<u>פקודות ופונקציות ב MATLAB</u>

General Purpose Commands

Operators and Special Characters

```
+ ,-, *, .*, ^, .^, /, .\, ./, :, (), [], ., ..., ,,; , %, ', =

Backslash .Left-division operator. Solve a system of linear equations.
```

Commands for Managing a Session

clc Clears Command window.

clear Removes variables from memory.

Special Variables and Constants

ans Most recent answer.

eps Accuracy of floating-point precision.

i,j The imaginary unit $\sqrt{-1}$.

pi The number π

Input/Output Commands

disp Displays contents of an array or string.

Vector, Matrix and Array Commands

Array Commands

size

```
find
             Finds indices of nonzero elements.
      ind = find(X)
      ind = find(X, k)
       [row, col] = find(X)
length
             Computers number of elements.
      numberOfElements = length(array)
linspace
            Creates regularly spaced vector.
      y = linspace(a,b)
      y = linspace(a,b,n)
             Creates logarithmically spaced vector.
logspace
      y = logspace(a,b)
      y = logspace(a,b,n)
max
             Returns largest element.
      C = max(A)
       [C,I] = max(A)
min
             Returns smallest element.
      C = min(A)
       [C,I] = min(A)
reshape
             Change size
      B = reshape(A, m, n)
             Replicate and tile array
repmat
      B = repmat(A, m, n)
```

Computes array size

d = size(X)
[m,n] = size(X)

```
sort
             Sorts each column.
      B = sort(A)
      B = sort(A, dim)
      [B, IX] = sort(A)
sum
             Sums each column.
      B = sum(A)
      B = sum(A, dim)
sub2ind
             Convert subscripts to linear indices
      linearInd = sub2ind(matrixSize, rowSub, colSub)
ind2sub
             Subscripts from linear index
      [I,J] = ind2sub(siz,IND)
numel
             Number of elements in array or subscripted array expression
      n = numel(A)
```

Special Matrices

eve Creates an identity matrix. ones Creates an array of ones. zeros Creates an array of zeros.

diag Diagonal matrices and diagonals of matrix

Matrix Arithmetic

cross Computes cross products. C = cross(A, B)C = cross(A, B, dim)dot Computes dot products. C = dot(A, B)

C = dot(A, B, dim)

Matrix Commands for Solving Linear Equations

det Computes determinant of an array. inv Computes inverse of a matrix.

Computes pseudoinverse of a matrix. Solve linear equations in the leastpinv

squares sense.

rank Computes rank of a matrix. trace Sum of diagonal elements. norm Vector and matrix norms.

Programming

Logical and Relational Operators

Relational operator: equal to. ~= Relational operator: not equal to. Relational operator: less than. <

<= Relational operator: less than or equal to.

Relational operator: greater than. >

>= Relational operator: greater than or equal to.

& Logical operator: AND. Logical operator: OR. Logical operator: NOT. xor Logical operator: EXCLUSIVE OR.

Program Flow Control

for Repeats statements a specific number of times

FOR variable = drange(colonop)

statements

end

if Executes statements conditionally.

if expression
 statements
elseif expression
 statements

else

statements

end

while Repeats statements an indefinite number of times.

while expression statements

end

Mathematical Functions

Exponential and Logarithmic Functions

exp Exponential; ex.

log Natural logarithm; ln(x).

log 10 Common (base 10) logarithm; log(x) = log 10(x).

sqrt Square root; x.

Trigonometric Functions

cos, cot, csc, sec, sin, tan.

Inverse functions: acos, acot, acsc, asec, asin, atan,

Numeric Functions

ceil Rounds to the nearest integer upward.floor Rounds to the nearest integer downward.round Rounds towards the nearest integer.

sign Signum function.

rem Remainder after divisionmod Modulus after division

Numerical Methods

Polynomial

eig Computes the eigenvalues of a matrix.

d = eig(A)[V,D] = eig(A)

poly Computes polynomial from roots.roots Computes polynomial roots.

r = roots(c)

Root Finding and Minimization

```
 \begin{array}{ll} \textit{fminbnd} & \text{Find minimum of single-variable function on fixed interval} \\ & \texttt{x} = \texttt{fminbnd}(\texttt{fun}, \texttt{x1}, \texttt{x2}) \\ \textit{fminsearch} & \text{Find minimum of unconstrained multivariable function} \\ & \texttt{using derivative-free method} \\ & \texttt{x} = \texttt{fminsearch}(\texttt{fun}, \texttt{x0}) \\ \textit{fzero} & \text{Finds zero of single-variable function.} \\ & \texttt{x} = \texttt{fzero}(\texttt{fun}, \texttt{x0}) \\ \end{array}
```

Numerical Differentiation Functions

```
Computes the difference between adjacent elements in the vector x.

Y = diff(X)

Y = diff(X, n)

Y = diff(X, n, dim)
```

Plotting Commands

Basic xy Plotting Commands

```
axis

Sets axis limits.

axis ([xmin xmax ymin ymax])

grid

plot

Generates xy plot.

plot (Y)

plot (X1, Y1, ..., Xn, Yn)

figure

Sets axis limits.

Axis ([xmin xmax ymin ymax])

Generates ymin ymax])

Generates xy plot.

plot (Y)

plot (X1, Y1, ..., Xn, Yn)

figure

Opens a new figure window.
```