אינטגרל לא מסויים/דוגמאות: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
 
(56 גרסאות ביניים של 7 משתמשים אינן מוצגות)
שורה 1: שורה 1:
==1==
==1==
<math>\int \frac{1}{x} dx = ln|x|+c</math>
<math>\int\frac{dx}{x}=\ln(|x|)+C</math>


==2==
==2==
 
<math>\int\frac{dx}{\sqrt{x^2-4x-5}}</math>
<math>\int \frac{dx}{\sqrt{x^{2}-4x-5}}</math>


===פתרון===
===פתרון===
 
;השלמה לריבוע והצבה ראשונה:
'''השלמה לריבוע והצבה ראשונה:'''


הדבר הראשון שנעשה הוא התהליך של השלמה לריבוע, שבסופו נקבל כי:
הדבר הראשון שנעשה הוא התהליך של השלמה לריבוע, שבסופו נקבל כי:


<math>x^{2}-4x-5=(x-2)^{2}-9</math>
<math>x^2-4x-5=(x-2)^2-9</math>


ולכן ההצבה הראשונה שנעשה תהא: <math>u=x-2</math>, וכמובן קל להבין כי <math>dx=du</math>.
ולכן ההצבה הראשונה שנעשה תהא: <math>u=x-2</math> , וכמובן קל להבין כי <math>dx=du</math> .


<math>\int \frac{dx}{\sqrt{x^{2}-4x-5}}=\int \frac{du}{\sqrt{u^{2}-9}}</math>
<math>\int\frac{dx}{\sqrt{x^2-4x-5}}=\int\frac{du}{\sqrt{u^2-9}}</math>




'''פונקציות טריגונומטריות היפרבוליות (הערה):'''
;פונקציות טריגונומטריות היפרבוליות (הערה):


ניעזר בתכונות של <math>sinh(x)</math> ושל <math>cosh(x)</math>:
ניעזר בתכונות של <math>\sinh(x)</math> ושל <math>\cosh(x)</math> :


<math>(cosh(x))'=sinh(x)=\int cosh(x)dx</math>
<math>(\cosh(x))'=\sinh(x)=\int\cosh(x)dx</math>


וכן בזהות: <math>cosh^{2}(x)=sinh^{2}(x)+1</math>
וכן בזהות: <math>\cosh^2(x)=\sinh^2(x)+1</math>




'''הצבה שנייה:'''
;הצבה שניה:


נציב: <math>u=3cosh(t)\Rightarrow du=3sinh(t)dt</math>
נציב: <math>u=3\cosh(t)\Rightarrow du=3\sinh(t)dt</math>


<math>\int \frac{dx}{\sqrt{x^{2}-4x-5}}=\int \frac{du}{\sqrt{u^{2}-9}}=\int \frac{3sinh(t)dt}{\sqrt{9cosh^{2}(t)-9}}=\int \frac{3sinh(t)dt}{3sinh(t)}=\int dt=t+constant</math>
<math>\int\frac{dx}{\sqrt{x^2-4x-5}}=\int\frac{du}{\sqrt{u^2-9}}=\int\frac{3\sinh(t)}{\sqrt{9\cosh^2(t)-9}}dt=\int\frac{3\sinh(t)}{3\sinh(t)}dt=\int dt=t+C</math>


ולהחזיר את t לx, אני משאיר לכם (:
ולהחזיר את t ל-x, אני משאיר לכם (:


==3==
==3==
האינטגרל הבא לקוח מספר התרגילים של בועז צבאן (1.24, אם אינני טועה)
האינטגרל הבא לקוח מספר התרגילים של בועז צבאן (1.24, אם אינני טועה)


<math>\int \frac{sin^{2}(x)}{cos^{6}(x)}dx</math>
<math>\int\frac{\sin^2(x)}{\cos^6(x)}dx</math>


===פתרון===
===פתרון===
<math>\int \frac{sin^{2}(x)}{cos^{6}(x)}dx=\begin{Bmatrix}
<math>\int\frac{\sin^2(x)}{\cos^6(x)}dx=\begin{Bmatrix}t=\tan(x)\\ dt=\frac{dx}{\cos^2(x)}\end{Bmatrix}=\begin{Bmatrix}\sin^2(x)=\frac{t^2}{t^2+1}\\ \cos^2(x)=\frac{1}{t^2+1}\end{Bmatrix}=\int\frac{\frac{t^2}{t^2+1}}{\frac{1}{(t^2+1)^2}}dt=</math>
t=tanx\\  
dt=\frac{dx}{cos^{2}(x)}
\end{Bmatrix}
=\begin{Bmatrix}
sin^{2}x=\frac{t^{2}}{t^{2}+1}\\  
cos^{2}x=\frac{1}{t^{2}+1}
\end{Bmatrix}
=\int \frac{\frac{t^{2}}{t^{2}+1}}{\frac{1}{(t^2+1)^{2}}}dt=</math>


<math>\int \frac{sin^{2}(x)}{cos^{6}(x)}dx
<math>\int\frac{\sin^2(x)}{\cos^6(x)}dx=\int\frac{\frac{t^2}{t^2+1}}{\frac{1}{(t^2+1)^2}}dt=\int t^2(t^2+1)dt=\cdots=\frac{t^5}{5}+\frac{t^3}{3}+C</math>
=\int \frac{\frac{t^{2}}{t^{2}+1}}{\frac{1}{(t^2+1)^{2}}}dt=\int t^{2}(t^{2}+1)dt=\cdots =\frac{t^{5}}{5}+\frac{t^{3}}{3}+c</math>
 
::יש טעות בהצבה של <math>\cos^2(x)</math> , שכן <math>\cos^6(x)=(\cos^2(x))^3=\frac{1}{(t^2+1)^3}</math>
 
:::אבל צריך לקחת בחשבון גם את ה-dt
::::צודק. נראה לי שאם אני לא ראיתי את זה, גם אחרים לא יראו ;)


==4==
==4==
בדומה לאינטגרל הקודם, לקוח מבועז צבאן (1.27)
בדומה לאינטגרל הקודם, לקוח מבועז צבאן (1.27)


<math>\int \sqrt{2-x-x^{2}}dx</math>
<math>\int\sqrt{2-x-x^2}dx</math>


===דרך א'===
===דרך א'===
'''א.''' ניתן להשתמש בהצבת אוילר, אבל אנחנו ננקוט בטקטיקה שונה.


