לינארית 2 לתיכוניסטים תש"ע: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
(439 גרסאות ביניים של 74 משתמשים אינן מוצגות)
שורה 1: שורה 1:
:::<math>
::<math>
\begin{bmatrix}
\begin{bmatrix}
\lambda & 0 & 0 \\
\lambda & 0 & 0 \\
שורה 20: שורה 20:
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 2|ארכיון 2]]''' - שאלות על תרגילים 5-8
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 2|ארכיון 2]]''' - שאלות על תרגילים 5-8


= שאלות =
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 3|ארכיון 3]]''' - שאלות על תרגילים 10-11
 
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 4|ארכיון 4]]''' - שאלות על תרגיל 12 והמבחן


'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 5|ארכיון 5]]''' - שאלות על המבחן


==תשובה לעניין ניקוד הבוחן==
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 6|ארכיון 6]]''' - שאלות על המבחן
אנחנו נבצע בדיקה של הבוחן, ונעשה חושבים, ונפרסם את חלוקת הניקוד.


בינתיים, אני מציע שכל אחד יעבוד על מה שהיה קשה לו בבוחן, כי הרי המטרה העיקרית של הבוחן הינה לאפס אתכם לקראת המבחן. שאלת ההוכחה השנייה מופיעה באתר (ולכן אמרתי לעבור על ההשלמות ותיקונים שהופיעו באתר).
= שאלות =
==פתיחת מחברות==
מתי יש פתיחת מחברות של מועד ב'?


==שאלה==
:תשאלו את המרצים
לא יהיה תרגיל 9 השבוע נכון?


==שאלה==
==מבחן מועד א'==
רציתי לדעת מהו אחוז הגשת החובה של הקורס?
העלתם את הפתרונות של מועד א' אבל לא העליתם את המבחן עצמו.
ובנוסף רציתי לדעת מה קורה אם מישהו ממלא את אחוז ההגשה,ומגיש תרגילים נוספים?יורדים הנמוכים או שפשוט נוספים ציונים לממוצע?
אתם יכולים להעלות את המבחן?
תודה.


===תשובה===
===תשובה===
אחוז ההגשה טרם נקבע, אך הציונים הנמוכים ירדו כפי שתארת
תצלם מאחד החברים, אני אפילו לא בטוח שיש לי אותו
 
ארז- מה ההיגיון בזה שעוד לא נקבע אחוז ההגשה? כמדומני, הרעיון בלקבוע אחוז הגשה זה לאפשר לסטודנט לתכנן את הזמן שלו בצורה הטובה ביותר בלי לפגוע לעצמו בציון.
אותו דבר לגבי שאלת הניקוד בבוחן- לא היה הרבה יותר הגיוני לקבוע מראש את הניקוד לכל שאלה?


==שאלה - תרגיל 10==
==פתיחת מחברות==
זה רק אני, או שהשאלות בתרגיל 10 שקבלנו השבוע קשות בצורה משמעותית, שלא לדבר על שאלת ההוכחה הכבדה שנוספה לתרגיל (שאלה 6)?
מתי בדיוק תתקיים פתיחת מחברות לקבוצה של ד"ר צבאן?


===תשובה===
==פתרון המבחן-בקשה מהמתרגלים והמרצים==
שבוע שעבר לא היה תרגיל, ושבוע לפני זה נתנו תרגיל קל על מנת לתת זמן להתכונן לבוחן. ההוכחה בתרגיל 6 מאד דומה למה שנעשה בכיתה, יש מעט דברים שצריך לחדש בעצמך.
תוכל לעלות בבקשה את הפתרון למבחן (מועד א'). כך שנוכל לראות בצורה מדוייקת
איך צריך לגשת לשאולות, איך לנסח את הפתרון - והכי חשוב את לפתור את כל השאלות.
זה חשוב גם לאילו שמעוניינים לגשת למועד ב'.
  ,תודה רבה.


:חבל שאתם שוכחים שאנחנו תיכוניסטים


::חבל שאתה שוכח שאנחנו בתוכנית רגילה לתואר, ושאנחנו אמורים לעשות אותם תרגילים כמו סטודנטים רגילים.
:פתרון המבחן כבר עלה לפני שבוע. נמצא עם פתרונות התרגילים.


:::אני לא מי שכתב את ה'חבל ש...' הראשון, אבל אני חייב להגיב לדבריך - אנחנו אכן בתוכנית רגילה לתואר, אבל כשסיימנו ללמוד את החומר שהיה עלינו ללמוד (בלינארית 2) - התחלנו ללמוד חומר נוסף, שלא בתוכנית, וקבלנו עליו תרגילים. לא שיש לי התנגדות מסויימת, אבל גם ניבחן עליו בעתיד (כך אני נוטה להאמין). הבוחן באינפי, למשל, היה קשה בכמה רמות יותר מהבחנים לדוגמא שפורסמו באתר של ראובן (שהם, בוא לא נשכח, בחנים של 'סטודנטים רגילים' משנים קודמות), ואני בספק אם יהיו יותר מחמישה אנשים בכל התוכנית שיקבלו בבוחן האחרון באינפי מעל 85.
==ציוני מבחן==
מתי יהיו הציונים בלינארית בערך?


===תשובה===
הבדיקה בשלביה האחרונים, אנחנו מקווים שיהיה תוצאות כבר בשבוע הבא


זה שלא קיבלנו תרגיל שבוע שעבר לא אומר שצריך לדחוס תרגיל קשה במיוחד בשבוע אחד שגם ככה עמוס בבוחן קשה באינפי.
==מקום הפרסום==
מעבר לזה אמרתם שתרגיל 9 יהיה רשות, אז בבקשה תלכו קצת לקראתנו ותנו לנו שבוע הארכה יחד עם תרגיל 9..
היי ארז. איפה יפורסמו הציונים של המבחן? במידע אישי לסטודנט?
ואתה תוכל בבקשה לפרסם הודעה באתר כשהציונים יפורסמו? תודה!




===עוד תשובה===
===תשובה===
אין כזה דבר "תוכנית רגילה לתואר". באוניברסיטאות שונות ומסלולים שונים הרמות שונות. וכשאתם יוצאים עם תואר של תיכוניסטים זה לא אותו דבר כמו תואר רגיל, בדומה לכך שתואר מתל אביב שונה מתואר מהטכניון וכדומה.
אני לא יודע, אני אודיע כשאדע


נוסף על כך, לא למדתם חומר בנוסף לתוכנית בלינארית 2 כלל. התוכנית שונתה השנה, וזה לא קרה במקרה לקבוצת התיכוניסטים בלבד.
== שאלה ==


אני יודע שהתרגיל הזה כבר עבר וממילא קיבלתם דחייה, אבל חשוב לי שתבינו שהתואר הזה צריך לשמור על רמה מסוימת, ובסופו של דבר אתם תבינו שזה לטובתכם.
אהמ, מישהו יודע אם יש מצב להקדים מועד ב' ??


==שאלה==
==שאלה==
בתרגיל 3 המטריצות O1 ו - O2 אורתוגונליים זה לזה??
ועוד שאלה


בתרגיל 4 - ניתן לעשוץ פירוק פולרי ע"פ מטריצות בלוקים מסדר 2X2 ואז לחבר אותם ל 4X4  או שזה לא עובד?
אם נתון לי בסיס E וקיימת לי מטריצה אוניטרית P, מותר לי להגדיר בא"נ B כך ש P תיהיה מטריצת המעבר מ B ל E?


===תשובה===
===תשובה===
לא, הן מטריצות אורתוגונליות (כל אחת בפני עצמה).
כן. כי אם נכפיל בשמאל במטריצה המעבר מE לS הסטנדרטי היא תהיה אוניטרית לכן המכפלה תהיה אוניטרית והמכפלה תהיה מטריצה המעבר מB לS ולכן B בא"נ.
 
לגבי 4, אני לא בטוח לגמרי מה הכוונה...
 
==שאלה==
בשאלה 2, ההוכחה היא לגבי אופרטורים '''ב-R'''?


== הוכח\הפרך == 
 
שאלה מהמבחן של בוריס שנה שעברה, האם מישו הצליח לפתור?- 
תהי A מטריצה ממעלה >=2 כך ש-<math>degA=2 <= rkA=1(</math>


===תשובה===
===תשובה===
רשום בשאלה שמדובר באופרטורים במ"ו מעל R
אני הצלחתי להוכיח - אבל אני לא בטוח ב - 100% בנכונות של זה - תנסה לכתוב את A בצורה מפורשת ותעבוד עם זה
:גם אני חשבתי ככה (כתבתי את A בתור שורה אחת עם ערכים שאני לא יודע מה הם וכל שאר השורות אפס, ואז הראתי שהפולינום המינימלי על ידי בדיקה הוא באמת ממעלה 2 תמיד), אבל זה ש RANK A = 2 לא בהכרח אומר שלA יש N-1 שורות אפסים, אלא שאפשר להביא אותה לצורה מדורגת כך. לכן הדרך של כתיבה מפורשת לדעתי לא נכונה (ואכן אני לא יודע איך כן להוכיח את זה...).


==שאלה בנוגע לתרגיל 3==
'''תשובה:''' (נכונה) rankA=1 => dimIm(A)=1 ולכן dimKer(A)=n-1 ואז המימד של המרחב העצמי של 0 הוא n-1 (הריבוי הגיאומטרי של 0). מכיוון שהריבוי האלגברי תמיד גדול או שווה לגיאומטרי הוא או N או N-1. אם הוא N אז לפי משפט צורת ז'ורדן יש N-1 בלוקים של 0 אך כל הN עמודות הן של 0 ולכן הבלוק בגודל הכי גדול הוא בגודל 2 ואז M(A)=A^2 כדרוש. אם הוא N-1 אז מכיוון שסכום כל הריבועים האלגבריים הוא N אז יש עוד ערך עצמי עם ריבוי אלגברי (ולכן גם ריבוי גיאומטרי) של 1. לכן לפי משפט צורת ז'ורדן, יש N-1 בלוקים של 0 ו-1 של הערך העצמי הנוסף (נגיד X) ואז הגודל המקסימלי של כל בלוק הוא 1 והפולינום המינימלי הוא M(A)=A(A-X)=> rank(M)=2 מש"ל
יכול להיות שחסר נתון?
(סליחה שלא כתבתי הכל בכתיב מתמטי אבל אין לי באמת מושג איך..)


===תשובה===
== שאלה ==
כן. חסר נתון. A צריכה להיות הפיכה


==שאלה==
אני יודעת שאתמול הוכחת לנו את זה לפני השיעור חזרה, אבל זה היה ממש לא מסודר ולא ממש הצלחתי לעקוב, אז אני אשמח אם אתה (או מישהו אחר בכיף(:) יתן תשובה:
בנוגע לתרגיל מס' 2 (בתרגיל 10). אני לא מצליח להבין איך אני מוכיח את זה. הסתכלתי בהוכחה ה"דומה" מההרצאה, אבל הכל שם מסתמך על זה שT אורתוגונלי, כאן T אנטי סימטרי, ובהוכחה מההרצאה עשינו משפטון על T אורתוגונלי במיוחד בשביל ההוכחה עצמה. אני פשוט לא מצליח. אפשר עזרה?
ככה: T נורמלי הוכח ש- <math>im(T)=im(T^*)</math>


===תשובה===
מתי מסתמכים שם על כך שT א"ג? הרי ראינו שלכל אופרטור מעל הממשיים של מרחב אינווריאנטי ממימד 1 או 2.
:משפטון: אם T א"ג אז אם U אינוורטי תחת T אז גם U ניצב אינוורטי תחת T ובמשפטון הזה משתמשים.


(זה לא ארז) אפשר להוכיח אותו דבר לגבי T אנטי-צל"ע
===הוכחה===
דבר ראשון נוכיח ש<math>ker(T)=ker(T^*)</math>. נניח <math>v \in kerT</math> לכן <math>Tv=0</math> ולכן <math>\forall u: <T^*Tv,u>=<0,u>=0</math> אבל <math>T^*T=TT^*</math> ולכן <math>\forall u: <TT^*v,u>=0</math> ולכן <math>\forall u: <T^*v,T^*u>=0</math> ובפרט זה נכון עבור v=u ולכן <math><T^*v,T^*v>=0</math> ולכן <math>T^*v=0</math> כלומר <math>v \in ker T^*</math>. בכיוון ההפוך ההוכחה דומה.


==תרגיל 10==
תרגיל 10 השבוע היה פשוט -קשה-. לא הספקתי את רוב התרגילים, ואני עדיין מתקשה איתם. אפשר בבקשה הארכה להגשה, כדי שנוכל להעזר במתרגל/מרצה ביום שלישי?
:מצטרפת.
: גם אני מצטרף, הבוחן באינפי לא אפשר לנו להשקיע מספיק זמן לתרגיל קשה כמו זה


===תשובה===
עכשיו נוכיח את הטענה. <math>v \in kerT</math> אם"ם <math>\forall u: <Tv,u>=0</math> אם"ם <math>\forall u: <v,T^*u>=0</math> אם"ם <math>v \in (ImT^*)^\bot</math> ולכן <math>kerT = (ImT^*)^\bot</math>. בצורה דומה <math>kerT^*=(ImT)^\bot</math>. אבל הגרעינים שווים ולכן <math>(ImT)^\bot=(ImT^*)^\bot</math> ומזה נובע שהם שווים (כי המרחב המאונך הינו יחיד, והמאונך של המאונך הינו המרחב עצמו).
אפשר להגיש שבוע אחרי. אבל יהיה לכם עוד תרגיל לשבוע הבא, ולא נוסיף גם לו דחייה.
:תודה רבה מקרב לב!


