שיטות אינטגרציה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
מ (another way to express sin(x) as a result of the universal trigonometric substitution)
 
(24 גרסאות ביניים של 4 משתמשים אינן מוצגות)
שורה 1: שורה 1:
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש.
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.


== אינטגרציה "רגילה" ==
==אינטגרציה מיידית==
אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.


הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמה, <BR>
לדוגמא: <math>\int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C</math>
<math>\int \left(e^x+\frac{1}{x} \right )dx=e^x+ln\left | x \right |+c</math>.


=== השלמה לריבוע ===
[[מדיה:אינטגרלים.pdf|דף אינטגרליים מיידיים]]


כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שנייה, ניתן להשלים את הפולינום לריבוע ולהיעזר ב-<math>arctan</math>.
==אינטגרציה בחלקים==
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:


==== דוגמה ====
<math>\int f'g=f\cdot g-\int fg'</math> (ניתן לוודא על ידי גזירה).


<math>\int\frac{1}{x^2+x+1\frac{1}{4}}dx</math>
===דוגמא===
<math>\int\ln(x)dx</math>


ניעזר בהשלמה לריבוע של המכנה. נקבל:
לפי השיטה, נסמן <math>f'(x)=1\ ,\ g(x)=\ln(x)</math> .


<math>\int\frac{1}{x^2+x+1\frac{1}{4}}dx=\int\frac{1}{\left (x+\frac{1}{2} \right )^2+1}dx=arctan\left (x+\frac{1}{2} \right )+c</math>
לכן נקבל <math>f(x)=x\ ,\ g'(x)=\frac{1}{x}</math> .


== אינטגרציה בחלקים ==
לפי נוסחת אינטגרציה בחלקים, נקבל:


לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים: <BR>
<math>\int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C</math>
<math>\int{f'g}=fg-\int{fg'}</math> (ניתן לוודא על ידי גזירה).


=== דוגמה ===


נחפש את <math>\int ln\ x \ dx</math>.
[[אינטגרציה בחלקים|הרחבה]]


לפי השיטה, נסמן <math>f'\left (x \right )=1</math>, <math>g(x)=ln\ x</math>.
==אינטגרציה בהצבה==
לפי כלל השרשרת, אנו מקבלים:


לכן נקבל <math>f(x)=x</math>, <math>g'(x)=\frac{1}{x}</math>.
<math>\int f(g(x))\cdot g'(x)dx=F(g(x))+C</math> (ניתן לוודא על-ידי גזירה).


לפי נוסחת אינטגרציה בחלקים, נקבל:
===דוגמא===
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx</math> כאשר <math>a>0</math> .
 
נבצע הצבה<math>u=\sin^2(x)\</math> ולכן <math>du=2\sin(x)\cos(x)dx=\sin(2x)dx\</math>


<math>\int ln\ x \ dx=x\cdot ln\ x-\int x\cdot \frac{1}{x}\ dx=x\cdot ln\ x-\int 1\ dx=x\cdot ln\ x-x+c</math>.
מקבלים:


=== הרחבה ===
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C</math> (נזכור כי <math>a+u>0</math> , לכן אין צורך בערך מוחלט).


[[אינטגרציה בחלקים|הרחבה]]


== אינטגרציה בהצבה ==
[[שיטת ההצבה|הרחבה]]


לפי כלל השרשרת, אנו מקבלים: <BR>
==פונקציה רציונאלית==
<math>\int f\left (g\left(x \right ) \right )\cdot g'\left (x \right )\ dx=F\left (g\left(x \right ) \right )+c</math> (ניתן לוודא על ידי גזירה).
על מנת לחשב אינטגרל על פונקציה רציונאלית <math>f(x)=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים), עלינו לעקוב אחרי השלבים הבאים:
*אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
*נבצע פירוק לשברים חלקיים.
*נחשב את האינטגרל של כל שבר חלקי.


=== דוגמה ===
ניתן לקרוא [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|כאן]] את האלגוריתם המלא.


נחפש את <math>\int \frac{sin\left(2x \right )}{a+sin^2 x}dx</math> כאשר <math>a>0</math>.
==הצבות אוניברסאליות==
'''הצבות אוניברסאליות''' הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|פונקציה רציונאלית]] אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.


נבצע הצבה: <math>du=2\cdot sin\ x\cdot cos\ x\ dx=sin\left(2x \right )dx \ \Leftarrow u=sin^2 x</math>. מקבלים:
הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)


<math>\int \frac{sin\left(2x \right )}{a+sin^2 x}dx=\int \frac{1}{a+u}du=ln\left ( a+u \right )+c=ln(a+sin^2 x)+c</math> (נזכור כי <math>a+u>0</math>, לכן אין צורך בערך מוחלט).
*[[מדיה:09Infi2Universal.pdf|הסבר על הצבות אוניברסאליות]]


=== הרחבה ===
==ההצבה הטריגונומטרית האוניברסלית==
בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב <math>u=\tan\left(\frac{x}{2}\right)</math> .