'''א.''' ניתן להשתמש בהצבת אויילר, אבל אנחנו ננקוט בטקטיקה שונה.
<math>\int\sqrt{2-x-x^2}dx=\int\sqrt{1.5^2-(x+0.5)^2}dx=\int\sqrt{1.5^2-u^2}du</math>
 
<math>\int \sqrt{2-x-x^{2}}dx=\int \sqrt{1.5^{2}-(x+0.5)^{2}}dx=\int \sqrt{1.5^{2}-u^{2}}du</math>
 


הצבה ראשונה: <math>u=x+0.5\Rightarrow dx=du</math>
הצבה ראשונה: <math>u=x+0.5\Rightarrow dx=du</math>




הצבה שנייה: <math>u=1.5sint\Rightarrow du=1.5costdt</math>
הצבה שניה: <math>u=1.5\sin(t)\Rightarrow du=1.5\cos(t)dt</math>




ואם נחזור לחישוב האינטגרל,
ואם נחזור לחישוב האינטגרל,


<math>\int \sqrt{1.5^{2}-u^{2}}du=\int 1.5\sqrt{1-sin^{2}(t)} \cdot 1.5cos(t)dt=2.25\int cos^{2}(t)dt=2.25\int\frac{cos2t-1}{2}dt=2.25(\frac{sin2t}{4}-\frac{t}{2})+c </math>
<math>\int\sqrt{1.5^2-u^2}du=\int 1.5\sqrt{1-\sin^2(t)}\cdot1.5\cos(t)dt=2.25\int\cos^2(t)dt=2.25\int\frac{\cos(2t)+1}{2}dt=2.25\left(\frac{\sin(2t)}{4}+\frac{t}{2}\right)+C</math>


ומכאן מעבירים את t לx.
ומכאן מעבירים את t ל-x.


===דרך ב'===
===דרך ב'===
ההצבה הראשונה נשארת כפי שהייתה, אך הפעם לא נעשה הצבה שניה אלא נשתמש באינטגרציה בחלקים:
ההצבה הראשונה נשארת כפי שהייתה, אך הפעם לא נעשה הצבה שניה אלא נשתמש באינטגרציה בחלקים:


<math>\int \sqrt{1.5^{2}-u^{2}}du=\int (u)'\sqrt{1.5^{2}-u^{2}}du=u\sqrt{1.5^{2}-u^{2}}+\int \frac{u^{2}du}{\sqrt{1.5^{2}-u^{2}}}</math>
<math>\int\sqrt{1.5^2-u^2}du=\int (u)'\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+\int\frac{u^2du}{\sqrt{1.5^2-u^2}}</math>
 


כעת נוכל להבחין כי מתקיים:
כעת נוכל להבחין כי מתקיים:


<math>\int\frac{u^2}{\sqrt{1.5^2-u^2}}du=\int\frac{u^2-1.5^{2}+1.5^2}{\sqrt{1.5^2-u^2}}du=\int\frac{1.5^2}{\sqrt{1.5^2-u^2}}du-\int\sqrt{1.5^2-u^2}du</math>


<math>\int \frac{u^{2}du}{\sqrt{1.5^{2}-u^{2}}}=\int \frac{u^{2}-1.5^{2}+1.5^{2}}{\sqrt{1.5^{2}-u^{2}}}du=\int\frac{1.5^{2}}{\sqrt{1.5^{2}-u^{2}}}du-\int\sqrt{1.5^{2}-u^{2}}du  </math>
כעת נביט רק על האינטגרל הראשון ונציב: <math>1.5v=u</math>


 
<math>\int\frac{1.5^2}{\sqrt{1.5^2-u^2}}du=1.5^2\int\frac{1.5}{1.5\sqrt{1-v^2}}dv=1.5^2\arcsin(v)=2.25\arcsin\left(\frac{2u}{3}\right)+C</math>
כעת נביט רק על האינטגרל הראשון ונציב:  <math>1.5v=u</math>
 
<math>\int\frac{1.5^{2}}{\sqrt{1.5^{2}-u^{2}}}du=1.5^{2}\int \frac{1.5dv}{1.5\sqrt{1-v^{2}}}=1.5^{2}arcsin(v)=2.25arcsin(\frac{2u}{3})+c </math>


אם נחזור לאינטגרל המקורי נקבל:
אם נחזור לאינטגרל המקורי נקבל:


<math>\int \sqrt{1.5^{2}-u^{2}}du=u\sqrt{1.5^{2}-u^{2}}+2.25arcsin(\frac{2u}{3})-\int \sqrt{1.5^{2}-u^{2}}du </math>
<math>\int\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+2.25\arcsin\left(\frac{2u}{3}\right)-\int\sqrt{1.5^2-u^2}du</math>


<math>2\int \sqrt{1.5^{2}-u^{2}}du=u\sqrt{1.5^{2}-u^{2}}+2.25arcsin(\frac{2u}{3})+c</math>
<math>2\int\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+2.25\arcsin\left(\frac{2u}{3}\right)+C</math>


וסיימנו (:
וסיימנו (:


==5==
==5==
אינטגרל חביב שנלקח ממבחן בחדו"א בב"ג (של מדעי המחשב)
<math>\int\frac{dx}{x+\sqrt[n]{x}}</math> כאשר <math>n\in\N</math> .
===פתרון===
הכוונה היא עבור <math>n>1</math> , עבור <math>n=1</math> תסתכלו בדוגמא הראשונה.
<math>\int\frac{dx}{x+\sqrt[n]{x}}=\begin{Bmatrix}t^n=x\\nt^{n-1}dt=dx\end{Bmatrix}=\int\frac{nt^{n-1}}{t^n+t}dt=n\int\frac{t^{n-2}}{t^{n-1}+1}dt=\begin{Bmatrix}k=t^{n-1}+1\\dk=(n-1)t^{n-2}dt\end{Bmatrix}=</math>
<math>\int\frac{dx}{x+\sqrt[n]{x}}=\frac{n}{n-1}\int\frac{dk}{k}=\frac{n}{n-1}\ln(|k|)+c=\frac{n}{n-1}\ln\Big(|x^{\frac{n-1}{n}}+1|\Big)+C</math>
==6==
<math>\int\frac{\arctan(e^x)}{e^x}dx</math>
===פתרון===
נעזר באינטגרציה בחלקים.
<math>\int\frac{\arctan(e^{x})}{e^{x}}dx=\int\arctan(e^{x})e^{-x}dx=\begin{Bmatrix}du=e^{-x}dx\Rightarrow u=-e^{-x}\\ v=\arctan(e^{x})\Rightarrow dv=\frac{e^x}{1+e^{2x}}dx\end{Bmatrix}=-e^{-x}\arctan(e^x)+\int\frac{dx}{1+e^{2x}}</math>
פתאום זה נראה יותר אנושי, כעת נסתכל על האינטגרל שנותר:
<math>\int\frac{dx}{1+e^{2x}}=\begin{Bmatrix}t=e^{2x}\\dt=2t\,dx\end{Bmatrix}=\int\frac{dt}{2t(1+t)}=
\int\frac{dt}{2t}-\int\frac{dt}{2t+2}=0.5\big(\ln(|t|)-\ln(|t+1|)\big)+C=0.5\ln\left(\frac{e^{2x}}{1+e^{2x}}\right)+C</math>
לבסוף:
<math>\int\frac{\arctan(e^x)}{e^x}dx=\ln\left(\frac{e^x}{\sqrt{1+e^{2x}}}\right)-e^{-x}\arctan(e^x)+C</math>
==7==
<math>\int\frac{\sqrt{x^2-16}}{x}dx</math>
===פתרון===
נעשה את ההצבה הבאה: <math>x=\frac{4}{\cos(u)}\Rightarrow dx=\frac{4\sin(u)}{\cos^2(u)}du</math>
<math>\int\frac{\sqrt{x^2-16}}{x}dx=\int\frac{\sqrt{\frac{16}{\cos^2(u)}-16}}{\frac{4}{\cos(u)}}\cdot\frac{4\sin(u)}{\cos^2(u)}du=
\int 4\tan^2(u)du=4\int\big(\sec^2(u)-1\big)du</math>
<math>=4\int\sec^2(u)du-4\int du=4\big(\tan(u)-u\big)+C</math>
מההצבה הראשונית מתקבל:
<math>x=\frac{4}{\cos(u)}\Rightarrow u=\arccos\left(\frac{4}{x}\right)</math>
לבסוף (אחרי פענוח):
<math>\int\frac{\sqrt{x^2-16}}{x}dx=\sqrt{x^2-16}-4\arccos\left(\frac{4}{|x|}\right)+C</math>
==8==
אחד קליל מהחוברת של בועז (:,
<math>\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx</math>
===פתרון===
נעזר באינטגרציה בחלקים:
<math>\begin{Bmatrix}u=-\ln(x)\\dv=\frac{1}{x}\end{Bmatrix}\qquad\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx={\color{blue}-\int\frac{\ln(x)}{x}dx=-\ln(x)^2+\int\frac{\ln(x)}{x}dx}</math>
קיבלנו:
<math>-2\int\frac{\ln(x)}{x}dx=-\ln(x)^2</math>
לבסוף:
<math>\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx=-\frac{\ln(x)^2}{2}+C</math>
==9==
<math>\int\frac{\arcsin(x)}{x^2}dx</math>
===פתרון===
ראשית נפעיל אינטגרציה בחלקים כאשר: <math>v=\arcsin(x)\ ,\ du=\dfrac{dx}{x^2}</math>
<math>\int\frac{\arcsin(x)}{x^2}dx=-\frac{\arcsin(x)}{x}+\int\frac{dx}{x\sqrt{1-x^2}}</math>
כעת נחשב את האינטגרל השני שקיבלנו:
<math>\int\frac{dx}{x\sqrt{1-x^2}}=\begin{Bmatrix}x=\cos(u)\\dx=\sin(u)du\end{Bmatrix}=\int\dfrac{\sin(u)}{\cos(u)\sqrt{1-\cos^2(u)}}du=\int \frac{du}{\cos(u)}</math>
וכעת ניעזר בהצבה האוניברסלית כדי למצוא את האינטגרל החדש:
<math>\begin{align}\int\frac{du}{\cos(u)}&=\int\frac{2}{1+t^2}\cdot\frac{1+t^2}{1-t^2}dt=\int\frac{2dt}{(1+t)(1-t)}=\int\frac{dt}{1-t}+\frac{dt}{1+t}\\&=\ln\big(|1+t|\big)-\ln\big(|1-t|\big)+C=\ln\left(\left|\frac{1+t}{1-t}\right|\right)+C\end{align}</math>
כרגיל להחזיר ולהנות (:
==10==
<math>\int x^2\sqrt{a^2-x^2}dx</math>
נציב <math>x=a\sin(u)\ ,\ dx=a\cos(u)du</math>
<math>\int x^2\sqrt{a^2-x^2}dx=\int a^2\sin^2(u)\sqrt{a^2-a^2\sin^2(u)}a\cos(u)du=a^4\int\big(\sin(u)\cos(u)\big)^2du</math>
<math>=\dfrac{a^4}{4}\int\sin^2(2u)du=\dfrac{a^4}{4}\int\frac{1-\cos(4u)}{2}du=\dfrac{a^4}{8}\left(\int du-\int\cos(4u)du\right)=\dfrac{a^4}{8}\left(u-\dfrac{\sin(4u)}{4}\right)+C</math>
<math>=\dfrac{a^4\big(u-\sin(u)\cos(u)\cos(2u)\big)}{8}+C</math>
מההצבה הראשונית מתקבל:
<math>x=a\sin(u)\Rightarrow u=\arcsin\left(\frac{x}{a}\right)</math>
לבסוף:
<math>\int x^2\sqrt{a^2-x^2}dx=\dfrac{a^4\arcsin\left(\frac{x}{a}\right)+x(2x^2-a^2)\sqrt{a^2-x^2}}{8}+C</math>
==11==
<math>\int x^2\sqrt{a^2+x^2}dx</math>
הצבה היפרבולית <math>x=a\sinh(u)\ ,\ dx=a\cosh(u)du</math>
[http://en.wikipedia.org/wiki/Hyperbolic_function נוסחאות לפונקציות היפרבוליות]
==12==
<math>\int\frac{\sin(x)\cos(x)}{\sqrt{a\sin^2(x)+b\cos^2(x)}}dx</math>
===פתרון===
<math>\int\frac{\sin(x)\cos(x)}{\sqrt{a\sin^2(x)+b\cos^2(x)}}dx=\int\frac{\sin(x)\cos(x)}{\sqrt{(a-b)\sin^2(x)+b}}dx=\begin{Bmatrix}t=\sin(x)\\dt=\cos(x)dx\end{Bmatrix}=\int\frac{t}{\sqrt{(a-b)t^2+b}}dt=\begin{Bmatrix}u=(a-b)t^{2}+b\\ du=2(a-b)tdt\end{Bmatrix}=</math>
<math>\frac{1}{2a-2b}\int\frac{du}{\sqrt u}=\frac{\sqrt u}{a-b}+C=\frac{\sqrt{(a-b)t^2+b}}{a-b}+C=\frac{\sqrt{(a-b)\sin^2(x)+b}}{a-b}+C</math>
===פתרון (יותר מוצלח כמסתבר)===
להציב <math>t=a\sin^2(x)+b\cos^2(x)</math>
==13==
<math>\int\sqrt{\tan^2(x)+2}dx</math>
===פתרון (לא מלא)===
זה לקח לי שני עמודים בכתב יד, זה נורא (אני בטוח שיש פתרון יותר חכם)
'''הצבה 1:''' <math>t=\tan(x)</math>
'''הצבה 2:''' <math>t=\sqrt2\sinh(u)</math>
אח"כ צריך לשחק עם מה שמקבלים (לפי תכונות של קוסינוס וסינוס היפרבולי), ואז להעביר את זה לייצוג המקורי.
ואז, '''הצבה 3:''' <math>k=e^{2u}</math>
מכאן זו פונקציה רצינואלית של לינארי חלקי פולינום ממעלה 2, זה לא בעיה בהשוואה למה שהלך למעלה.