==שאלה==
==השלמה לבסיס==
במשפט הפירוק הפולארי, S הוא מעל R?
האם קיימת דרך בה ניתן להשלים וקטור <math>v_1</math> לבסיס עבור <math>F^n</math> .
למשל שמשלשים וצריך להשלים לבסיס?


===תשובה===
===תשובה===
כן, הכל מעל R
זו שאלה מלינארית 1. על מנת להשלים קבוצת וקטורים לבסיס, אתה שם אותם בשורות מטריצה, מדרג אותה, ומוסיף וקטורים שמשלימים את הצירים החסרים.


==שאלה==
==שאלה==
אפשר רמז לגבי איך מוכיחים את היחידות בתרגיל 6?
איך מראים שלמטריצה נילפוטנטית יש '''רק''' ע"ע אחד שהוא 0 ?
בנוסף, צ"ל שמטריצה משולשת עם אפסים באלכסון היא נילפוטנטית.
אני יכול לומר שהמטריצה דומה לצורת זורדן עם אפסים באלכסון
ומעל אחד-ים ואם נעלה בחזקת K אז נקבל את מט' האפס. איך ממשיכים?


===תשובה===
::הכי פשוט שבעולם - אני הסתכלתי על זה ככה: לפי משפט השילוש, 0 הוא העהיחיד שלה (בהנחה שהאלכסון כולו אפסים), ולכן הפולינום האופייני שלה הוא f(x)=x^n. אם תציב את A תקבל 0, ולכן A^n=0, וזו בדיוק ההגדרה של נילפוטנטית - אם *קיים* k (במקרה זה k=n) עבורו A^k=0.
הרמז רשום בשאלה, מראים שהעומרחבים העצמיים של 2 כאלה הם שווים, ולכן הם אותו אופרטור


==שאלה==
===תשובה===  
יש לי דגמה נגדית לתרגיל 6 בקשר ליחידות וחיוביות לחלוטין. I ו- (I-) שתיהן בריבוע שוות לI ומינוס I שלילית לחלוטין... מה הבעיה?
תשובה לע"ע רק 0-A נילפוטנטנטית מסדר K. נניח שיש ערך עצמי L שהוא לא אפס. ז"א Av=Lv. נכפול משמאל ב-A^K-1 ונקבל 0=LA^k-1V=  
 
אבל A*v= lv ולכן קיבלנו A^k-2*l^2=0. אבל A^K-2 שונה מאפס, וL שונה מאפס ולכן סתירה
===תשובה===
מינוס I אינו חיובי לחלוטין, כפי שרשמת. בתרגיל רשום למצוא מטריצה S חיובית לחלוטין וכזו יש רק אחת


==שאלה==
==שאלה==
לא כ"כ קשורה לחומר הנלמד עכשיו אבל בכל מקרה :) אם נתון שx^2 הוא ע"ע של A^2, האם ניתן להוכיח שx ע"ע של A?
איך מוכיחים את הכיוון הבא:
:קחי מטריצה נילפוטנטית מסדר 2...
אם T אוניטרית אזי היא מעבירה בא"נ לבא"נ אחר (T מעל C)


===תשובה===
===תשובה===
לx יש 2 שורשים. אחד מהם חייב להופיע, השני לא בהכרח. למשל
צריך להוכיח שאם <math>v_1,...v_n</math> בא"נ אזי גם <math>Tv_1,..Tv_n</math> בא"נ. ההגדרה של בא"נ הינה שהמכפלה הפנימית של כל זוג וקטורים שונים היא אפס, והמכפלה הפנימית של וקטור עם עצמו הינה 1.


<math>A=\begin{bmatrix} i & 0 \\ 0 & i\end{bmatrix}</math>
T אוניטרית ולכן <math>TT^*=T^*T=I</math>. נבדוק את המכפלה הפנימית של זוג וקטורים בבסיס החדש:
 
<math><Tv_i,Tv_j>=<v_i,T^*Tv_j>=<v_i,v_j></math> ולכן המכפלות הן אותו הדבר (ראינו עכשיו שאופרטור אוניטרי שומר מכפלות פנימיות) ולכן גם הבסיס החדש הינו א"נ.
אחד השורשים חייב להופיע כי <math>f_{A^2}(x)=f_{A}(\sqrt{x})f_{A}(-\sqrt{x})</math>


==שאלה==
==שאלה==
בשאלה 4 בתרגיל 11 כתוב ש T וS מV לF העתקות ליניאריות
א. יהי V מ"ו ממימד סופי, יהיא Y(פי) שייך ל- *V ושונה מ-0, יהי W ת"מ של V המכיל את KER Y(פי). צ"ל W=V או W=KER Y
העתקה ליניארית לא מV לV?
 
===תשובה===
לא. אופרטור הוא מV לV. העתקה לינארית היא מV לW שני מרחבים וקטוריים, והשדה הוא מרחב וקטורי מעל עצמו ממימד אחד. (העתקה לינארית מהמרחב לשדה נקראת גם פונקציונל)


==שאלה לגבי שאלה מס' 4 בתרגיל 11==
ב. יהי V ממ"פ ממימד סופי. יה Y שייך ל- V* . הוכח כי קיים וקטור W שייך ל- V כך ש: V,W >= ( Y(V>
<math>T(v),S(u)\in \mathbb{F}</math> והרי <math>g :V \times V \to \mathbb F</math> אז <math>g(Tv,Su)</math> לא מוגדר...
לכל V שייך ל- V.
 
:<s>הוא דווקא כן מוגדר, הרי F הוא מ"ו ממימד 1.</s>


===תשובה===
===תשובה===
דווקא שואל השאלה צודק.
א. אתמול בשיעור החזרה הראנו שהמימד של הגרעין של פונקציונל הינו n או n-1 (לפי משפט הדרגה). במקרה שהפונקציונל שונה מאפס המימד של הגרעין הינו n-1.
בסעיף הזה T וS צריכות להיות אופרטורים. אני אתקן ואעלה את זה שוב (זה לא משנה כמובן את ההוכחה, אבל תיאור הבעייה לא מדוייק).


*שיניתי את זה להיות g:FxF-->F. ככה צריך לשנות פחות פרטים בשאלה... ההוכחה נשארת זהה כך או כך.
אם W מכיל את הגרעין והמימד שלו n-1 אזי הוא שווה לגרעין. אם המימד שלו n אזי הוא שווה למרחב V. אין עוד אופציות כי המימד שלו לא יכול להיות קטן מהמימד של הגרעין אותו הוא מכיל.


==שאלה לגבי שאלה מס' 1 בתרגיל 11==
ב. זה משפט ההצגה של ריס.
יש לי משהו שלא הבנתי בשאלה- בשאלה V1 V2 V3 הם בסיס, ז"א שאני יכול להציג את T באמצעות הבסיס הזה. אבל Tv1 TV2 TV3 בעמודות מטריצה, זה בדיוק ההצגה של T לפי הבסיס הנ"ל. ואם DetT חיובית אז גם אני אקבל שהסימן של הדטרמינטה של של TV1 TV2 TV3 חיובית... לא קשר לV1 V2 V3 המקורים ולא בהכרח באותו סימן. איפה לא הבנתי תשאלה טוב?


===תשובה===
Tv1 Tv2 Tv3 זה הצגת ההעתקה מהבסיס הזה לבסיס '''הסטנדרטי'''. הדטרמיננטה של אופרטור מוגדרת ע"י ההצגה שלו מבסיס מסויים לאותו הבסיס.


===המשך השאלה===
==שאלה==
האם לכל מרחב וקטורי קיים בסיס סטנדרטי?
איך מראים שכל מטריצה מעל C דומה למטריצה המשוחלפת? A דומה לA^t
 
 
זו שאלה פילוסופית. שאלה 11 מדברת על R^3 כמובן, אחרת אין משמעות לפעולה "לשים את הוקטורים בעמודות מטריצה"
 
 
שאלה 1 או 11 לגבי R^3? אם לגבי 1, למה אין משמעות לשים את הוקטורים בעמודות מטריצה אם זה לא לR^3?
 
==בנוגע לשאלה 1==
*מה הסיבה לכך שניתן בסיס ממימד 3? האם אוריינטצייה בתרגיל זה מתייחסת אך ורק למימד 3? (כפי שהזכרנו את 'חוק היד הימנית')
*"שולח כל בסיס לבסיס עם אותה אוריינטצייה" - מה פירוש? האם הכוונה היא להצגה של T מבסיס אחד לבסיס שני, כלומר <math>[T]^{B_1}_{B_2}</math> ?
או שמא הפירוש הוא ש- <math>sign(det([T]_{B_2}))=sign(det([T]_{B_1}))</math> לכל שני בסיסים ממימד 3?
*ומה הכוונה ב"בסיס סדור"?


===תשובה===
===תשובה===
* כן, בתרגיל זה מדברים על אוריינטציה במימד 3 כמו כלל היד הימנית
בעזרת השאלה ממתחת. A דומה לצורת הז'ורדן שלה <math>A=PJP^{-1}</math> נשחלף לקבל ש
* אורינטציה היא פלוס או מינוס. נניח ולבסיס מסוים <math>v_1,v_2,v_3</math> יש אורינטציה פלוס, השאלה היא מה האוריאנטציה של הבסיס <math>Tv_1,Tv_2,Tv_3</math>.
<math>A^t=(P^t)^{-1}J^tP^t</math> כלומר A משוחלפת דומה לצורת הז'ורדן המשוחלפת. אבל על ידי החלפת בסיס מתאימה, צורת הז'ורדן המשוחלפת דומה לצורת הז'ורדן ולכן המטריצות דומות.
*בסיס סדור, הכוונה היא לבסיס שבו סדר הוקטורים קבוע ומשנה (בניגוד לסתם קבוצה). הרי אם נשנה את סדר הוקטורים בבסיס, ישתנה סדר הוקטורים בדטרמיננטה וכך גם הסימן שלה.


==שאלה 5 בתרגיל 11==
החלפת הבסיס היא שינוי סדרה איברי הבסיס מהסוף להתחלה, בתוך כל בלוק (נגיד הבלוק הראשון מגודל 3 והשני מגודל 2, אז נחליף לבסיס <math>v_3,v_2,v_1,v_5,v_4</math>.
*בסעיף b, כדי להוכיח את השוויון: <math>[f]_B+[g]_B=[f+g]_B</math>,
האם מותר להשתמש בתכונה הבאה: <math>(f+g)(u,v)=f(u,v)+g(u,v)</math> ?
אם לא, איך ניתן להוכיח את השוויון?


הוכחנו בתרגיל שעבור v1...vn אברי בסיס B, האיבר ה-ij של [f] (בבסיס B) הוא (אינדקסים f(vi,vj) : (i,j תעשה לפי זה ולפי חיבור מטריצות וסיימת
==שאלה==
אם אני יודע שה"ל T מעל V ממימד N בהצגה לפי הסטנדרטי היא טראנספוז של בלוק ז'ורדן בגודל NXN, איך אני משנה את הבסיס ככה שהיא תצא בלוק ז'ורדן?


===תשובה===
===תשובה===
כן אפשר להשתמש בתכונה הזו כי זו '''ההגדרה''' של חיבור תבניות לינאריות. אחרת מה הכוונה בf+g?
מסדר אותו מהסוף להתחלה. זה שקול למטריצת המעבר עם אחדות באלכסון המשני. מעבר הבסיס יהיה להחליף את סדר השורות ואז להחליף את סדר העמודות


==תרגיל 11, שאלה 6 b==
==שאלה==
השאלה היא בדיוק ההגדרה. האם זו הכוונה?
הוכח\הפרך: מעל R^n אם T אורתוגונלי וT^2=I אז T סימטרי.
האם המטריצה ההפכית יחידה? כי אם כן
TT=I
TT*=I
ואז T=T* משמע שזה אמת


===תשובה===
===תשובה===
היא לא בדיוק אותו דבר, בתרגיל u ו-v התחלפו.
בוודאי שההופכית יחידה...
:באמת קצת קשה לראות את זה, יש צורך קל להדגיש את זה.
::לדעתי, ברגע שרואים שזה אותו דבר, עוברים על זה בצורה יותר יסודית, ורואים את זה אז. אבל לא חשוב, עכשיו כולם יודעים אז אין טעם בדבר.


וזו הוכחה נכונה.


אני אתקן את התרגיל לשנים הבאות, תודה.
:תודה! (:


== 2 שאלות==
1) ארז תוכל בבקשה להסביר לי למה לכל אופרטור יש בא"נ כך שההצגה שלו לפי הבא"נ הזה היא סכום ישר של סיבובים ו-פלוס-מינוס אחדים?