[[שיטת ההצבה|הרחבה]]
נזכור כי <math>1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)}</math> , ונקבל <math>\cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2}</math> .


== ההצבה הטריגונומטרית האוניברסלית ==
נקבל בנוסף <math>\cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2}</math> .


בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב <math>u=tan\left (\frac{x}{2}\right )</math>.
לכן:


נזכור כי <math>1+tan^2\alpha=\frac{1}{cos^2 \alpha}</math>, ונקבל <math>cos^2 \left ( \frac{x}{2} \right )=\frac{1}{1+tan^2\left ( \frac{x}{2} \right )}=\frac{1}{1+u^2}</math>.
<math>\sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=</math>


נקבל בנוסף <math>cos\ x=2\cdot cos^2\left ( \frac{x}{2} \right )-1=2\cdot\frac{1}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2}</math>.
<math>\sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2}</math>


לכן <math>sin\ x=\sqrt{ 1-cos^2 x }=\sqrt{1-\left (\frac{1-u^2}{1+u^2}  \right )^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=\sqrt{\frac{1+2u^2+u^4-\left (1-2u^2+u^4  \right )}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{4u^2}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{\left ( 2u \right )^2}{\left ( 1+u^2 \right )^2}}=\frac{2u}{1+u^2}</math>
ובדרך אחרת:


כמו כן, <math>x=2\cdot arctan\ t</math>, ולכן <math>dx=\frac{2}{1+u^2} du</math>.
<math>\tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})}</math>


=== דוגמה ===
ולכן מתקיים


<math>\int\frac{1}{2+2\cdot sin\ x}dx</math>
<math>\sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2}</math>


ניעזר בהצבה הטריגונומטרית האוניברסלית. נציב <math>u=tan\left (\frac{x}{2}\right )</math>. נקבל:


<math>\int\frac{1}{2+2\cdot sin\ x}dx=\int\frac{1}{2+2\cdot \frac{2u}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int\frac{1+u^2}{2+2u^2+4u}\cdot\frac{2}{1+u^2}du=\int\frac{1}{u^2+2u+1}du=\int\frac{1}{\left (u+1\right )^2}du=-\frac{1}{u+1}+c=-\frac{1}{1+tan\left (\frac{x}{2}\right )}+c</math>
כמו כן, <math>x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du</math> .


=== הרחבה ===
לסיכום,
<math>u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du</math>


[[מדיה:09Infi2Universal.pdf|הרחבה]]
===דוגמא===
<math>\int\frac{dx}{2+2\sin(x)}</math>


== פירוק לשברים חלקיים ==
נעזר בהצבה הטריגונומטרית האוניברסלית. נציב <math>u=\tan\left(\frac{x}{2}\right)</math> . נקבל:


כאשר נקבל פונקציה רציונאלית שבמונה שלה 1 ובמכנה שלה פולינום, נרצה לפרק את השבר לשברים חלקיים אשר סכומם הוא השבר המקורי, וקל לבצע אינטגרל לכל אחד מהם בנפרד. ננסה לפרק אותו לגורמים לינאריים ולגורמים ממעלה שנייה.
<math>\int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du</math>


[[מדיה:שברים חלקיים.pdf|הסבר ודוגמה]]
<math>=\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C</math>


== הצבות אוילר ==


הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם <math>x</math> ו-<math>\sqrt{ax^2+bx+c}</math>.
[[מדיה:09Infi2Universal.pdf|הרחבה]]


=== אוילר 1 - הפולינום פריק ===
==הצבות אוילר==
הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם <math>x</math> ו- <math>\sqrt{ax^2+bx+c}</math> .


נניח כי הפולינום <math>ax^2+bx+c</math> פריק (מעל הממשיים, כמובן). נסמן <math>ax^2+bx+c=a\left (x-\alpha\right )\left (x-\beta\right )</math>.
===אוילר 1 - הפולינום פריק===
נניח כי הפולינום <math>ax^2+bx+c</math> פריק (מעל הממשיים, כמובן). נסמן <math>ax^2+bx+c=a(x-\alpha)(x-\beta)</math> .


הצבת אוילר: נציב <math>\sqrt{ax^2+bx+c}=u\cdot\left (x-\alpha\right )</math> (אפשר גם את השורש השני). נביע את <math>x</math> באמצעות <math>u</math>, ונוכל למצוא גם את <math>x</math> וגם את <math>\sqrt{ax^2+bx+c}</math>.
הצבת אוילר: נציב <math>\sqrt{ax^2+bx+c}=u(x-\alpha)</math> (אפשר גם את השורש השני). נביע את <math>x</math> באמצעות <math>u</math> , ונוכל למצוא גם את <math>x</math> וגם את <math>\sqrt{ax^2+bx+c}</math> .


