left[\sum_{n=0}^{\infty} \frac{e^{i n x}}{n!}\right]=\sum_{n=0}^{\infty} \frac{1}{n!} \cos n x \tag{20}
\end{equation*}
$$

where we have made used of the Taylor expansion of e^{x}. Thus we arrive again at

$$
I=\left\{\begin{array}{cc}
\pi & n=0 \tag{21}\\
\frac{\pi}{2|n|!} & n \neq 0
\end{array}\right.
$$

but this time much faster.