לא הבנתי אותכם. יש טעות? אין טעות? אם יש מה התיקון?
2) עברתי על השאלה בנוגע להוכחת תהליך גרם-שמידט ועדיין לא הבנתי את זה. עברתי על ההוכחה שיש בהרצאה וגם שם זה לא ברור לי. תוכל בבקשה להגיד לי מה בעצם מוכיחים ואיך מוכיחים?


אין טעות, הוא רק חושב (אם הבנתי נכון) שיעזור לפעמים הבאות להדגיש יותר את השינוי.
תודה!




נכון, אין טעות. ה-v השני הוא מימין במקום משמאל. מכיוון שאין באופן כללי תכונת סימטריות לא ברור כלל אם כאשר שמים את הv מימין זה עובד או לא.
===תשובה===
1. זה נכון רק לאופרטורים א"ג, ולא לכל אופרטור. ההוכחה היא באינדוקציה. אנחנו יודעים מההרצאה שזה נכון לאופרטורים א"ג מעל מרחבים ממימד 2 כי הם סיבובים או שיקופים (ושיקוף הוא מטריצה עם 1 ומינוס אחד על האלכסון).


לאופרטורים א"ג מעל מרחבים ממימד גבוה יותר, מפרקים אותם לסכום יש של אופרטורים א"ג מעל מרחב אינווריאנטי מימד 1 או 2, והמרחב הניצב לו, ממימד n-1 או n-2. לפי הנחת האינדוקציה המרחבים האלה הן כבר מהצורה הרצויה.


יש למישהו מכם מושג איך עושים את זה ומה התשובה בכלל?
זה מאד דומה להוכחה שיש בפתרון לתרגילים בנושא אופרטורים אנטי סימטריים.


לי יש מושג (ארז). תחשוב על המשפטים בכיתה (ובתרגיל) שמקשרים בין תבניות למטריצות, ותתרגם את השאלה ואז תנסה לפתור אותה.
2. צ"ל להוכיח שהנוסחא <math>w_i=v_i-\sum_{k=1}^i\frac{<v_i,w_k>}{<w_k,w_k>}w_k</math> נותנת וקטור שונה מאפס שמאונך ל<math>w_1,...,w_{i-1}</math>. על מנת להראות שהוא מאונך אליהם מראים שהמכפלה <math><w_i,w_j>=0</math> לכל <math>j<i</math>. אבל לפי ההנחה, הוקטורים <math>w_1,...,w_{i-1}</math> מאונכים זה לזה,  ולכן המכפלה יוצאת


<math><w_i,w_j>=<v_i,w_j>-\frac{<v_i,w_j>}{<w_j,w_j>}<w_j,w_j>=0</math> כפי שרצינו.


נראה לי שעכשיו אני יודע.. השאלה היא האם לכל תבנית f אני יכול להגיד שקיים בסיס B כך ש f לפי B אלכסונית ?
בנוסף, <math>w_i\neq 0</math> מכיוון שאחרת <math>v_i</math> ת"ל ב<math>v_1,...,v_{i-1}</math> בסתירה לכך שזה היה בסיס מלכתחילה.
לא בעצם זה רק לסימטרית.. אז איך עושים את זה? שמישהו יתן רמז בבקשה, כל מי ששאלתי עד עכשיו לא יודע..


זה לתבניות כלליות, ולכן למטריצות כלליות לאו דווקא אלכסוניות. כמו שאמרתי תנסח את השאלה בצורה מטריצית ואז תנסה לפתור.
:: תודה רבה! - אבל יש רק דבר אחד שלא הבנתי: בנוגע ל-1, שיקוף אמור להיות ה-Ref. למה אמרת שהוא מטריצה של 1 ו-מינוס 1 על האלכסון?


:::לכל שיקוף קיים בא"נ כך שהמטריצה של השיקוף לפי הבא"נ הינה <math>\begin{bmatrix}-1 & 0 \\0 & 1\end{bmatrix}</math>.


נסחתי את השאלה בצורה מטריצית. אם אני יודע שלכל u,v מתקיים:
::::עדיין לא הבנתי. הרי שיקוף זאת המטריצה cosa,sina,sina,-cosa. למה הכוונה שאתה אומר שיש בא"נ שלפיו זאת המטריצה 1 0 0 1-?
::::: זו המטריצה לפי הבסיס הסטנדרטי. תראה שאלה 7 בארכיון 6.
:::::: אוקי, שוב תודה :)


<math>[v]^t_{B}[f]_B[u]_B\ne0 </math>,
==שאלה==
 
יש שאלת הוכח או הפרך שאני לא מצליח לעלות על הכיוון שלה. אשמח לעזרה...
האם גם:
הוכח\הפרך:


<math>[u]^t_{B}[f]_B[v]_B\ne0 </math>
1. לכל מטר' A מרוכבת, I+A*A אינה סינגולרית.
?


2. אם k^2 ע"ע של A^2 אזי k ע"ע של A.


:זה לא ניסוח נכון של השאלה. השאלה היא אם קיים v כך שלכל u מתקיים <math>[v]^t_{B}[f]_B[u]_B=0</math>
תודה לעוזר הנחמד.
האם אותו דבר נכון לu.
 
==שאלה בקשר לתרגיל 8==
סעיף ב'. לא חסר נתון? האם S זה הבסיס הסטנדרטי, מהו המרחב הוקטורי?


===תשובה===
===תשובה===
S תמיד הסטדנטרטי אלא אם כן נאמר במפורש אחרת. לגבי המרחב הוקטורי, נניח שהוא <math>\mathbb{R}^3</math>.
1. הוכחה:


== תרגיל 8 סעיף ב' ==
אנחנו יודעים ש<math>A^*A</math> הינה חיובית לחלוטין, נוכיח: דבר ראשון, היא הרמיטית ולכן הע"ע שלה ממשיים. דבר שני, נניח ש <math>\lambda</math> ע"ע של <math>A^*A</math> אזי <math>\lambda<v,v>=<A^*Av,v>=<Av,Av>\geq 0</math> ולכן <math>\lambda \geq 0</math>.
אפשר רמז או כיוון כללי? פשוט לא נגענו בנושא הזה בהרצאה או בתרגול (רשמנו בתרגול משפט שקיים B כך שהמטריצה של התבנית הבילינארית לפי B אלכסונית, אבל לא דיברנו על איך למצוא את אותו B)? תודה.


===תשובה===
כעת, נניח בשלילה ש<math>I+A^*A</math> סינגולרית כלומר לא הפיכה. לכן בהכרח אפס ע"ע שלה, כלומר <math>|I+A^*A+0\cdot I|=0</math> כלומר, <math>|A^*A-(-1)\cdot I|=0</math> כלומר מינוס אחד הינו ע"ע של <math>A^*A</math> בסתירה לכך שהע"ע שלה הינם חיוביים.
למדנו בתרגול למצוא את P ולמדנו שהP הזו הינה מטריצת מעבר בין בסיסים. משני אלה אפשר למצוא את הבסיס עצמו.


====תודה====
2. הפרכה:
רק חבל שלא כל הקבוצות למדו שהP הזו הינה מטריצת המעבר בין בסיסים...


ניקח A=I. אזי <math>(-1)^2</math> הינו ע"ע של A^2=I אבל מינוס אחד לא ע"ע של A
:תודה רבה רבה רבה


אז הנה:


נניח <math>P=[I]^C_B</math> כאשר B,C בסיסים. אזי
==שאלה==
בהוכחה למעלה יש לך מעבר לא נכון, מ<A*Av,v> קפצת ל l<v,v< וזה לא נכון..


<math>f(v,u)=[v]_B^t[f]_B[u]_B=(P[v]_C)^t[f]_BP[v]_C=[v]_C^tP^t[f]_BP[v]_C</math>
===תשובה===
שים לב ש<math>\lambda</math> הינו ע"ע של <math>A^*A</math> ולכן <math>A^*Av=\lambda v</math>


זה נכון לכל זוג וקטורים v,u ולכן נובע ש
==שאלה==
:עוד שאלה שאני שובר את הראש עליה, עזרה תתקבל בברכה:
:A מטריצה מרוכבת בגודל 3X3 כך ש:
:A(A^2+I)(A-2I)=0
:הוכח: A לכסינה.


:<math>[f]_C=P^t[f]_BP</math>


תשובה
זה מתפרק לפולינום שA פותרת אותו:
x(x-i)(x+i)(x-2)      z
אנחנו יודעים שA מרוכבת, לכן הפולינום האופייני שלה מתפרק לגורמים ליניאריים מעל המרוכבים תמיד.
מלבד זאת, אנחנו יודעים שהפולינום המינימלי של כל מטריצה (בפרט A) מחלק כל פולינום המאפס אותה (את A)
ואם הפולינום המינימלי מחלק את הפולינום הזה ואנחנו יודעים שהוא ממעלה קטנה\שווה 3 לכל מטריצה מסדר 3X3, הוא מהצורה
http://math-wiki.com/images/math/4/0/2/40248c16227e65ef2bce5e5d2056d7bf.png
וזה אם ורק אם A לכסינה


::איך קטנה שווה 3? לא אמור להיות קטנה שווה ל4? הפולינום הנתון הוא ממעלה 4!!


אבל בשאלה מבקשים למצוא את הבסיס וככה אנחנו מוצאים רק את ההצגה של התבנית לפי הבסיס..
:: כן אבל הפולינום המינמלי צריך לחלק את הפולינום האופיני כאשר הפ"א הוא ממעלה 3 (תסתכל בהרצאה 2 אם אתה לא זוכר..) ולכן הפולינום המינימלי הוא מדרגה קטנה או שווה ל-3..


==שאלה==
שיינר, אם אפשר ליישר קו, מה אומר החלק המתמטי של משפט אוילר, שאותו אנחנו צריכים לדעת?


===תשובה===
אני לא יכול לעזור בזה, כיוון שלא ראיתי את המבחן.


אבל אחרי שמצאתי את המטריצה המייצגת בבסיס B אני רוצה למצוא את הבסיס עצמו. אני צריך לעשות 9 משוואות עם 9 נעלמים? ( שלושה וקטורים שלכל אחד מהם שלוש קואורדינטות).
תנסו להבין כמה שאתם יכולים.


למה אף אחד מהילדים לא עונה? איזה איגואיסטים .. מלא שאלות ורק ארז צריך לענות? מי שיודע שיענה גם הוא כשהוא לא ידע יוכל לקבל תשובה


:אני לא שואל מה יהיה במבחן אני שואל, מבחינת הקורס, מה אומר משפט אוילר. מצדי תן קישור לויקיפדיה
::אני מבין, אני פשוט אומר שאני לא יודע בדיוק בעצמי מה הכוונה, ולכן לא רוצה לעסוק בניחושים. חפשתי עכשיו קישור למשפט ואני לא מוצא.


אז תחשוב כמה נחמד זה להיות יום לפני מבחן ולא לדעת מה אומר המשפט :)


בסעיף C הוקטור הנתון צריך להיות עמודה לא? כי אם לא הכפל לא יהיה מוגדר כאשר מחפשים את התבנית הריבועית..
זו שאלה שונה, המשפט אומר שהזזה של גוף צפיד עם נקודת שבת שקולה לסיבוב סביב ציר מסוים.


וקטור זה וקטור, לא משנה איך רושמים אותו. כאשר רוצים לכפול אותו במטריצה צריך לשים אותו בצורה מתאימה, אבל כאשר אני מתאר וקטור אין משמעות לשורה או עמודה.
תודה I GUESS...


====המשך====
==שאלה==
שכחתם את ההגדרה של מטריצת מעבר בין בסיסים? אם חישבת את P הבסיס B הוא מיידי. הרי במקרה זה זו מטריצת מעבר בין הבסיס הסטנדרטי לבסיס B.
למה אם 0=(SV,V) לכל V כאשר S אופרטור לינארי צל"ע אז S=0??


מטריצת מעבר בין בסיס B לבסיס C היא וקטורי הקואורדינטות של איברי הבסיס B לפי הבסיס C בעמודות.
*לך לארכיון 5 יש שם תשובה לשאלה ממש דומה ואפילו נראה לי כזאת שמכלילה את זה..


==שאלה לגבי תרגיל 6 בתרגיל 10==
::(מישהו אחר) הסתכלתי שם וראיתי שאתה גם מוכיח את זה וגם מוכיח שזה לא נכון. אני לא מבין מה ה"תיקון" שהיה שם, הרי זאת אותה השאלה בדיוק..:S
אני לא מצליח להוכיח את היחידות.
::: סבבה הבנתי, תודה על ההערה. :)


הוכחתי שקיים S צל"ע, חיובי לחלוטין ולא סינגולרי כך ש S^2 = T.


נניח שקיים R צל"ע, חיובי לחלוטין, ולא סינגולרי כל ש R^2 = T.
::תקרא שובפעם מה שכתוב שם ותראה שבשאלה הראשונה שנשאלה לא מיקדו אותך מעל איזה שדה זה( R או Cׂ ׂ) ואז יכלת להפריך זאת ע"י דוגמא מעל R        אבל  כאשר זוהי העתקה מעל C הדוגמא שנתנה בתחילה לא סותרת את זה ובהוכחה גם הוא השתמש בכך שאתה מעל C ...
        מה שכן- זה באמת לא ממש אותה שאלה, כי פה באמת לא אומרים לך מעל איזה שדה אתה... תנסה לחשוב על זה קצת (:


ברצוני להוכיח ש R = S.
==שאלה==
איך פותרים את סעיף ב' בשאלה הזאת:


איך מוכיחים שיש להם אותם ע"ע ואותם מרחבים עצמיים?
נתונה מטריצה A:


מתקיים ש R^2 = S^2, האם זה אומר לי משהו על הע"ע של R ו S?
0 0 0 5


כל עזרה תתקבל בברכה.
0 0 4 1


0 3 3 2


===תשובה===
3 6 5 4
מה הקשר בין הע"ע של אופרטור לכסין, לע"ע של אופרטור לכסין בריבוע? אפילו מישהו שאל שאלה ממש דומה לזה לפני יום יומיים.