אינטגרל חביב שנלקח ממבחן בחדו"א בב"ג (של מדעי המחשב)
במקרה הכי גרוע, תהיה הצבה 4.


<math>\int \frac{dx}{x+\sqrt[n]{x}}</math> כאשר <math> n\in\mathbb{N}</math>.
==14==
<math>\int\frac{dx}{\sqrt[4]{\sin^3(x)\cos^5(x)}}</math>


===פתרון===
===פתרון===
<math>\int\frac{dx}{\sqrt[4]{\sin^3(x)\cos^5(x)}}=\int\frac{dx}{\cos(x)\sqrt{\sin(x)}\sqrt[4]{\sin(x)\cos(x)}}=\int\frac{\sqrt{\sin(x)}}{\cos(x)\sin(x)\sqrt[4]{\sin(x)\cos(x)}}dx</math>


הכוונה היא עבור n>1, עבור n=1 תסתכלו בדוגמא הראשונה.
<math>=2\int\frac{\sqrt[4]{\sin^2(x)}}{\sin(2x)\sqrt[4]{\sin(x)\cos(x)}}dx=2\int\frac{\sqrt[4]{\tan(x)}}{\sin(2x)}dx</math>


<math>\int \frac{dx}{x+\sqrt [n]{x}}=\begin{Bmatrix}
t^{n}=x\\
nt^{n-1}dt=dx
\end{Bmatrix}
=\int \frac{nt^{n-1}}{t^{n}+t}dt=n\int \frac{t^{n-2}}{t^{n-1}+1}dt=
\begin{Bmatrix}
k=t^{n-1}+1\\
dk=(n-1)t^{n-2}dt
\end{Bmatrix}=</math>


כעת נציב: <math>t^4=\tan(x)</math>


<math>\int \frac{dx}{x+\sqrt [n]{x}}=\frac{n}{n-1}\int \frac{dk}{k}=\frac{n}{n-1}ln|k|+c= \frac{n}{n-1}ln|x^{\frac {n-1}{n}}+1|+c</math>


==6==
<math>2\int\frac{\sqrt[4]{\tan(x)}}{\sin(2x)}dx=2\int\frac{t}{\frac{2t^4}{t^8+1}}\cdot\frac{4t^3}{(t^8+1)}dt=2\int\frac{4t^4}{2t^4}dt=4\int dt=4\sqrt[4]{\tan(x)}+C</math>


<math>\int \frac{arctan(e^{x})}{e^{x}}dx</math>
==15==
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx</math>


===פתרון===
===פתרון===
(קרדיט מלא לסורקין) תוקן! סורקין לא סרוקין ולא צריך קרדיט...


ניעזר באינטגרציה בחלקים.


