Algebraic multiplicity of
$$\lambda_0$$
 is $\max k$ s.t. $(\lambda - \lambda_0)^k$ divides $P_A(\lambda)$ = $AI - AI = 0$

Th.: Geo. \leq Alge.

Th.:

1. is eigenvectors of different eigenvalues are linearly independent.

2. $A \in \mathbb{R}^{n \times n}$ is diagonalizable \Leftrightarrow $P_A(\lambda) = |AI - AI| = 0$
 \Rightarrow $P_A(\lambda) = |II_1(\lambda - \lambda_1)^{n \times 1}$ and for all λ_i : Geo. \Rightarrow Alge.

Note: $P = (v_1, \dots, v_n), v_i$ is eigenvector and λ_i its eigenvalue $AI = AI - AI$. It is diagonalizable by unitary: $P^*AP = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_1 & \lambda_2 & \lambda_1 & \lambda_2 & \lambda$

Th.(Cayley-Hamilton) $P_A(A) = 0$