שנית, מה הקשר בין ו"ע של אופרטור לכסין לו"ע שלו בריבוע?
א) מצא את צורת הז'ורדן של A (צדקת ארז, זה באמת עם ז'.. חחח)


זה לא מסובך. פשוט תניח שv וקטור עצמי של T, מה יקרה כאשר תפעיל את T שוב?
ב) מצא מטריצה P הפיכה כך ש-p^-1*A*P היא צורת הז'ורדן של A.
תודה!


: אבל זה לא מה שצריך בשביל התרגיל הזה... מה שצריך לעשות זה '''להניח''' ש v ו"ע של S שמתאים לע"ע X^2, ואז '''להוכיח''' ש V הוא ו"ע של S שמתאים לע"ע X,
:למדנו בכלל למצוא את הP ההפיכה הזו? אני חושבת שאנחנו לא צריכים לדעת את זה
ולא ההיפך...
::לא למדנו מטריצה מז'רדנת. לא צריך לדעת.


== שאלה ==
איפה המבחן מחר?


::בכל זאת אני משאיר לך לחשוב קצת.. תחשוב למה חזרתי וציינתי שהאופרטור לכסין.
לפי אורי וייס
505 כיתה 2- זה רק הכיתה של בוריס...505 כיתה 1 זה הכיתה של צבאן...


::: אז בעצם אתה אומר שאפשר להוכיח את הטענה הבאה: אם S אופרטור צל"ע, חיובי לחלוטין והפיך, וv הוא וקטור עצמי של S^2 ששייך לערך עצמי X^2, אזי v הוא וקטור עצמי של S ששייך לערך עצמי X.
== שאלה ==
אתה אומר שאפשר להוכיח את זה?


==שאלה 3 תרגיל 11==
סתם שאלה, אפשר לראות הוכחה לכך שאם U הוא T אינ' אז גם U+ (הת"מ הנציב) הוא גם T אינ' כאשר T א"ג, אני לא בטוח שהדרך שלי נכונה...
אומרים קבע, האם צריך להוכיח שזו תבנית בילינארית או שלא?!




===תשובה===
===תשובה===
מן הסתם צריך להצדיק את הקביעה שלך. נא לא להתחכם :)
T אורתוגונאלי, ולכן לא מנוון
לכן, לפי משפט הדרגה, IMT=Uכאשר T מצומצם על U+
כלומר לכל w בU קיים w' כך ש  T(w')=w
נניח y במרחב הניצב למרחב המקורי
<w,Ty>=<Tw',Ty>=<w',y>=<0>
ולכן Ty גם בU+
 


==שאלה==
==שאלה==
בנוגע לשאלה 5, אבל גם שאלה די כללית:
האם פונקציה דו לינארית שולחת בהכרח לסקלר?
אם אני מוכיח ש-f(u,v) ו-g(u,v) שווים לכל שני ווקטורים u,v במרחב, האם זה מוכיח ש-f=g?
==תשובה==
כלומר אני יכול להסתמך על זה?
לפי ההגדרה f:VxV->F לכן בהכרח סקלר.
(f,g כמובן העתקות בי"ל)


==שאלה==
המרחב הדואלי. כמעט ולא עסקנו בו וגם לא ניתן לנו תרגיל בית. הוא יכול להיות במבחן?


===תשובה===
===תשובה===
זו ההגדרה של שיוויון של פונקציות. שיוויון בכל נקודה.
התעסקנו איתו הרצאה ותרגיל כמו כל נושא. תרגיל בית אכן לא ניתן. כמובן שהוא יכול להופיע  במבחן.
 
:תודה


::(שואל אחר) ונניח שהגעתי לשוויון הבא:
<math>[u]_{B}^{t}[f+g]_B[v]_B=[u]_{B}^t([f]_B+[g]_B)[v]_B</math>
לכל u,v, ולכל בסיס B, האם זה מספיק כדי להסיק ש:
<math>[f+g]_B=[f]_B+[g]_B</math>
?


רואים שזה היה במבחן? אסור לפסול חומר...


:::כן
==שאלה על התרגיל==
קיבלתי בתרגיל 50 ובמבחן 100, סופי 90. יש סיכוי כלשהו להעלות לי את התרגיל? (אני מניח שרוב מי שקורא את זה יודע מי אני...:-) )


==שאלה בנוגע לשאלה 7==
:לא נגשת לבוחן? על סמך מה נעלה את התרגיל?
למה לעשות את זה כל כך מסובך??
אי אפשר להגיד ש-f(v,v( שווה בדיוק למינוס של f(v,v( וסיימנו?


לא משנה, הבנתי, סליחה על ההטרדה.
=תודה!!=
:אני לא הבנתי למה מה שאמרת לא יהיה נכון - אתה יכול להסביר :) ?
ארז שיינר, תודה רבה לך על כל ההתמסרות וההשקעה בזמן הסמסטר וכמובן לפני המבחן בשאלות שלי ושל כולם.
(כי אפשר להכניס סקלר)
תבוא לתרגל באינפי 2 (:


כי זה נכון לצד אחד, אבל הרמז עוזר להוכיח את הצד הקשה יותר.
: בהחלט כל הכבוד, מסכים עם כל מה שנאמר פה ובאמת שאין דרך לתאר את הרצון שלך לעזור לנו והעזרה שנתת לכולנו
(קשה יחסית..)


==שאלה בנוגע לתרגיל 6 (תרגיל 11)==
:אין ספק שאתה צריך לתרגל אותנו אינפי 2..חחח
אם הראתי שסכום ריבועי איברי המטריצה שווה ל-0 זה לאו דווקא אומר שכולם שווים ל-0, נכון? כי הרי מדובר בשדה F כלשהו?




===תשובה===
תודה לכם, ומקווה שהלך טוב המבחן. מי שלא, נתראה במועד ב'.
אני מניח שאתה מתכוון לסעיף הראשון, וכן זה לא מספיק. למשל הtr של מטריצת היחידה יכול להיות 0 בשדה ממאפיין 2


==תרגיל 6 בתרגיל 10- יחידות==
-מצטרף לתשבוחות
היי ארז,
רק אם אפשר לתת קצת ביקורת קונסטרוקטיבית: מאגר העניבות מחזורי, וזה מקשה על ההתרכזות בתרגולים, כיוון שבמקום לעסוק במיון שניויניות, אנו הסטדנטים חייבים לחשוב מתי כבר ראינו עניבה מסוימת ולבנות העתקה על בין קבוצת העניבות שלך לתרגולים. לפיכך, הינך מתבקש לרכוש עניבות חדשות ומחושדות, אם אפשר עם ציורים חמודים. תודה מראש
אני (ועוד רבים אחרים) ממש נודה לך אם תפרסם רמז '''משמעותי''' לגבי איך מוכיחים את היחידות בתרגיל 6 של תרגיל 10.


הרמזים שיש כרגע פשוט לא מספיקים, ואני משוכנע שאם תנסה להוכיח זאת בעצמך בדרך מדויקת ונכונה תיווכח בקושי.
:חחחחחחחחחחחח גדוללל!


אני לא רוצה לחרטט ולהמציא שום דבר, ולדעתי יהיה הרבה יותר מועיל אם נכתוב הוכחה מתמטית מדויקת עם רמז קטן מאשר שנתחיל לכתוב שטויות.
:מאיפה אתה קונה את העניבות האלה? גמאני רוצה 8)


תודה רבה!
חחח תכלס עניבות מגניבות...מתרגל מצוין עם אחלה לוק !!!


:מצטרפת, דרוש רמז, הוכחת היחידות לא טריוויאלית בכלל.
=שאלה=
בציוני התרגיל שלי תרגיל שהגשתי וקיבלתי חזרה כתוב שקיבלתי בו 0 למרות שקיבלתי בו 95.
מה לעשות?


===תשובה===
===תשובה===
ואני משוכנע, שאם תקראו את התשובות האחרות תווכחו שלמעשה ההוכחה כתובה באתר כמעט לחלוטין...
אם זה לא משפיע על הציון הסופי, אז להבין שזה לא אומר כלום ולא להציק לי סתם. אם מדובר על תרגיל ש'''ישנה''' את הציון באדום, אפשר לשלוח לי מייל בנושא.


:כלל לא ברור כיצד להוכיח שלכל ע"ע ישנם אותם ע"ע.
==שאלה==
 
היי ארז,
אראה לך את הדרך שלי כדי שתיווכח בבעיה.
ברור לך שהזמן של הבוחן היה קצר מאוד,וסביר להניח שהפעם לרוב ציון התרגיל די מוריד את הממוצע.גם אם זה בשתי נק' זה ממש מבאס,כי על בוחן אי אפשר לעשות מועד ב' ולהוכיח שהנפילה החד פעמית הייתה בגלל חוסר זמן....הנה עבר לו המבחן,וכמו שאמרת מטרת הבוחן הייתה לזעזע אותנו לקראת המבחן....אז מה אתה אומר שעכשיו תנסו(כן גם ניסיון יעזור...) לדון בציון....אולי תעשו כמו ברוב הקורסים הגבוהה מבין ציון התרגילים לבוחן,או תורידו את המשקל של הבוחן?
 
תודה רבה!
הוכחנו שקיים אופרטור S צל"ע, חיובי לחלוטין ולא סינגולרי כך ש S^2 = T.
נ.ב:ארז ,אני רוצה בשם כל תלמידי הקורס למסור לך אתת הערכתנו על התמיכה...מקווים שתתרגל אותנו באינפי 2 או באלגברה מופשטת!!!!!!!!
 
נניח שקיים אופרטור R צל"ע, חיובי לחלוטין ולא סינגולרי כך ש R^2 = T.
 
נרצה להוכיח ש S = R.
 
נניח שהוכחנו של S ול R יש את אותם ערכים עצמיים.
 
נרצה כעת להוכיח שלכל ע"ע של S וR יש את אותם ע"ע עצמיים.


יהי v וקטור עצמי של R שקשור לע"ע t.


כלומר, <math>Rv = tv</math>
סתם שאלה-מתי מתחיל סמסטר ב'? תודה...


לכן <math>R^2v = t^2v</math>
:מתי יפורסמו פתרונות למבחן?


אבל לפי ההנחה <math>R^2 = S^2 = T</math>, לכן <math>S^2v = t^2v</math>.


כיצד ניתן מפה להוכיח ש v הוא וקטור עצמי של S ששייך לערך עצמי t?
::אחרי שהמבחנים יבדקו
 
 
===המשך===
פעם נוספת, האופרטורים '''לכסינים''' כלומר יש בסיס המורכב מו"ע שלהם. וזה גם לS וT וגם לריבועים שלהם. האם יכול להיות וקטורים עצמיים שונים לריבוע של אופרטור לכסין?
 
:ארז, צריך להוכיח בכלל שהע"ע והו"ע שווים? אי אפשר להוכיח ישירות שR=S? אפשר הרי לומר שההצגה של R^2 לפי בא"נ B (ככה שהמטריצה יוצאת אלכסונית..) שווה להצגה של S^2 לפני בא"נ B. לפי תכונות ההצגה אפשר לפרק את זה ולגלות שההצגה של S לפי בא"נ B בריבוע שווה להצגה של R לפי בא"נ B בריבוע, ובגלל שאנחנו מעל R והאופרטורים מוגדרים חיובים, יוצא שR לפי B שווה לS לפי B ==> מה שאומר שR שווה לS.
 
 
::בגדול זה נשמע לי תקין, חוץ מהעניין של בא"נ בריבוע. מה זה אומר? וקטורים אי אפשר להעלות בריבוע...
:::הכוונה פה היא לא לבא"נ בריבוע, אלא להצגה עצמה (לפי הבא"נ) - בריבוע..
 
::::אוקיי. למה אבל המעבר האחרון? למה ההצגה של R לפי B היא השורש בדיוק? מי אמר שזה לא איזה מריצה אחרת שהריבוע שלה בדיוק זה? מי אמר שR גם אלכסונית לפי B


:::לא מאמינים. תוכיח :)
:::: אני אף פעם לא משקר. אמרתי שאחרי שהמבחנים יבדקו. לכן משפט זה הוא אמת. מ.ש.ל
==שאלה==
==שאלה==
האם נוכל לראות את הבחנים? אם כן אז איך?  
מה מס' הקורס? :P
בנוסף, איך אני מתקן את מספר הזהות?
==אמירה==
יש ציונים!!!


===תשובה===
למה לקבוצה של בועז אין ומתי יהיה?
מחר נביא את הבחנים, ועל מנת לתקן את תעודת הזהות (זה מאד חשוב) תדבר עם המתרגל/ת שלך.