<math>\int \frac{arctan(e^{x})}{e^{x}}dx=\int arctan(e^{x})e^{-x}dx=\begin{Bmatrix}
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx=\int\frac{\ln(x)}{\ln(x)^2}dx-\int\frac{dx}{\ln(x)^2}=\int\frac{dx}{\ln(x)}-\int\frac{dx}{\ln(x)^2}</math>
du=e^{-x}dx\Rightarrow u=-e^{-x}\\
v=arctan(e^{x})\Rightarrow dv=\frac{e^{x}dx}{1+e^{2x}}
\end{Bmatrix}
=-e^{-x}arctan(e^{x})+\int\frac{dx}{1+e^{2x}}</math>




פתאום זה נראה יותר אנושי, כעת נסתכל על האינטגרל שנותר:
כעת נתמקד באינטגרל הראשון, נפעיל אינטגרציה בחלקים:
 
<math>\int\frac{dx}{\ln(x)}=\begin{Bmatrix}u=x&du=dx\\v=\frac{1}{\ln(x)}&dv=-\frac{dx}{x\ln(x)^2}\end{Bmatrix}=\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2}</math>
 
 
ונשים לב כי מתקיים (באופן די מגניב):


<math>\int\frac{dx}{1+e^{2x}}=\begin{Bmatrix}
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx={\color{blue}\int\frac{dx}{\ln(x)}}-\int\frac{dx}{\ln(x)^2}={\color{blue}\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2}}-\int\frac{dx}{\ln(x)^2}</math>
t=e^{2x}\\  
dt=2tdx
\end{Bmatrix}=
\int \frac{dt}{2t(1+t)}=\int \frac{dt}{2t}-\int \frac{dt}{2t+2}=0.5(ln|2t|-ln|2t+2|+c)=0.5ln(2e^{2x})-0.5ln(2e^{2x}+2)+c</math>


כל שנותר הוא לאחד את התוצאות, ולקבל את התוצאה הסופית.
לבסוף:


==7==
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx=\frac{x}{\ln(x)}+C</math>


<math>\int \frac{\sqrt{x^{2}-16}}{x}dx</math>
==16==
<math>\int \frac {\sqrt{1-\sqrt[3]{x}}}{x\cdot \sqrt{1+\sqrt[3]{x}}}dx</math>


===פתרון===
===פתרון===


נעשה את ההצבה הבאה: <math>x=\frac{4}{cosu}\Rightarrow
הצבה <math>1-\sqrt[3]{x}=t^2</math>
dx=\frac{4sinu}{cos^{2}u}du</math>
 
לאחר מכן הצבה טריגונומטרית <math>t=\sqrt{2}sin(u)</math>
 
ולאחר מכן ההצבה האוניברסאלית של טאנגנס חצי זוית
 
==17==
<math>I_m=\int sin^m(x)dx</math>
 
אם <math>m=2k+1</math> הינו אי זוגי, אזי:
 
<math>I_m=\int (sin^2(x))^ksin(x)dx </math>
 
נבצע את ההצבה <math>t=cosx</math> לקבל
 
<math>I_m=\int -(1-t^2)^kdt</math> וזה פתיר וקל.
 
 
כעת, נניח כי <math>m=2k</math> זוגי:
 
<math>I_m=\int sin^{2k}(x)dx = \int (sin^2(x))^kdx = \int (\frac{1-cos2x}{2})^k dx </math>


<math>\int \frac{\sqrt{x^{2}-16}}{x}dx=\int \frac{\sqrt{\frac{16}{cos^{2}u}-16}}{\frac{4}{cosu}}\cdot \frac{4sinu}{cos^{2}u}du=\int 4tan^{2}udu=\int (4tan^{2}+4-4)udu=4tanu-4u+c</math>
וזו בעייה במעלה נמוכה יותר של אינטגרל על קוסינוס


תחזירו לx לבד, בכל מקרה אני עצלן ואף אחד לא יקרא את זה!
אם k אי זוגי אז פותרים באופן דומה להתחלה, ואם לא שוב מקטינים את החזקה על ידי זהות זוית כפולה של קוסינוס.

גרסה אחרונה מ־22:41, 10 בינואר 2017

1

[math]\displaystyle{ \int\frac{dx}{x}=\ln(|x|)+C }[/math]

2

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-4x-5}} }[/math]

פתרון

השלמה לריבוע והצבה ראשונה

הדבר הראשון שנעשה הוא התהליך של השלמה לריבוע, שבסופו נקבל כי:

[math]\displaystyle{ x^2-4x-5=(x-2)^2-9 }[/math]

ולכן ההצבה הראשונה שנעשה תהא: [math]\displaystyle{ u=x-2 }[/math] , וכמובן קל להבין כי [math]\displaystyle{ dx=du }[/math] .

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-4x-5}}=\int\frac{du}{\sqrt{u^2-9}} }[/math]


פונקציות טריגונומטריות היפרבוליות (הערה)

ניעזר בתכונות של [math]\displaystyle{ \sinh(x) }[/math] ושל [math]\displaystyle{ \cosh(x) }[/math] :

[math]\displaystyle{ (\cosh(x))'=\sinh(x)=\int\cosh(x)dx }[/math]

וכן בזהות: [math]\displaystyle{ \cosh^2(x)=\sinh^2(x)+1 }[/math]


הצבה שניה

נציב: [math]\displaystyle{ u=3\cosh(t)\Rightarrow du=3\sinh(t)dt }[/math]

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-4x-5}}=\int\frac{du}{\sqrt{u^2-9}}=\int\frac{3\sinh(t)}{\sqrt{9\cosh^2(t)-9}}dt=\int\frac{3\sinh(t)}{3\sinh(t)}dt=\int dt=t+C }[/math]

ולהחזיר את t ל-x, אני משאיר לכם (:

3

האינטגרל הבא לקוח מספר התרגילים של בועז צבאן (1.24, אם אינני טועה)

[math]\displaystyle{ \int\frac{\sin^2(x)}{\cos^6(x)}dx }[/math]

פתרון

[math]\displaystyle{ \int\frac{\sin^2(x)}{\cos^6(x)}dx=\begin{Bmatrix}t=\tan(x)\\ dt=\frac{dx}{\cos^2(x)}\end{Bmatrix}=\begin{Bmatrix}\sin^2(x)=\frac{t^2}{t^2+1}\\ \cos^2(x)=\frac{1}{t^2+1}\end{Bmatrix}=\int\frac{\frac{t^2}{t^2+1}}{\frac{1}{(t^2+1)^2}}dt= }[/math]

[math]\displaystyle{ \int\frac{\sin^2(x)}{\cos^6(x)}dx=\int\frac{\frac{t^2}{t^2+1}}{\frac{1}{(t^2+1)^2}}dt=\int t^2(t^2+1)dt=\cdots=\frac{t^5}{5}+\frac{t^3}{3}+C }[/math]

יש טעות בהצבה של [math]\displaystyle{ \cos^2(x) }[/math] , שכן [math]\displaystyle{ \cos^6(x)=(\cos^2(x))^3=\frac{1}{(t^2+1)^3} }[/math]
אבל צריך לקחת בחשבון גם את ה-dt
צודק. נראה לי שאם אני לא ראיתי את זה, גם אחרים לא יראו ;)

4

בדומה לאינטגרל הקודם, לקוח מבועז צבאן (1.27)

[math]\displaystyle{ \int\sqrt{2-x-x^2}dx }[/math]

דרך א'

א. ניתן להשתמש בהצבת אוילר, אבל אנחנו ננקוט בטקטיקה שונה.

