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(a) The Lagrangian is given by
1 .
£ = Sm(? +120%) + < (1)
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(b) From E.L equation fro 6 it follows that
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therefore L = Ly = mr26 = const.
(c) Substituting L in (1) it follows that
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(d) Assuming 7(0) = r9,0(0) = ¢,7(0) = 0 yields E = mr2q® — ¢/ro and
L =mriq.

(e) As the energy is conserved, we can get the distances by olving U sy =
E. This yields
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(a) Since the problem has cylindrical symmetry, it is conventeint to work
with cylindrical frame. The Lagrangian is the given by (assuming the
spring has a zero length at rest)

1 . 1
L= §m(7'"2 +726%) — §mw2(r2 + 22), (5)

(b) The Hamiltonian H = rp, + 0py — L then reads
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(¢) Hamilton’s equations are
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From (10) it follows that the angular momentum py is conserved.
(d) From (6) it follows that

Uy = =204 L2 1 22) ()
eI T omr2 2mw Tt A)
(e) Using Q@ = /U/;;(r9)/m where ro solves p, = 0 (eq. (9)) gives
Q = wV/3.
(f) Performing similar calculation as in (1e) gives min max = Va = Va2 —b
where

a = (2mEy — m*w?22)/2m*w?Ey, b = L% /m*w?.

(a) Schroedinger’s equation for a free particle is

—5 v = By, (12)

Denoting k% = 2mFE/h? the eigenvalues and eigenvectors are k? and

eik:p

Yr(z) = N

= [k), (13)

respectively.

(b) There are no boundary conditions, therefore the eigenvalues are con-
tinuous.

(c) A straightforward calculation gives from (y|i)) =1 A = /2.
(d) Calculating P(k) = |(k|¥)|? where

a [P efoc|z\7ik:w
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gives
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(a) Noticing that [t|? is a Gaussian we have that (z) = a.

(b) Similar considerations imply that since (p,) = —ihl where I is a
real number, and since clearly (p,) is a real, I must be zero and so
(pz) = 0.

(c) solving

Plvr) = plvr), (16)

for p = —iha% and |¢) = f/;% gives p = hk. This means that (16) is

an eigenvalues problem with eigenvectors and eigenvalues |¢,) = f/;;
and p = hk, respectively.

(d) An integral expression for |(y|1)|? for k = po/h is

o = | = [ e {2 i

Suppose the road has a deflection angle o with respect to the horizon.
The rider "fills” the normal force N operated by the road, his weight mg
and the centrifugal force mw?R which balances the normal force in the
horizontal directions. Solving

2
(17)

Ncosaa = mg (18)
Nsina = mw’R (19)

for  gives tana = w?R/g.

(a) Denoting the orthonormal eigenstates of A corresponding to eigen-
values A7 = 0 and Ay = 2 by |1) and |2), respectively, it follows

that
[¥) = [x) = (1]z)[1) + (2[x)[2). (20)
(b) The probabilities are given by
P(A=0) = [(1]a)], (21)
P(A=2) = [(2x)]. (22)

(¢) Decomposing A using the spectral theorem yields A = 2|2)(2|. Clearly
(4) = 2P( = 2) = 2|2/}, (23)
On the other hand

(W] Al) = ((2[1)(1[+(x]2)(2])2]2) 2| (L) [1)+(2]2)[2)) = 2<$|2><(22|f)>

(d) From U = ' operating on |¢)) we have

[0(t)) = e|z) = (1a)[1) + (2x)e?*]2). (25)

= 2|{2fx)[
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Expressing |y) using the eigenstates of A gives

ly) = (Ly)[1) + 2[y)[2)- (26)

A mixed state occurs with some nonzero a probability |(y|(¢))|* > 0.
Thus, the liftime of the state |1(0)) = |z) is obtained by solving

[{yl(to))[* = la + e*"°b]* = |af* + b]* + 2Re(abe®"*) =0 (27)
for tg where a = (1|y)(1]z) and b = (2|y)(2|z)

In x1,y1, T2, y2 system the Lagrangian reads

1 ) . 1 . .
L= §m1(:c§ + yf) + §m2(x§ + yg). (28)

Together with the constraint
(1 = 22)* + (1 — y2)* = L* (29)

L can be written using 3 generalized coordinates.
In CM and r =r; —ra (r = |ry — ra|) system the Lagrangian takes
the form

1 R 1 .
L= 5MR2 + §u(7'“2 +726%), (30)

where M = mj +mg and p = mymso/M is the reduced mass. Adding
the constraint » = L, (30) reduces to

1. . 1 )
L= 5MR2 + §ML202- (31)

Since (31) does not depend on R it follows that Poy = MR is
conserved.

Similarly, since (31) does not depend on @ it follows that the angular
momentum pL%6 is conserved. Therefore 6 in (31) can be replaced
by w constant.