==שאלה לגבי שמות עיבריים של שניוניות במרחב==
הם עוד בבדיקה, אני מקווה שיהיה בקרוב. פתרון המבחן נמצא בדף הפתרונות
בכל מקום הן מופיעות באנגלית. מהן השמות שלהן בעברית (לדוגמה, איך קוראים ל-Hyperboloid בשפת הקודש?)?


:היפרבולה!! כאילו דא!!! זה כל כך ברור אתה לא רואה..?
איך התחלק הניקוד בשאלות ההוכחה בין סעיף א לב?
::ממש לא. [http://en.wikipedia.org/wiki/Quadric כאן] יש את השמות של האלו במישור והמעצבנות במרחב (באנגלית). היפרבולה היא hyperbola. השאלה שלי נשארת.


:: היפרבולואיד.
18/11


:::ולכל האחרים, פשוט לעברת לפי שמיעה?
מה 18 ומה 11  עזוב מספרים שפה קשה כאילו סעיף א-18 וסעיף ב-11?


:::: כן, הכל בסגנון הזה. אולי חוץ מאשר cone שזה חרוט.
:כן, מן הסתם ההוכחה שוקלת יותר...


==שאלה לגבי תרגיל 3==
תרגיל 3 לא הגיוני. כי לפי הנתון A הפיכה ומתקיםA^2+A=0 --> A(A+I)=0)
אם נכפול בA^-1 משמאל נקבל A+I שווה לאפס, ז"א A=-I.. אבל לא יתקים ש-tr(A)>0 כמו שדרוש בתרגיל..
בעיה?


===תשובה===
:ארז - יש לי שאלה - במבחן, נניח שמישהו השתמש בטענה שהריבוי האלגברי תמיד יהיה גדול או שווה לריבוי הגיאומטרי בשאלה 1 (א'), מבלי להוכיח את הטענה הזו - האם יורידו נקודות? אם כן, זה יהיה קצת לא הוגן, כי בהוכחה המקורית שיש באתר לאותה שאלה בדיוק (שד"ר צבאן העלה כהשלמה להרצאה) מתייחסים אל אי-השוויון הזה כמובן מאליו.
אתה צודק, פשוט המטרה היא לא למצוא את A. אתה יכול להחליף את התנאי בשאלה לתנאי ש <math>|A|<0</math>


המטרה זה למצוא את הע"ע.. אבל גם אם זה יהיה התנאי.. עדין יתקים סתירה כי הבעיה זה שני הנתונים האחרים.
::עד כמה שידוע לי לא ירדו נקודות על זה. חכו לפתיחת המחברות
לא חיבים למצוא אותם ממש.. אבל הנתונים סותרים זה את זה. אם תוכל לכתוב את הנתונים באופן שלא יסתרו זה את זה זה יפתרו את הבעיה


:ההחלפה שאמרתי פותרת את הסתירה. (הורדתי את A^2+A=0). תראה את התרגיל שהעלאתי.
מתי הפתיחת מחברות?


::רגע, הסימון <math>|A|<0</math> הוא לדטרמיננטה או לערך מוחלט? (אני לא כותב השאלה)
תשאלו את המרצים


לא השתנה כלום בתרגיל..
==הכרזה==
יש ציונים! וכן, גם לקבוצה של ד"ר צבאן! (ב'ציוני ביניים')


יכול להיות שהיה פקטור? הציונים נראים לכם סבירים<?
הציונים הרשומים בציוני ביניים ב-ט-ו-ח נכונים? אחרי שרושמם אפשר לשנותם אם לא מגישים ערעור?(כלומר מצד המרצה או משהו)


:::התרגיל כן השתנה. במקום A^2+A=0 נתון detA<0. כמובן שזה דטר' מה זה ערך מוחלט של מטריצה?


בתרגיל עצמו שמורידים לא השתנה כלום..
הממוצע מאד גבוה, אם יהיה פקטור הוא לא יהיה לכיוון שתאהבו :) אבל לא יהיה פקטור כזה כמובן..
 
כשאני מוריד זה כן שונה. אולי בעייה במחשב שלך. בכל מקרה, השינוי הוא כפי שאמרתי.
 
===שאלה===
שאני פותר את התרגילים שצריך למצוא את הצורה הקנונית- צריך גם להראות את הדרך של החלפת המשתנים? או שמספיק להציב בנוסחא מהתרגיל?
 
===תשובה===
הנוסחא מהתרגיל מספיק טובה לתרגיל של 2 על 2, אבל יש גם אחד של 3 על 3. הכי טוב להסביר את זה פעם אחת ואז לעשות שוב ושוב (בטח לא להראות לכל תרגיל מחדש.
 
===שאלה===
בתרגיל 4 יצא לי באחד מהסעיפים צורה קנונית שנראית כמו (אחרי החלפת משתנים וזה)Elliptic paraboloid מוויקיפדיה, רק עם מספר חופשי. אין שום צורה כזו בויקפדיה. איך קוראים לזה?
 
:אתה צריך להיות יותר ספציפי. לא לרשום את הקבועים המדוייקים, אבל בגדול. אחרת אני לא יכול לענות על זה. כנראה שזו כן צורה מהוויקפדיה (אמור להיות שם הכל אני חושב) ואתה פשוט מפספס את הקשר בין הצורות


==שאלה==
==שאלה==
ארז, אמרת שכאשר q(v)=vt * A * v אז A מתאימה לאופרטור צל"ע. למה?
מישהו יודע אילו וכמה קורסים צפויים בסמסטר ב' (לא כולל קורסי קיץ)? נשאר לנו השנה (למתמטיקה שימושית) : אינפי 2, שימושי מחשב, אלגברה מופשטת, הסתברות וסטטיסטיקה, ושיטות נומריות.


===תשובה===
===תשובה===
זה החומר של שיעור שעבר. הרי מה זה <math>v^tAv</math>? זה בדיוק תבנית בילינארית כלשהי <math>f(v,v)</math>. ולמדנו שכל תבנית ריבועית מתאימה לתבנית בילינארית סימטרית מסוימת. בקיצור, חומר של שיעור שעבר.
את אינפי 2 ושימושי מחשב נלמד בסמסטר ב'.


==שתי שאלות==
==הצעה==
*האם יכול להיות מצב בו הצורה הקנונית של שנינונית ממעלה 1 (ממימד )3 תהיה שניונית ממעלה 2?
לדעתי יהיה הוגן להחליט שאם ציון המבחן גבוה מציון הבוחן, אז הציון הסופי ייקבע כ-90% מציון המבחן ועוד 10% מציון התרגילים.
*בתרגיל למדנו איך למצוא את הסקלר d' בעזרת הערכים העצמיים של המטריצה. נניח שאחד הערכים העצמיים הוא 0, איך אפשר להפוך את השניונית לצורה קנונית?


===תשובה===
===תשובה===
*תגדיר מעלה של שניונית. אני מנחש שאתה קורה לשניונית עם xy ממעלה 1 אבל זה לא נכון. המעלה הינה סכום המעלות. אם יש לך משוואה לינארית, לא יכול להיות שהיא תהפוך לריבועית.
ציוני התרגיל הוגנים וציוני המבחן הוגנים מאד. אי אפשר להתחשב בכל החזיתות.
 
*בתרגיל למדנו לבצע לכסון אורתוגונלי, ואז השלמה לריבוע ואז הזזה. אם אחד הע"ע הינו אפס, אז לא עושים למשתנה שלו השלמה לריבוע אלא רק לאחרים ורואים מה יוצא.


*אני מבין עכשיו שיכולה להיות הטעיה בניסוח התרגיל לגבי צורה קנונית. אם קיבלתם <math>ax^2+by^2=cz+5</math> אז זו גם צורה קנונית....
:אבל הבוחן ממש לא היה הוגן. היה מחסור חמור בזמן, כל טעות קטנה הובילה לירידה גדולה בציון וגם הבדיקה לא נעשתה ברחמנות, בלשון המעטה. לכן, אם מישהו מעד בבוחן (מה שיכל לקרות בקלות בגלל כל הסיבות שפירטתי למעלה) והוכיח את עצמו אחר כך במבחן, צריך לדעתי להתחשב יותר במבחן על חשבון הבוחן.


::*בדיוק, הבנתי אם כך את הנושא. כלומר, אם יש לי למשל 2xy+18xz יכול לצאת לי, תאורטית, x^2+12z^2?
::בדיקת הבוחן הייתה הוגנת, והבוחן היה הוגן. ציון תרגילי הבית היה קרוב ל100 לכולם. מטרת הציון הסופי של הקורס היא לא לחפש סיבות למה לתת לכולם 100. לכל קורס יש כללים מסוימים וחלוקה בין הציונים השונים, והמטרה שלכם היא להצליח בצורה המירבית. אם ניצור נוסחא אישית לכל תלמיד פשוט כולם יקבלו ציונים טובים. השורה התחתונה היא שממוצע הציונים הסופיים גבוה מאד גם ככה, ובוודאי אין מקום לשום התחשבות נוספת. אני מאד מעריך את הרצון והשאיפה לקבל ציונים טובים, ואני ממליץ שתתעלו אותו ללמידה והמשך הצלחה בקורסים הבאים.


::*הבנתי, תודה רבה!! :)
מתי יהיו ציונים סופיים?


::*בנוגע לתרגיל בו קבלתי ערך עצמי 0, האם 0 יהיה המקדם של z^2 במקרה זה? (כלומר הצורה הקנונית של שניונית תהיה בכלל ממימד 2 למרות שהצורה המקורית שלה ממימד 3)
לא יודע, אבל ניתן לחשב פחות או יותר לבד: 20 אחוז ציון תרגיל (הציון הסופי שפורסם באתר) ו80 אחוז ציון מבחן.


===פתיחת מחברות===
מה עם פתיחת המחברות של הקבוצה של בוריס?


:::שוב, מה הכוונה של מימד? אם ע"ע הוא אפס, תקבל למשל משוואה מהצורה <math>ax^2+by^2+cx+dy+ez=f</math> ולאחר השלמה לריבוע והזזה תקבל <math>ax^2+by^2+ez=f</math>


ואיך קוראים לצורה הקנונית הזו?
אני ממליץ לשאול את בוריס :)


===לגבי מועד ב'===
אפשר בבקשה לקבל מידע על מועד ב' (האם אותו מבנה,  האם הוא יהיה רק לתיכוניסטים או לכל הסטודנטים, האם יהיה שיעור חזרה לקראתו, האם הוא יהיה יותר קשה)??


::זה תלוי בקבועים...


מה ז"א? איפה אני יכול לרואת רשימה שלהם? אם כל הקבועים שונים מ-0?
רציתי להצטרף לשואל ולשאול האם גם המתכונת של המבחן תהיה זהה? כלומר כמות השאלות וכו'..
בוויקפדיה באנגלית לא מופיע מקרה כזה
 
::אפשר להמשיך לחלק בe ואז להזיז את z ואולי לשקף אותו על מנת לקבל את המקרה בוויקיפדיה. זה בדיוק כל הטריק, לעשות שינויים שלא משנים את הצורה על מנת להגיע לצורה מוכרת.
 
 
== שאלה לגבי אחוז ההגשה ==
מהו אחוז שיעורי הבית שאפשר לא להגיש? הסמסטר נגמר ועוד לא אמרו לנו. כל המטרה של אחוז הגשה זה שאנחנו נתכנן
את הזמן שלנו ונחליט מתי עדיף שלא נגיש את שיעורי הבית .
תודה מראש.
 
 
===תשובה===
לא. אתם חייבים להכין את כל שיעורי הבית כי מטרת התרגילים היא לבסס את חומר הלימוד.
 
המטרה של אחוז ההגשה היא למקרים קיצוניים בהם לא היה אפשרי להגיש תרגיל, כי ברור שמקרים כאלה עלולים לקרות.
 
זו בדיוק לא הכוונה שתבחרו סתם לא להגיש תרגיל קשה, כי מן הסתם אנחנו מעוניינים שתעבדו על תרגיל קשה.
 
 
אז מה אחוז ההגשה המותר במקרים קיצוניים? יפה שאתם רוצים שנגיש את הכל אבל ככה זה לכל הסטודנטים אחוז הגשה ואי אפשר
שלנו התיכוניסטים יהיו חוקים אחרים.
 
:למה אי אפשר? אני לא ראיתי שום תקנון שמכריח אותי לעשות מה שנוח לכם :) כנראה שאם יהיה חסר תרגיל אחד לא תהיה בעייה לגשת למבחן.
 
== תרגיל 12 שאלה 1 ==
מה הכווונה בשינוי צורה של שניונית? איך בדיוק זה מתבטא?
והאם בהכרח מטריצה אורתוגנולית היא מטריצת/סיבוב או שיקוף ב-R3 לפי מישור/ישר?
תודה.
 
===תשובה===
שינוי צורה, הכוונה שהצורה נהיית אחרת, המרחק בין הנקודות משתנה, זויות בין ישרים משתנות וכו. ברור שסיבובים ושיקופים לא משנים את הצורה.
 
לגבי R^3 זו בדיוק השאלה של התרגיל. ולמדתם בהרצאה איך נראית המטריצה המייצגת של אופרטור א"ג מכל מימד, כולל R^3, אתם צריכים מתוך זה להסיק לבד מה הוא עושה.
 