[math]\displaystyle{ \int\sqrt{2-x-x^2}dx=\int\sqrt{1.5^2-(x+0.5)^2}dx=\int\sqrt{1.5^2-u^2}du }[/math]

הצבה ראשונה: [math]\displaystyle{ u=x+0.5\Rightarrow dx=du }[/math]


הצבה שניה: [math]\displaystyle{ u=1.5\sin(t)\Rightarrow du=1.5\cos(t)dt }[/math]


ואם נחזור לחישוב האינטגרל,

[math]\displaystyle{ \int\sqrt{1.5^2-u^2}du=\int 1.5\sqrt{1-\sin^2(t)}\cdot1.5\cos(t)dt=2.25\int\cos^2(t)dt=2.25\int\frac{\cos(2t)+1}{2}dt=2.25\left(\frac{\sin(2t)}{4}+\frac{t}{2}\right)+C }[/math]

ומכאן מעבירים את t ל-x.

דרך ב'

ההצבה הראשונה נשארת כפי שהייתה, אך הפעם לא נעשה הצבה שניה אלא נשתמש באינטגרציה בחלקים:

[math]\displaystyle{ \int\sqrt{1.5^2-u^2}du=\int (u)'\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+\int\frac{u^2du}{\sqrt{1.5^2-u^2}} }[/math]

כעת נוכל להבחין כי מתקיים:

[math]\displaystyle{ \int\frac{u^2}{\sqrt{1.5^2-u^2}}du=\int\frac{u^2-1.5^{2}+1.5^2}{\sqrt{1.5^2-u^2}}du=\int\frac{1.5^2}{\sqrt{1.5^2-u^2}}du-\int\sqrt{1.5^2-u^2}du }[/math]

כעת נביט רק על האינטגרל הראשון ונציב: [math]\displaystyle{ 1.5v=u }[/math]

[math]\displaystyle{ \int\frac{1.5^2}{\sqrt{1.5^2-u^2}}du=1.5^2\int\frac{1.5}{1.5\sqrt{1-v^2}}dv=1.5^2\arcsin(v)=2.25\arcsin\left(\frac{2u}{3}\right)+C }[/math]

אם נחזור לאינטגרל המקורי נקבל:

[math]\displaystyle{ \int\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+2.25\arcsin\left(\frac{2u}{3}\right)-\int\sqrt{1.5^2-u^2}du }[/math]

[math]\displaystyle{ 2\int\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+2.25\arcsin\left(\frac{2u}{3}\right)+C }[/math]

וסיימנו (:

5

אינטגרל חביב שנלקח ממבחן בחדו"א בב"ג (של מדעי המחשב)

[math]\displaystyle{ \int\frac{dx}{x+\sqrt[n]{x}} }[/math] כאשר [math]\displaystyle{ n\in\N }[/math] .

פתרון

הכוונה היא עבור [math]\displaystyle{ n\gt 1 }[/math] , עבור [math]\displaystyle{ n=1 }[/math] תסתכלו בדוגמא הראשונה.

[math]\displaystyle{ \int\frac{dx}{x+\sqrt[n]{x}}=\begin{Bmatrix}t^n=x\\nt^{n-1}dt=dx\end{Bmatrix}=\int\frac{nt^{n-1}}{t^n+t}dt=n\int\frac{t^{n-2}}{t^{n-1}+1}dt=\begin{Bmatrix}k=t^{n-1}+1\\dk=(n-1)t^{n-2}dt\end{Bmatrix}= }[/math]

[math]\displaystyle{ \int\frac{dx}{x+\sqrt[n]{x}}=\frac{n}{n-1}\int\frac{dk}{k}=\frac{n}{n-1}\ln(|k|)+c=\frac{n}{n-1}\ln\Big(|x^{\frac{n-1}{n}}+1|\Big)+C }[/math]

6

[math]\displaystyle{ \int\frac{\arctan(e^x)}{e^x}dx }[/math]

פתרון

נעזר באינטגרציה בחלקים.

[math]\displaystyle{ \int\frac{\arctan(e^{x})}{e^{x}}dx=\int\arctan(e^{x})e^{-x}dx=\begin{Bmatrix}du=e^{-x}dx\Rightarrow u=-e^{-x}\\ v=\arctan(e^{x})\Rightarrow dv=\frac{e^x}{1+e^{2x}}dx\end{Bmatrix}=-e^{-x}\arctan(e^x)+\int\frac{dx}{1+e^{2x}} }[/math]

פתאום זה נראה יותר אנושי, כעת נסתכל על האינטגרל שנותר:

[math]\displaystyle{ \int\frac{dx}{1+e^{2x}}=\begin{Bmatrix}t=e^{2x}\\dt=2t\,dx\end{Bmatrix}=\int\frac{dt}{2t(1+t)}= \int\frac{dt}{2t}-\int\frac{dt}{2t+2}=0.5\big(\ln(|t|)-\ln(|t+1|)\big)+C=0.5\ln\left(\frac{e^{2x}}{1+e^{2x}}\right)+C }[/math]

לבסוף:

[math]\displaystyle{ \int\frac{\arctan(e^x)}{e^x}dx=\ln\left(\frac{e^x}{\sqrt{1+e^{2x}}}\right)-e^{-x}\arctan(e^x)+C }[/math]

7

[math]\displaystyle{ \int\frac{\sqrt{x^2-16}}{x}dx }[/math]

פתרון

נעשה את ההצבה הבאה: [math]\displaystyle{ x=\frac{4}{\cos(u)}\Rightarrow dx=\frac{4\sin(u)}{\cos^2(u)}du }[/math]

[math]\displaystyle{ \int\frac{\sqrt{x^2-16}}{x}dx=\int\frac{\sqrt{\frac{16}{\cos^2(u)}-16}}{\frac{4}{\cos(u)}}\cdot\frac{4\sin(u)}{\cos^2(u)}du= \int 4\tan^2(u)du=4\int\big(\sec^2(u)-1\big)du }[/math]

[math]\displaystyle{ =4\int\sec^2(u)du-4\int du=4\big(\tan(u)-u\big)+C }[/math]

מההצבה הראשונית מתקבל:

[math]\displaystyle{ x=\frac{4}{\cos(u)}\Rightarrow u=\arccos\left(\frac{4}{x}\right) }[/math]

לבסוף (אחרי פענוח):

[math]\displaystyle{ \int\frac{\sqrt{x^2-16}}{x}dx=\sqrt{x^2-16}-4\arccos\left(\frac{4}{|x|}\right)+C }[/math]

8

אחד קליל מהחוברת של בועז (:,

[math]\displaystyle{ \int\frac{\ln\left(\frac{1}{x}\right)}{x}dx }[/math]

פתרון

נעזר באינטגרציה בחלקים:

[math]\displaystyle{ \begin{Bmatrix}u=-\ln(x)\\dv=\frac{1}{x}\end{Bmatrix}\qquad\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx={\color{blue}-\int\frac{\ln(x)}{x}dx=-\ln(x)^2+\int\frac{\ln(x)}{x}dx} }[/math]

קיבלנו:

[math]\displaystyle{ -2\int\frac{\ln(x)}{x}dx=-\ln(x)^2 }[/math]

לבסוף:

[math]\displaystyle{ \int\frac{\ln\left(\frac{1}{x}\right)}{x}dx=-\frac{\ln(x)^2}{2}+C }[/math]

9

[math]\displaystyle{ \int\frac{\arcsin(x)}{x^2}dx }[/math]

פתרון

ראשית נפעיל אינטגרציה בחלקים כאשר: [math]\displaystyle{ v=\arcsin(x)\ ,\ du=\dfrac{dx}{x^2} }[/math]

[math]\displaystyle{ \int\frac{\arcsin(x)}{x^2}dx=-\frac{\arcsin(x)}{x}+\int\frac{dx}{x\sqrt{1-x^2}} }[/math]


כעת נחשב את האינטגרל השני שקיבלנו:

[math]\displaystyle{ \int\frac{dx}{x\sqrt{1-x^2}}=\begin{Bmatrix}x=\cos(u)\\dx=\sin(u)du\end{Bmatrix}=\int\dfrac{\sin(u)}{\cos(u)\sqrt{1-\cos^2(u)}}du=\int \frac{du}{\cos(u)} }[/math]


וכעת ניעזר בהצבה האוניברסלית כדי למצוא את האינטגרל החדש:

[math]\displaystyle{ \begin{align}\int\frac{du}{\cos(u)}&=\int\frac{2}{1+t^2}\cdot\frac{1+t^2}{1-t^2}dt=\int\frac{2dt}{(1+t)(1-t)}=\int\frac{dt}{1-t}+\frac{dt}{1+t}\\&=\ln\big(|1+t|\big)-\ln\big(|1-t|\big)+C=\ln\left(\left|\frac{1+t}{1-t}\right|\right)+C\end{align} }[/math]

כרגיל להחזיר ולהנות (:

10

[math]\displaystyle{ \int x^2\sqrt{a^2-x^2}dx }[/math]

נציב [math]\displaystyle{ x=a\sin(u)\ ,\ dx=a\cos(u)du }[/math]


[math]\displaystyle{ \int x^2\sqrt{a^2-x^2}dx=\int a^2\sin^2(u)\sqrt{a^2-a^2\sin^2(u)}a\cos(u)du=a^4\int\big(\sin(u)\cos(u)\big)^2du }[/math]


[math]\displaystyle{ =\dfrac{a^4}{4}\int\sin^2(2u)du=\dfrac{a^4}{4}\int\frac{1-\cos(4u)}{2}du=\dfrac{a^4}{8}\left(\int du-\int\cos(4u)du\right)=\dfrac{a^4}{8}\left(u-\dfrac{\sin(4u)}{4}\right)+C }[/math]


[math]\displaystyle{ =\dfrac{a^4\big(u-\sin(u)\cos(u)\cos(2u)\big)}{8}+C }[/math]

מההצבה הראשונית מתקבל:

[math]\displaystyle{ x=a\sin(u)\Rightarrow u=\arcsin\left(\frac{x}{a}\right) }[/math]

לבסוף:

[math]\displaystyle{ \int x^2\sqrt{a^2-x^2}dx=\dfrac{a^4\arcsin\left(\frac{x}{a}\right)+x(2x^2-a^2)\sqrt{a^2-x^2}}{8}+C }[/math]

11

[math]\displaystyle{ \int x^2\sqrt{a^2+x^2}dx }[/math]

הצבה היפרבולית [math]\displaystyle{ x=a\sinh(u)\ ,\ dx=a\cosh(u)du }[/math]

נוסחאות לפונקציות היפרבוליות

12

[math]\displaystyle{ \int\frac{\sin(x)\cos(x)}{\sqrt{a\sin^2(x)+b\cos^2(x)}}dx }[/math]