==== דוגמה ====
====דוגמא====
<math>\int\frac{dx}{x\sqrt{x^2-7x+6}}</math>


<math>\int\frac{1}{x\sqrt{x^2-7x+6}}dx</math>


ניעזר בהצבת אוילר: נציב <math>\sqrt{x^2-7x+6}=u\cdot\left (x-1\right )</math>. לכן <math>\left(x-1 \right )\left(x-6 \right )=u^2\left(x-1 \right )^2</math>, כלומר <math>x-6=u^2\left(x-1 \right )</math>, ומכאן <math>x=\frac{u^2-6}{u^2-1}</math>. לכן <math>dx=\frac{2u\left (u^2-1  \right )-2u\left (u^2-6  \right )}{\left (u^2-1  \right )^2}du=\frac{10u}{\left (1-u^2  \right )^2}du</math>. בנוסף, <math>\sqrt{x^2-7x+6}=u\cdot\left ( x-1 \right )=u\cdot\left ( \frac{u^2-6}{u^2-1}-1 \right )=-\frac{5u}{u^2-1}</math>
נעזר בהצבת אוילר: נציב <math>\sqrt{x^2-7x+6}=u(x-1)</math> .


מקבלים:


<math>\int\frac{1}{x\sqrt{x^2-7x+6}}dx=-\int\frac{1}{\ \frac{u^2-6}{u^2-1}\cdot \frac{5u}{u^2-1}\ }\cdot\frac{10u}{\left ( 1-u^2 \right )^2}du=-2\int \frac{1}{u^2-6}du</math> כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.
לכן <math>(x-1)(x-6)=u^2(x-1)^2</math> , כלומר <math>x-6=u^2(x-1)</math> , ומכאן <math>x=\frac{u^2-6}{u^2-1}</math> .


=== אוילר 2 - פולינום יותר כללי ===


ישנן שתי אפשרויות:
לכן <math>dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du</math> .
# בהינתן <math>a>0</math>, נציב <math>\sqrt{ax^2+bx+c}=\sqrt{a}\cdot x+u</math>.
# בהינתן <math>c>0</math>, נציב <math>\sqrt{ax^2+bx+c}=xu+\sqrt{c}</math>.


נביע את <math>x</math> באמצעות <math>u</math>, ונוכל למצוא את <math>dx</math> ואת <math>\sqrt{ax^2+bx+c}</math>.


==== דוגמה ====
בנוסף, <math>\sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1}</math>


<math>\int\frac{1}{\sqrt{x^2-7x+6}}dx</math>
מקבלים:


ניעזר בהצבת אוילר (האופציה הראשונה): נציב <math>\sqrt{x^2-7x+6}=x+u</math>. נעלה בריבוע ונקבל <math>x^2-7x+6=x^2+2xu+u^2</math>, כלומר <math>x=\frac{6-u^2}{2u+7}</math>. לכן <math>dx=\frac{-2u\left (2u+7  \right )-2\left (6-u^2 \right )}{\left (2u+7  \right )^2}du=-2\cdot\frac{u^2+7u+6}{\left ( 2u+7 \right )^2}du</math>, וכן <math>\sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7}</math>.
<math>\int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6}</math> כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.


מקבלים:
===אוילר 2 - פולינום יותר כללי===
ישנן שתי אפשרויות:
# בהינתן <math>a>0</math> , נציב <math>\sqrt{ax^2+bx+c}=\sqrt{a}x+u</math> .
# בהינתן <math>c>0</math> , נציב <math>\sqrt{ax^2+bx+c}=xu+\sqrt c</math> .


<math>\int\frac{1}{\sqrt{x^2-7x+6}}dx=-\int\frac{1}{\ \frac{u^2+7u+6}{2u+7} \ }\cdot 2\cdot\frac{u^2+7u+6}{\left ( 2u+7 \right )^2}du=-\int\frac {2}{2u+7}du=-ln\left | 2u+7 \right |+c=-ln\left | \sqrt{x^2-7x+6}-x \right |+c</math>
נביע את <math>x</math> באמצעות <math>u</math> , ונוכל למצוא את <math>dx</math> ואת <math>\sqrt{ax^2+bx+c}</math> .


=== הרחבה ===
====דוגמא====
<math>\int\frac{dx}{\sqrt{x^2-7x+6}}</math>


[[מדיה:09Infi2Universal.pdf|הרחבה]]
ניעזר בהצבת אוילר (האופציה הראשונה): נציב <math>\sqrt{x^2-7x+6}=x+u</math> .