===שאלה===
איך זה שלפני הבוחן ,נתתם פירוט מדויק שלו חודש וחצי לפני,ואילו למבחן שיערך בעוד שבועיים וחצי עוד לא נתתם כלל מידע?
 
צודק!!
צריך פירוט דחוף
 
*בהרצאה למדנו שכשעושים פעולות על השניונית מותר רק הזזות וסיבובים (אופרטורים אורתוגונליים עם דטר' 1) ואסור שיקופים (עם דטר' -1). איך בדיוק זה בא לידי ביטוי בתרגיל? צריך פשוט להראות שזה שומר מכפלה פנימית? אז למה דווקא בR3 ולא במרחב כללי? ואני לא זוכר שלמדנו משהו על המטריצה של אופרטור א"ג חוץ מA*(At)=I והאיברים על האלכסון.
 
===שאלה===
האם הצורה הקנונית של שניונית היא יחידה (עד כדי החלפת המשתנים זה בזה כמובן)? הסוג הוא יחיד, אבל גם הצורה הקנונית (המשוואה בסוף?)


===תשובה===
===תשובה===
לא יודע, אני לא הגדרתי צורה קנונית בצורה מדוייקת. אני מניח שאם נגדיר בצורה מדוייקת היא תהיה יחידה, אבל המטרה שלי הייתה רק להסביר לאיזה צורה צריך להגיע (וגם את זה לא עשיתי טוב, כי לא התחשבתי במקרה של ע"ע אפס)
מומלץ לשאול את המרצים, אבל עד כמה שידוע לי המועד ב' צריך להיות כמו המועד א', כלומר כמו שאמרנו לכם להתכונן למועד א' (כמובן שיכול להופיע חומר שלא היה בפועל במועד א' אבל היה צריך ללמוד אותו במועד א').


==שאלה==
===תשובה של דר' צבאן===
האם מותר לפתור את תרגילים 2 ו 4 לפי הנוסחאות שפיתחנו בתירגול, בלי להראות החלפת משתנים והשלמה לריבוע וכו'?
לתלמידים עם ציונים מעולים (נאמר, תשעים ומעלה), איני ממליץ לעשות מועד ב'.
לתלמידים עם ציון סופי (כולל תרגיל ובוחן) מתחת לשמונים, אני ממליץ כן לעשות מועד ב', מהסיבה שציון
נמוך משמונים לעתים אינו מוכר לפטור מקורס באוניברסיטאות אחרות, למקרה שתרצו לעבור תחום
ו/או אוניברסיטה. כמובן, זה בתנאי שהתלמיד לוקח את מועד ב' ברצינות ולומד אליו היטב.


===תשובה===
לגבי שאר התלמידים: זו החלטה שעליהם לקחת בעצמם, ויש לקחת בחשבון כמה דברים.
לא עשינו דוגמאות של 3 על 3 בכיתה בכלל. תסבירו מה אתם עושים, אולי תפרטו בתרגיל אחד. אין צורך לפרט בכל אחד מהתרגילים את החישובים מהתחלה. אבל כן יהיה טוב לרשום: מחליפים קואו', משלימים לריבוע, מזיזים וכו'


==שאלה==
סטטיסטית, רוב מי שלומד שוב (היטב) למועד ב', מצליח יותר במועד ב' מאשר במועד א', וגם מבין
מה זה אומר לי שלשתי שניוניות יש אותה צורה גאומטרית?
את החומר טוב יותר בשביל הקורסים הבאים. כך שזה עשוי להועיל מאד.
 
מצד שני, תמיד יש יוצאי דופן, וקורה (למרות שנדיר) שתלמיד שניגש שוב ציונו משתנה לרעה.
===תשובה===
בכל מקרה, מי שניגש למועד ב', הציון הקובע הוא זה של מועד ב' (לטובה או לא לטובה).
השאלה המקורית היא: מה הצורה הגיאומטרית של השניונית. על מנת לענות על זה, מעבירים לשניונית אחרת עם אותה צורה גיאומטרית רק שהפעם אנחנו יכולים להגיד מה הצורה שלה.
המדיניות שלנו היא להשתדל לעשות מועד ב' ברמה דומה למועד א'. זה עניין סובייקטיבי ובודאי חלק מהתלמידים ירגישו שהוא יותר קל ממועד א', וחלק ירגישו שהוא יותר קשה ממועד א', אבל בפירוש איננו מנסים שהוא יהיה יותר קשה ממועד א'.
 
מה עוד צריך שזה יגיד?


==שאלה==
מידע נוסף, כולל מי צריך להירשם למועד ב' ואיך, תמצאו בקישור הבא (מקורס קיץ ישן):
איך יודעים מה הצורה או הצורה הקנונית של שניונית?? מה ההבדל בכלל????


http://u.cs.biu.ac.il/~tsaban/Summer08/Summer08.html


===תשובה===
בהצלחה,
מה ההבדל בין מה למה?


צריך להביא את השנינית למצב שאפשר להגיד מה הצורה שלה (לפי רשימת הצורות מהשיעור או מהרצאה או מוויקיפדיה).
ד"ר בועז צבאן


==שאלה על הזזות==
: תודה רבה
הזזה היא פעולה אורתוגונלית?

גרסה אחרונה מ־17:16, 2 במאי 2010

[math]\displaystyle{ \begin{bmatrix} \lambda & 0 & 0 \\ 0 &\lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} }[/math]

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחתית הדף את השורה הבאה:

== כותרת שאלה ==

לכתוב מתחתיה את השאלה שלכם, וללחוץ על 'שמירה'.

(אין צורך להרשם לאתר. רק לעקוב אחרי ההוראות הפשוטות...)

ארכיון

ארכיון 1 - שאלות על תרגילים 1-4

ארכיון 2 - שאלות על תרגילים 5-8

ארכיון 3 - שאלות על תרגילים 10-11

ארכיון 4 - שאלות על תרגיל 12 והמבחן

ארכיון 5 - שאלות על המבחן

ארכיון 6 - שאלות על המבחן

שאלות

פתיחת מחברות

מתי יש פתיחת מחברות של מועד ב'?

תשאלו את המרצים

מבחן מועד א'

העלתם את הפתרונות של מועד א' אבל לא העליתם את המבחן עצמו. אתם יכולים להעלות את המבחן? תודה.

תשובה

תצלם מאחד החברים, אני אפילו לא בטוח שיש לי אותו

פתיחת מחברות

מתי בדיוק תתקיים פתיחת מחברות לקבוצה של ד"ר צבאן?

פתרון המבחן-בקשה מהמתרגלים והמרצים

תוכל לעלות בבקשה את הפתרון למבחן (מועד א'). כך שנוכל לראות בצורה מדוייקת איך צריך לגשת לשאולות, איך לנסח את הפתרון - והכי חשוב את לפתור את כל השאלות. זה חשוב גם לאילו שמעוניינים לגשת למועד ב'.

  ,תודה רבה.


פתרון המבחן כבר עלה לפני שבוע. נמצא עם פתרונות התרגילים.

ציוני מבחן

מתי יהיו הציונים בלינארית בערך?

תשובה

הבדיקה בשלביה האחרונים, אנחנו מקווים שיהיה תוצאות כבר בשבוע הבא

מקום הפרסום

היי ארז. איפה יפורסמו הציונים של המבחן? במידע אישי לסטודנט? ואתה תוכל בבקשה לפרסם הודעה באתר כשהציונים יפורסמו? תודה!


תשובה

אני לא יודע, אני אודיע כשאדע

שאלה

אהמ, מישהו יודע אם יש מצב להקדים מועד ב' ??

שאלה

אם נתון לי בסיס E וקיימת לי מטריצה אוניטרית P, מותר לי להגדיר בא"נ B כך ש P תיהיה מטריצת המעבר מ B ל E?

תשובה

כן. כי אם נכפיל בשמאל במטריצה המעבר מE לS הסטנדרטי היא תהיה אוניטרית לכן המכפלה תהיה אוניטרית והמכפלה תהיה מטריצה המעבר מB לS ולכן B בא"נ.

הוכח\הפרך

שאלה מהמבחן של בוריס שנה שעברה, האם מישו הצליח לפתור?- תהי A מטריצה ממעלה >=2 כך ש-[math]\displaystyle{ degA=2 \lt = rkA=1( }[/math]

תשובה

אני הצלחתי להוכיח - אבל אני לא בטוח ב - 100% בנכונות של זה - תנסה לכתוב את A בצורה מפורשת ותעבוד עם זה

גם אני חשבתי ככה (כתבתי את A בתור שורה אחת עם ערכים שאני לא יודע מה הם וכל שאר השורות אפס, ואז הראתי שהפולינום המינימלי על ידי בדיקה הוא באמת ממעלה 2 תמיד), אבל זה ש RANK A = 2 לא בהכרח אומר שלA יש N-1 שורות אפסים, אלא שאפשר להביא אותה לצורה מדורגת כך. לכן הדרך של כתיבה מפורשת לדעתי לא נכונה (ואכן אני לא יודע איך כן להוכיח את זה...).

תשובה: (נכונה) rankA=1 => dimIm(A)=1 ולכן dimKer(A)=n-1 ואז המימד של המרחב העצמי של 0 הוא n-1 (הריבוי הגיאומטרי של 0). מכיוון שהריבוי האלגברי תמיד גדול או שווה לגיאומטרי הוא או N או N-1. אם הוא N אז לפי משפט צורת ז'ורדן יש N-1 בלוקים של 0 אך כל הN עמודות הן של 0 ולכן הבלוק בגודל הכי גדול הוא בגודל 2 ואז M(A)=A^2 כדרוש. אם הוא N-1 אז מכיוון שסכום כל הריבועים האלגבריים הוא N אז יש עוד ערך עצמי עם ריבוי אלגברי (ולכן גם ריבוי גיאומטרי) של 1. לכן לפי משפט צורת ז'ורדן, יש N-1 בלוקים של 0 ו-1 של הערך העצמי הנוסף (נגיד X) ואז הגודל המקסימלי של כל בלוק הוא 1 והפולינום המינימלי הוא M(A)=A(A-X)=> rank(M)=2 מש"ל (סליחה שלא כתבתי הכל בכתיב מתמטי אבל אין לי באמת מושג איך..)

שאלה

אני יודעת שאתמול הוכחת לנו את זה לפני השיעור חזרה, אבל זה היה ממש לא מסודר ולא ממש הצלחתי לעקוב, אז אני אשמח אם אתה (או מישהו אחר בכיף(:) יתן תשובה: ככה: T נורמלי הוכח ש- [math]\displaystyle{ im(T)=im(T^*) }[/math]


הוכחה

דבר ראשון נוכיח ש[math]\displaystyle{ ker(T)=ker(T^*) }[/math]. נניח [math]\displaystyle{ v \in kerT }[/math] לכן [math]\displaystyle{ Tv=0 }[/math] ולכן [math]\displaystyle{ \forall u: \lt T^*Tv,u\gt =\lt 0,u\gt =0 }[/math] אבל [math]\displaystyle{ T^*T=TT^* }[/math] ולכן [math]\displaystyle{ \forall u: \lt TT^*v,u\gt =0 }[/math] ולכן [math]\displaystyle{ \forall u: \lt T^*v,T^*u\gt =0 }[/math] ובפרט זה נכון עבור v=u ולכן [math]\displaystyle{ \lt T^*v,T^*v\gt =0 }[/math] ולכן [math]\displaystyle{ T^*v=0 }[/math] כלומר [math]\displaystyle{ v \in ker T^* }[/math]. בכיוון ההפוך ההוכחה דומה.


עכשיו נוכיח את הטענה. [math]\displaystyle{ v \in kerT }[/math] אם"ם [math]\displaystyle{ \forall u: \lt Tv,u\gt =0 }[/math] אם"ם [math]\displaystyle{ \forall u: \lt v,T^*u\gt =0 }[/math] אם"ם [math]\displaystyle{ v \in (ImT^*)^\bot }[/math] ולכן [math]\displaystyle{ kerT = (ImT^*)^\bot }[/math]. בצורה דומה [math]\displaystyle{ kerT^*=(ImT)^\bot }[/math]. אבל הגרעינים שווים ולכן [math]\displaystyle{ (ImT)^\bot=(ImT^*)^\bot }[/math] ומזה נובע שהם שווים (כי המרחב המאונך הינו יחיד, והמאונך של המאונך הינו המרחב עצמו).

השלמה לבסיס

האם קיימת דרך בה ניתן להשלים וקטור [math]\displaystyle{ v_1 }[/math] לבסיס עבור [math]\displaystyle{ F^n }[/math] . למשל שמשלשים וצריך להשלים לבסיס?

תשובה

זו שאלה מלינארית 1. על מנת להשלים קבוצת וקטורים לבסיס, אתה שם אותם בשורות מטריצה, מדרג אותה, ומוסיף וקטורים שמשלימים את הצירים החסרים.

שאלה

איך מראים שלמטריצה נילפוטנטית יש רק ע"ע אחד שהוא 0 ? בנוסף, צ"ל שמטריצה משולשת עם אפסים באלכסון היא נילפוטנטית. אני יכול לומר שהמטריצה דומה לצורת זורדן עם אפסים באלכסון ומעל אחד-ים ואם נעלה בחזקת K אז נקבל את מט' האפס. איך ממשיכים?