פתרון

[math]\displaystyle{ \int\frac{\sin(x)\cos(x)}{\sqrt{a\sin^2(x)+b\cos^2(x)}}dx=\int\frac{\sin(x)\cos(x)}{\sqrt{(a-b)\sin^2(x)+b}}dx=\begin{Bmatrix}t=\sin(x)\\dt=\cos(x)dx\end{Bmatrix}=\int\frac{t}{\sqrt{(a-b)t^2+b}}dt=\begin{Bmatrix}u=(a-b)t^{2}+b\\ du=2(a-b)tdt\end{Bmatrix}= }[/math]


[math]\displaystyle{ \frac{1}{2a-2b}\int\frac{du}{\sqrt u}=\frac{\sqrt u}{a-b}+C=\frac{\sqrt{(a-b)t^2+b}}{a-b}+C=\frac{\sqrt{(a-b)\sin^2(x)+b}}{a-b}+C }[/math]

פתרון (יותר מוצלח כמסתבר)

להציב [math]\displaystyle{ t=a\sin^2(x)+b\cos^2(x) }[/math]

13

[math]\displaystyle{ \int\sqrt{\tan^2(x)+2}dx }[/math]

פתרון (לא מלא)

זה לקח לי שני עמודים בכתב יד, זה נורא (אני בטוח שיש פתרון יותר חכם)

הצבה 1: [math]\displaystyle{ t=\tan(x) }[/math]


הצבה 2: [math]\displaystyle{ t=\sqrt2\sinh(u) }[/math]


אח"כ צריך לשחק עם מה שמקבלים (לפי תכונות של קוסינוס וסינוס היפרבולי), ואז להעביר את זה לייצוג המקורי.


ואז, הצבה 3: [math]\displaystyle{ k=e^{2u} }[/math]


מכאן זו פונקציה רצינואלית של לינארי חלקי פולינום ממעלה 2, זה לא בעיה בהשוואה למה שהלך למעלה.

במקרה הכי גרוע, תהיה הצבה 4.

14

[math]\displaystyle{ \int\frac{dx}{\sqrt[4]{\sin^3(x)\cos^5(x)}} }[/math]

פתרון

[math]\displaystyle{ \int\frac{dx}{\sqrt[4]{\sin^3(x)\cos^5(x)}}=\int\frac{dx}{\cos(x)\sqrt{\sin(x)}\sqrt[4]{\sin(x)\cos(x)}}=\int\frac{\sqrt{\sin(x)}}{\cos(x)\sin(x)\sqrt[4]{\sin(x)\cos(x)}}dx }[/math]

[math]\displaystyle{ =2\int\frac{\sqrt[4]{\sin^2(x)}}{\sin(2x)\sqrt[4]{\sin(x)\cos(x)}}dx=2\int\frac{\sqrt[4]{\tan(x)}}{\sin(2x)}dx }[/math]


כעת נציב: [math]\displaystyle{ t^4=\tan(x) }[/math]


[math]\displaystyle{ 2\int\frac{\sqrt[4]{\tan(x)}}{\sin(2x)}dx=2\int\frac{t}{\frac{2t^4}{t^8+1}}\cdot\frac{4t^3}{(t^8+1)}dt=2\int\frac{4t^4}{2t^4}dt=4\int dt=4\sqrt[4]{\tan(x)}+C }[/math]

15

[math]\displaystyle{ \int\frac{\ln(x)-1}{\ln(x)^2}dx }[/math]

פתרון

(קרדיט מלא לסורקין) תוקן! סורקין לא סרוקין ולא צריך קרדיט...


[math]\displaystyle{ \int\frac{\ln(x)-1}{\ln(x)^2}dx=\int\frac{\ln(x)}{\ln(x)^2}dx-\int\frac{dx}{\ln(x)^2}=\int\frac{dx}{\ln(x)}-\int\frac{dx}{\ln(x)^2} }[/math]


כעת נתמקד באינטגרל הראשון, נפעיל אינטגרציה בחלקים:

[math]\displaystyle{ \int\frac{dx}{\ln(x)}=\begin{Bmatrix}u=x&du=dx\\v=\frac{1}{\ln(x)}&dv=-\frac{dx}{x\ln(x)^2}\end{Bmatrix}=\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2} }[/math]


ונשים לב כי מתקיים (באופן די מגניב):

[math]\displaystyle{ \int\frac{\ln(x)-1}{\ln(x)^2}dx={\color{blue}\int\frac{dx}{\ln(x)}}-\int\frac{dx}{\ln(x)^2}={\color{blue}\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2}}-\int\frac{dx}{\ln(x)^2} }[/math]

לבסוף:

[math]\displaystyle{ \int\frac{\ln(x)-1}{\ln(x)^2}dx=\frac{x}{\ln(x)}+C }[/math]

16

[math]\displaystyle{ \int \frac {\sqrt{1-\sqrt[3]{x}}}{x\cdot \sqrt{1+\sqrt[3]{x}}}dx }[/math]

פתרון

הצבה [math]\displaystyle{ 1-\sqrt[3]{x}=t^2 }[/math]

לאחר מכן הצבה טריגונומטרית [math]\displaystyle{ t=\sqrt{2}sin(u) }[/math]

ולאחר מכן ההצבה האוניברסאלית של טאנגנס חצי זוית

17

[math]\displaystyle{ I_m=\int sin^m(x)dx }[/math]

אם [math]\displaystyle{ m=2k+1 }[/math] הינו אי זוגי, אזי:

[math]\displaystyle{ I_m=\int (sin^2(x))^ksin(x)dx }[/math]

נבצע את ההצבה [math]\displaystyle{ t=cosx }[/math] לקבל

[math]\displaystyle{ I_m=\int -(1-t^2)^kdt }[/math] וזה פתיר וקל.


כעת, נניח כי [math]\displaystyle{ m=2k }[/math] זוגי:

[math]\displaystyle{ I_m=\int sin^{2k}(x)dx = \int (sin^2(x))^kdx = \int (\frac{1-cos2x}{2})^k dx }[/math]

וזו בעייה במעלה נמוכה יותר של אינטגרל על קוסינוס

אם k אי זוגי אז פותרים באופן דומה להתחלה, ואם לא שוב מקטינים את החזקה על ידי זהות זוית כפולה של קוסינוס.