הכי פשוט שבעולם - אני הסתכלתי על זה ככה: לפי משפט השילוש, 0 הוא הע"ע היחיד שלה (בהנחה שהאלכסון כולו אפסים), ולכן הפולינום האופייני שלה הוא f(x)=x^n. אם תציב את A תקבל 0, ולכן A^n=0, וזו בדיוק ההגדרה של נילפוטנטית - אם *קיים* k (במקרה זה k=n) עבורו A^k=0.

תשובה

תשובה לע"ע רק 0-A נילפוטנטנטית מסדר K. נניח שיש ערך עצמי L שהוא לא אפס. ז"א Av=Lv. נכפול משמאל ב-A^K-1 ונקבל 0=LA^k-1V= אבל A*v= lv ולכן קיבלנו A^k-2*l^2=0. אבל A^K-2 שונה מאפס, וL שונה מאפס ולכן סתירה

שאלה

איך מוכיחים את הכיוון הבא: אם T אוניטרית אזי היא מעבירה בא"נ לבא"נ אחר (T מעל C)

תשובה

צריך להוכיח שאם [math]\displaystyle{ v_1,...v_n }[/math] בא"נ אזי גם [math]\displaystyle{ Tv_1,..Tv_n }[/math] בא"נ. ההגדרה של בא"נ הינה שהמכפלה הפנימית של כל זוג וקטורים שונים היא אפס, והמכפלה הפנימית של וקטור עם עצמו הינה 1.

T אוניטרית ולכן [math]\displaystyle{ TT^*=T^*T=I }[/math]. נבדוק את המכפלה הפנימית של זוג וקטורים בבסיס החדש: [math]\displaystyle{ \lt Tv_i,Tv_j\gt =\lt v_i,T^*Tv_j\gt =\lt v_i,v_j\gt }[/math] ולכן המכפלות הן אותו הדבר (ראינו עכשיו שאופרטור אוניטרי שומר מכפלות פנימיות) ולכן גם הבסיס החדש הינו א"נ.

שאלה

א. יהי V מ"ו ממימד סופי, יהיא Y(פי) שייך ל- *V ושונה מ-0, יהי W ת"מ של V המכיל את KER Y(פי). צ"ל W=V או W=KER Y

ב. יהי V ממ"פ ממימד סופי. יה Y שייך ל- V* . הוכח כי קיים וקטור W שייך ל- V כך ש: V,W >= ( Y(V> לכל V שייך ל- V.

תשובה

א. אתמול בשיעור החזרה הראנו שהמימד של הגרעין של פונקציונל הינו n או n-1 (לפי משפט הדרגה). במקרה שהפונקציונל שונה מאפס המימד של הגרעין הינו n-1.

אם W מכיל את הגרעין והמימד שלו n-1 אזי הוא שווה לגרעין. אם המימד שלו n אזי הוא שווה למרחב V. אין עוד אופציות כי המימד שלו לא יכול להיות קטן מהמימד של הגרעין אותו הוא מכיל.

ב. זה משפט ההצגה של ריס.


שאלה

איך מראים שכל מטריצה מעל C דומה למטריצה המשוחלפת? A דומה לA^t

תשובה

בעזרת השאלה ממתחת. A דומה לצורת הז'ורדן שלה [math]\displaystyle{ A=PJP^{-1} }[/math] נשחלף לקבל ש [math]\displaystyle{ A^t=(P^t)^{-1}J^tP^t }[/math] כלומר A משוחלפת דומה לצורת הז'ורדן המשוחלפת. אבל על ידי החלפת בסיס מתאימה, צורת הז'ורדן המשוחלפת דומה לצורת הז'ורדן ולכן המטריצות דומות.

החלפת הבסיס היא שינוי סדרה איברי הבסיס מהסוף להתחלה, בתוך כל בלוק (נגיד הבלוק הראשון מגודל 3 והשני מגודל 2, אז נחליף לבסיס [math]\displaystyle{ v_3,v_2,v_1,v_5,v_4 }[/math].

שאלה

אם אני יודע שה"ל T מעל V ממימד N בהצגה לפי הסטנדרטי היא טראנספוז של בלוק ז'ורדן בגודל NXN, איך אני משנה את הבסיס ככה שהיא תצא בלוק ז'ורדן?

תשובה

מסדר אותו מהסוף להתחלה. זה שקול למטריצת המעבר עם אחדות באלכסון המשני. מעבר הבסיס יהיה להחליף את סדר השורות ואז להחליף את סדר העמודות

שאלה

הוכח\הפרך: מעל R^n אם T אורתוגונלי וT^2=I אז T סימטרי. האם המטריצה ההפכית יחידה? כי אם כן TT=I TT*=I ואז T=T* משמע שזה אמת

תשובה

בוודאי שההופכית יחידה...

וזו הוכחה נכונה.

תודה! (:

2 שאלות

1) ארז תוכל בבקשה להסביר לי למה לכל אופרטור יש בא"נ כך שההצגה שלו לפי הבא"נ הזה היא סכום ישר של סיבובים ו-פלוס-מינוס אחדים?

2) עברתי על השאלה בנוגע להוכחת תהליך גרם-שמידט ועדיין לא הבנתי את זה. עברתי על ההוכחה שיש בהרצאה וגם שם זה לא ברור לי. תוכל בבקשה להגיד לי מה בעצם מוכיחים ואיך מוכיחים?

תודה!


תשובה

1. זה נכון רק לאופרטורים א"ג, ולא לכל אופרטור. ההוכחה היא באינדוקציה. אנחנו יודעים מההרצאה שזה נכון לאופרטורים א"ג מעל מרחבים ממימד 2 כי הם סיבובים או שיקופים (ושיקוף הוא מטריצה עם 1 ומינוס אחד על האלכסון).

לאופרטורים א"ג מעל מרחבים ממימד גבוה יותר, מפרקים אותם לסכום יש של אופרטורים א"ג מעל מרחב אינווריאנטי מימד 1 או 2, והמרחב הניצב לו, ממימד n-1 או n-2. לפי הנחת האינדוקציה המרחבים האלה הן כבר מהצורה הרצויה.

זה מאד דומה להוכחה שיש בפתרון לתרגילים בנושא אופרטורים אנטי סימטריים.

2. צ"ל להוכיח שהנוסחא [math]\displaystyle{ w_i=v_i-\sum_{k=1}^i\frac{\lt v_i,w_k\gt }{\lt w_k,w_k\gt }w_k }[/math] נותנת וקטור שונה מאפס שמאונך ל[math]\displaystyle{ w_1,...,w_{i-1} }[/math]. על מנת להראות שהוא מאונך אליהם מראים שהמכפלה [math]\displaystyle{ \lt w_i,w_j\gt =0 }[/math] לכל [math]\displaystyle{ j\lt i }[/math]. אבל לפי ההנחה, הוקטורים [math]\displaystyle{ w_1,...,w_{i-1} }[/math] מאונכים זה לזה, ולכן המכפלה יוצאת

[math]\displaystyle{ \lt w_i,w_j\gt =\lt v_i,w_j\gt -\frac{\lt v_i,w_j\gt }{\lt w_j,w_j\gt }\lt w_j,w_j\gt =0 }[/math] כפי שרצינו.

בנוסף, [math]\displaystyle{ w_i\neq 0 }[/math] מכיוון שאחרת [math]\displaystyle{ v_i }[/math] ת"ל ב[math]\displaystyle{ v_1,...,v_{i-1} }[/math] בסתירה לכך שזה היה בסיס מלכתחילה.

תודה רבה! - אבל יש רק דבר אחד שלא הבנתי: בנוגע ל-1, שיקוף אמור להיות ה-Ref. למה אמרת שהוא מטריצה של 1 ו-מינוס 1 על האלכסון?
לכל שיקוף קיים בא"נ כך שהמטריצה של השיקוף לפי הבא"נ הינה [math]\displaystyle{ \begin{bmatrix}-1 & 0 \\0 & 1\end{bmatrix} }[/math].
עדיין לא הבנתי. הרי שיקוף זאת המטריצה cosa,sina,sina,-cosa. למה הכוונה שאתה אומר שיש בא"נ שלפיו זאת המטריצה 1 0 0 1-?
זו המטריצה לפי הבסיס הסטנדרטי. תראה שאלה 7 בארכיון 6.
אוקי, שוב תודה :)

שאלה

יש שאלת הוכח או הפרך שאני לא מצליח לעלות על הכיוון שלה. אשמח לעזרה... הוכח\הפרך:

1. לכל מטר' A מרוכבת, I+A*A אינה סינגולרית.

2. אם k^2 ע"ע של A^2 אזי k ע"ע של A.

תודה לעוזר הנחמד.

תשובה

1. הוכחה:

אנחנו יודעים ש[math]\displaystyle{ A^*A }[/math] הינה חיובית לחלוטין, נוכיח: דבר ראשון, היא הרמיטית ולכן הע"ע שלה ממשיים. דבר שני, נניח ש [math]\displaystyle{ \lambda }[/math] ע"ע של [math]\displaystyle{ A^*A }[/math] אזי [math]\displaystyle{ \lambda\lt v,v\gt =\lt A^*Av,v\gt =\lt Av,Av\gt \geq 0 }[/math] ולכן [math]\displaystyle{ \lambda \geq 0 }[/math].

כעת, נניח בשלילה ש[math]\displaystyle{ I+A^*A }[/math] סינגולרית כלומר לא הפיכה. לכן בהכרח אפס ע"ע שלה, כלומר [math]\displaystyle{ |I+A^*A+0\cdot I|=0 }[/math] כלומר, [math]\displaystyle{ |A^*A-(-1)\cdot I|=0 }[/math] כלומר מינוס אחד הינו ע"ע של [math]\displaystyle{ A^*A }[/math] בסתירה לכך שהע"ע שלה הינם חיוביים.

2. הפרכה:

ניקח A=I. אזי [math]\displaystyle{ (-1)^2 }[/math] הינו ע"ע של A^2=I אבל מינוס אחד לא ע"ע של A

תודה רבה רבה רבה


שאלה

בהוכחה למעלה יש לך מעבר לא נכון, מ<A*Av,v> קפצת ל l<v,v< וזה לא נכון..

תשובה

שים לב ש[math]\displaystyle{ \lambda }[/math] הינו ע"ע של [math]\displaystyle{ A^*A }[/math] ולכן [math]\displaystyle{ A^*Av=\lambda v }[/math]

שאלה

עוד שאלה שאני שובר את הראש עליה, עזרה תתקבל בברכה:
A מטריצה מרוכבת בגודל 3X3 כך ש:
A(A^2+I)(A-2I)=0
הוכח: A לכסינה.


תשובה זה מתפרק לפולינום שA פותרת אותו: x(x-i)(x+i)(x-2) z אנחנו יודעים שA מרוכבת, לכן הפולינום האופייני שלה מתפרק לגורמים ליניאריים מעל המרוכבים תמיד. מלבד זאת, אנחנו יודעים שהפולינום המינימלי של כל מטריצה (בפרט A) מחלק כל פולינום המאפס אותה (את A) ואם הפולינום המינימלי מחלק את הפולינום הזה ואנחנו יודעים שהוא ממעלה קטנה\שווה 3 לכל מטריצה מסדר 3X3, הוא מהצורה http://math-wiki.com/images/math/4/0/2/40248c16227e65ef2bce5e5d2056d7bf.png וזה אם ורק אם A לכסינה

איך קטנה שווה 3? לא אמור להיות קטנה שווה ל4? הפולינום הנתון הוא ממעלה 4!!
כן אבל הפולינום המינמלי צריך לחלק את הפולינום האופיני כאשר הפ"א הוא ממעלה 3 (תסתכל בהרצאה 2 אם אתה לא זוכר..) ולכן הפולינום המינימלי הוא מדרגה קטנה או שווה ל-3..

שאלה

שיינר, אם אפשר ליישר קו, מה אומר החלק המתמטי של משפט אוילר, שאותו אנחנו צריכים לדעת?

תשובה

אני לא יכול לעזור בזה, כיוון שלא ראיתי את המבחן.

תנסו להבין כמה שאתם יכולים.


אני לא שואל מה יהיה במבחן אני שואל, מבחינת הקורס, מה אומר משפט אוילר. מצדי תן קישור לויקיפדיה
אני מבין, אני פשוט אומר שאני לא יודע בדיוק בעצמי מה הכוונה, ולכן לא רוצה לעסוק בניחושים. חפשתי עכשיו קישור למשפט ואני לא מוצא.

אז תחשוב כמה נחמד זה להיות יום לפני מבחן ולא לדעת מה אומר המשפט :)

זו שאלה שונה, המשפט אומר שהזזה של גוף צפיד עם נקודת שבת שקולה לסיבוב סביב ציר מסוים.

תודה I GUESS...

שאלה

למה אם 0=(SV,V) לכל V כאשר S אופרטור לינארי צל"ע אז S=0??

*לך לארכיון 5 יש שם תשובה לשאלה ממש דומה ואפילו נראה לי כזאת שמכלילה את זה..
(מישהו אחר) הסתכלתי שם וראיתי שאתה גם מוכיח את זה וגם מוכיח שזה לא נכון. אני לא מבין מה ה"תיקון" שהיה שם, הרי זאת אותה השאלה בדיוק..:S
סבבה הבנתי, תודה על ההערה. :)


תקרא שובפעם מה שכתוב שם ותראה שבשאלה הראשונה שנשאלה לא מיקדו אותך מעל איזה שדה זה( R או Cׂ ׂ) ואז יכלת להפריך זאת ע"י דוגמא מעל R אבל כאשר זוהי העתקה מעל C הדוגמא שנתנה בתחילה לא סותרת את זה ובהוכחה גם הוא השתמש בכך שאתה מעל C ...
       מה שכן- זה באמת לא ממש אותה שאלה, כי פה באמת לא אומרים לך מעל איזה שדה אתה... תנסה לחשוב על זה קצת (:

שאלה

איך פותרים את סעיף ב' בשאלה הזאת:

נתונה מטריצה A:

0 0 0 5

0 0 4 1

0 3 3 2

3 6 5 4

א) מצא את צורת הז'ורדן של A (צדקת ארז, זה באמת עם ז'.. חחח)

ב) מצא מטריצה P הפיכה כך ש-p^-1*A*P היא צורת הז'ורדן של A. תודה!

למדנו בכלל למצוא את הP ההפיכה הזו? אני חושבת שאנחנו לא צריכים לדעת את זה
לא למדנו מטריצה מז'רדנת. לא צריך לדעת.

שאלה

איפה המבחן מחר?

לפי אורי וייס 505 כיתה 2- זה רק הכיתה של בוריס...505 כיתה 1 זה הכיתה של צבאן...

שאלה

סתם שאלה, אפשר לראות הוכחה לכך שאם U הוא T אינ' אז גם U+ (הת"מ הנציב) הוא גם T אינ' כאשר T א"ג, אני לא בטוח שהדרך שלי נכונה...


תשובה

T אורתוגונאלי, ולכן לא מנוון לכן, לפי משפט הדרגה, IMT=Uכאשר T מצומצם על U+ כלומר לכל w בU קיים w' כך ש T(w')=w נניח y במרחב הניצב למרחב המקורי <w,Ty>=<Tw',Ty>=<w',y>=<0> ולכן Ty גם בU+


שאלה

האם פונקציה דו לינארית שולחת בהכרח לסקלר?

תשובה

לפי ההגדרה f:VxV->F לכן בהכרח סקלר.

שאלה

המרחב הדואלי. כמעט ולא עסקנו בו וגם לא ניתן לנו תרגיל בית. הוא יכול להיות במבחן?

תשובה

התעסקנו איתו הרצאה ותרגיל כמו כל נושא. תרגיל בית אכן לא ניתן. כמובן שהוא יכול להופיע במבחן.


רואים שזה היה במבחן? אסור לפסול חומר...

שאלה על התרגיל

קיבלתי בתרגיל 50 ובמבחן 100, סופי 90. יש סיכוי כלשהו להעלות לי את התרגיל? (אני מניח שרוב מי שקורא את זה יודע מי אני...:-) )

לא נגשת לבוחן? על סמך מה נעלה את התרגיל?

תודה!!

ארז שיינר, תודה רבה לך על כל ההתמסרות וההשקעה בזמן הסמסטר וכמובן לפני המבחן בשאלות שלי ושל כולם. תבוא לתרגל באינפי 2 (:

בהחלט כל הכבוד, מסכים עם כל מה שנאמר פה ובאמת שאין דרך לתאר את הרצון שלך לעזור לנו והעזרה שנתת לכולנו
אין ספק שאתה צריך לתרגל אותנו אינפי 2..חחח


תודה לכם, ומקווה שהלך טוב המבחן. מי שלא, נתראה במועד ב'.

-מצטרף לתשבוחות רק אם אפשר לתת קצת ביקורת קונסטרוקטיבית: מאגר העניבות מחזורי, וזה מקשה על ההתרכזות בתרגולים, כיוון שבמקום לעסוק במיון שניויניות, אנו הסטדנטים חייבים לחשוב מתי כבר ראינו עניבה מסוימת ולבנות העתקה על בין קבוצת העניבות שלך לתרגולים. לפיכך, הינך מתבקש לרכוש עניבות חדשות ומחושדות, אם אפשר עם ציורים חמודים. תודה מראש

חחחחחחחחחחחח גדוללל!
מאיפה אתה קונה את העניבות האלה? גמאני רוצה 8)

חחח תכלס עניבות מגניבות...מתרגל מצוין עם אחלה לוק !!!

שאלה

בציוני התרגיל שלי תרגיל שהגשתי וקיבלתי חזרה כתוב שקיבלתי בו 0 למרות שקיבלתי בו 95. מה לעשות?

תשובה

אם זה לא משפיע על הציון הסופי, אז להבין שזה לא אומר כלום ולא להציק לי סתם. אם מדובר על תרגיל שישנה את הציון באדום, אפשר לשלוח לי מייל בנושא.

שאלה

היי ארז, ברור לך שהזמן של הבוחן היה קצר מאוד,וסביר להניח שהפעם לרוב ציון התרגיל די מוריד את הממוצע.גם אם זה בשתי נק' זה ממש מבאס,כי על בוחן אי אפשר לעשות מועד ב' ולהוכיח שהנפילה החד פעמית הייתה בגלל חוסר זמן....הנה עבר לו המבחן,וכמו שאמרת מטרת הבוחן הייתה לזעזע אותנו לקראת המבחן....אז מה אתה אומר שעכשיו תנסו(כן גם ניסיון יעזור...) לדון בציון....אולי תעשו כמו ברוב הקורסים הגבוהה מבין ציון התרגילים לבוחן,או תורידו את המשקל של הבוחן? תודה רבה! נ.ב:ארז ,אני רוצה בשם כל תלמידי הקורס למסור לך אתת הערכתנו על התמיכה...מקווים שתתרגל אותנו באינפי 2 או באלגברה מופשטת!!!!!!!!


סתם שאלה-מתי מתחיל סמסטר ב'? תודה...

מתי יפורסמו פתרונות למבחן?


אחרי שהמבחנים יבדקו
לא מאמינים. תוכיח :)
אני אף פעם לא משקר. אמרתי שאחרי שהמבחנים יבדקו. לכן משפט זה הוא אמת. מ.ש.ל

שאלה

מה מס' הקורס? :P

אמירה

יש ציונים!!!

למה לקבוצה של בועז אין ומתי יהיה?

הם עוד בבדיקה, אני מקווה שיהיה בקרוב. פתרון המבחן נמצא בדף הפתרונות

איך התחלק הניקוד בשאלות ההוכחה בין סעיף א לב?

18/11

מה 18 ומה 11 עזוב מספרים שפה קשה כאילו סעיף א-18 וסעיף ב-11?

כן, מן הסתם ההוכחה שוקלת יותר...


ארז - יש לי שאלה - במבחן, נניח שמישהו השתמש בטענה שהריבוי האלגברי תמיד יהיה גדול או שווה לריבוי הגיאומטרי בשאלה 1 (א'), מבלי להוכיח את הטענה הזו - האם יורידו נקודות? אם כן, זה יהיה קצת לא הוגן, כי בהוכחה המקורית שיש באתר לאותה שאלה בדיוק (שד"ר צבאן העלה כהשלמה להרצאה) מתייחסים אל אי-השוויון הזה כמובן מאליו.
עד כמה שידוע לי לא ירדו נקודות על זה. חכו לפתיחת המחברות

מתי הפתיחת מחברות?

תשאלו את המרצים

הכרזה

יש ציונים! וכן, גם לקבוצה של ד"ר צבאן! (ב'ציוני ביניים')

יכול להיות שהיה פקטור? הציונים נראים לכם סבירים<? הציונים הרשומים בציוני ביניים ב-ט-ו-ח נכונים? אחרי שרושמם אפשר לשנותם אם לא מגישים ערעור?(כלומר מצד המרצה או משהו)


הממוצע מאד גבוה, אם יהיה פקטור הוא לא יהיה לכיוון שתאהבו :) אבל לא יהיה פקטור כזה כמובן..

שאלה

מישהו יודע אילו וכמה קורסים צפויים בסמסטר ב' (לא כולל קורסי קיץ)? נשאר לנו השנה (למתמטיקה שימושית) : אינפי 2, שימושי מחשב, אלגברה מופשטת, הסתברות וסטטיסטיקה, ושיטות נומריות.

תשובה

את אינפי 2 ושימושי מחשב נלמד בסמסטר ב'.

הצעה

לדעתי יהיה הוגן להחליט שאם ציון המבחן גבוה מציון הבוחן, אז הציון הסופי ייקבע כ-90% מציון המבחן ועוד 10% מציון התרגילים.

תשובה

ציוני התרגיל הוגנים וציוני המבחן הוגנים מאד. אי אפשר להתחשב בכל החזיתות.

אבל הבוחן ממש לא היה הוגן. היה מחסור חמור בזמן, כל טעות קטנה הובילה לירידה גדולה בציון וגם הבדיקה לא נעשתה ברחמנות, בלשון המעטה. לכן, אם מישהו מעד בבוחן (מה שיכל לקרות בקלות בגלל כל הסיבות שפירטתי למעלה) והוכיח את עצמו אחר כך במבחן, צריך לדעתי להתחשב יותר במבחן על חשבון הבוחן.
בדיקת הבוחן הייתה הוגנת, והבוחן היה הוגן. ציון תרגילי הבית היה קרוב ל100 לכולם. מטרת הציון הסופי של הקורס היא לא לחפש סיבות למה לתת לכולם 100. לכל קורס יש כללים מסוימים וחלוקה בין הציונים השונים, והמטרה שלכם היא להצליח בצורה המירבית. אם ניצור נוסחא אישית לכל תלמיד פשוט כולם יקבלו ציונים טובים. השורה התחתונה היא שממוצע הציונים הסופיים גבוה מאד גם ככה, ובוודאי אין מקום לשום התחשבות נוספת. אני מאד מעריך את הרצון והשאיפה לקבל ציונים טובים, ואני ממליץ שתתעלו אותו ללמידה והמשך הצלחה בקורסים הבאים.

מתי יהיו ציונים סופיים?

לא יודע, אבל ניתן לחשב פחות או יותר לבד: 20 אחוז ציון תרגיל (הציון הסופי שפורסם באתר) ו80 אחוז ציון מבחן.

פתיחת מחברות

מה עם פתיחת המחברות של הקבוצה של בוריס?


אני ממליץ לשאול את בוריס :)

לגבי מועד ב'

אפשר בבקשה לקבל מידע על מועד ב' (האם אותו מבנה, האם הוא יהיה רק לתיכוניסטים או לכל הסטודנטים, האם יהיה שיעור חזרה לקראתו, האם הוא יהיה יותר קשה)??


רציתי להצטרף לשואל ולשאול האם גם המתכונת של המבחן תהיה זהה? כלומר כמות השאלות וכו'..

תשובה

מומלץ לשאול את המרצים, אבל עד כמה שידוע לי המועד ב' צריך להיות כמו המועד א', כלומר כמו שאמרנו לכם להתכונן למועד א' (כמובן שיכול להופיע חומר שלא היה בפועל במועד א' אבל היה צריך ללמוד אותו במועד א').

תשובה של דר' צבאן

לתלמידים עם ציונים מעולים (נאמר, תשעים ומעלה), איני ממליץ לעשות מועד ב'.

לתלמידים עם ציון סופי (כולל תרגיל ובוחן) מתחת לשמונים, אני ממליץ כן לעשות מועד ב', מהסיבה שציון נמוך משמונים לעתים אינו מוכר לפטור מקורס באוניברסיטאות אחרות, למקרה שתרצו לעבור תחום ו/או אוניברסיטה. כמובן, זה בתנאי שהתלמיד לוקח את מועד ב' ברצינות ולומד אליו היטב.

לגבי שאר התלמידים: זו החלטה שעליהם לקחת בעצמם, ויש לקחת בחשבון כמה דברים.

סטטיסטית, רוב מי שלומד שוב (היטב) למועד ב', מצליח יותר במועד ב' מאשר במועד א', וגם מבין את החומר טוב יותר בשביל הקורסים הבאים. כך שזה עשוי להועיל מאד. מצד שני, תמיד יש יוצאי דופן, וקורה (למרות שנדיר) שתלמיד שניגש שוב ציונו משתנה לרעה. בכל מקרה, מי שניגש למועד ב', הציון הקובע הוא זה של מועד ב' (לטובה או לא לטובה). המדיניות שלנו היא להשתדל לעשות מועד ב' ברמה דומה למועד א'. זה עניין סובייקטיבי ובודאי חלק מהתלמידים ירגישו שהוא יותר קל ממועד א', וחלק ירגישו שהוא יותר קשה ממועד א', אבל בפירוש איננו מנסים שהוא יהיה יותר קשה ממועד א'.

מידע נוסף, כולל מי צריך להירשם למועד ב' ואיך, תמצאו בקישור הבא (מקורס קיץ ישן):

http://u.cs.biu.ac.il/~tsaban/Summer08/Summer08.html

בהצלחה,

ד"ר בועז צבאן

תודה רבה