== פונקציה רציונאלית ==


קיימים מספר מצבים עבור פונקציות רציונאליות <math>f\left (x\right )=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים). להלן חמישה:
נעלה בריבוע ונקבל <math>x^2-7x+6=x^2+2xu+u^2</math> , כלומר <math>x=\frac{6-u^2}{2u+7}</math> .


=== מצב ראשון: <math>deg\ p=deg\ q-1</math> ===


במצב כזה, <math>deg\ q'=deg\ p</math>, לכן קיים קבוע <math>c</math> שעבורו <math>h=cp-q'</math> יהיה ממעלה יותר נמוכה, כלומר <math>deg\ h<edg\ q-1</math>. נקבל:
לכן <math>dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du</math> ,


<math>\int f=\int\frac{p}{q}=\int\frac{\ \frac{h+q'}{c}\ }{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{1}{c}\cdotln|q|</math>. עוברים למצב הבא.


=== מצב שני: <math>deg\ p<deg\ q-1</math> ===
וכן <math>\sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7}</math> .


מפרקים לשברים חלקיים כפי שמוסבר בקובץ [[מדיה:שברים חלקיים.pdf|הזה]].
מקבלים:


=== מצב שלישי: <math>deg\ p\ge deg\ q</math> ===
<math>\int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C</math>


מבצעים חילוק פולינומים וחוזרים למצבים הקודמים.


=== הרחבה ===
[[מדיה:09Infi2Universal.pdf|הרחבה]]


[[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|הרחבה]]
==סיכום==
'''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]'''

גרסה אחרונה מ־13:52, 15 במרץ 2019

בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.

אינטגרציה מיידית

אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.

לדוגמא: [math]\displaystyle{ \int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C }[/math]

דף אינטגרליים מיידיים

אינטגרציה בחלקים

לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:

[math]\displaystyle{ \int f'g=f\cdot g-\int fg' }[/math] (ניתן לוודא על ידי גזירה).

דוגמא

[math]\displaystyle{ \int\ln(x)dx }[/math]

לפי השיטה, נסמן [math]\displaystyle{ f'(x)=1\ ,\ g(x)=\ln(x) }[/math] .

לכן נקבל [math]\displaystyle{ f(x)=x\ ,\ g'(x)=\frac{1}{x} }[/math] .

לפי נוסחת אינטגרציה בחלקים, נקבל:

[math]\displaystyle{ \int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C }[/math]


הרחבה

אינטגרציה בהצבה

לפי כלל השרשרת, אנו מקבלים:

[math]\displaystyle{ \int f(g(x))\cdot g'(x)dx=F(g(x))+C }[/math] (ניתן לוודא על-ידי גזירה).

דוגמא

[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx }[/math] כאשר [math]\displaystyle{ a\gt 0 }[/math] .

נבצע הצבה[math]\displaystyle{ u=\sin^2(x)\ }[/math] ולכן [math]\displaystyle{ du=2\sin(x)\cos(x)dx=\sin(2x)dx\ }[/math]

מקבלים:

[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C }[/math] (נזכור כי [math]\displaystyle{ a+u\gt 0 }[/math] , לכן אין צורך בערך מוחלט).


הרחבה

פונקציה רציונאלית

על מנת לחשב אינטגרל על פונקציה רציונאלית [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] (כאשר [math]\displaystyle{ p(x),q(x) }[/math] פולינומים), עלינו לעקוב אחרי השלבים הבאים:

  • אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
  • נבצע פירוק לשברים חלקיים.
  • נחשב את האינטגרל של כל שבר חלקי.

ניתן לקרוא כאן את האלגוריתם המלא.

הצבות אוניברסאליות

הצבות אוניברסאליות הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של פונקציה רציונאלית אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.

הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)

ההצבה הטריגונומטרית האוניברסלית

בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] .

נזכור כי [math]\displaystyle{ 1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)} }[/math] , ונקבל [math]\displaystyle{ \cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2} }[/math] .

נקבל בנוסף [math]\displaystyle{ \cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} }[/math] .

לכן:

[math]\displaystyle{ \sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}= }[/math]

[math]\displaystyle{ \sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2} }[/math]

ובדרך אחרת:

[math]\displaystyle{ \tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})} }[/math]

ולכן מתקיים

[math]\displaystyle{ \sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2} }[/math]


כמו כן, [math]\displaystyle{ x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du }[/math] .

לסיכום,

[math]\displaystyle{ u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du }[/math]

דוגמא

[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)} }[/math]

נעזר בהצבה הטריגונומטרית האוניברסלית. נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] . נקבל:

[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du }[/math]

[math]\displaystyle{ =\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C }[/math]


הרחבה

הצבות אוילר

הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם [math]\displaystyle{ x }[/math] ו- [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

אוילר 1 - הפולינום פריק

נניח כי הפולינום [math]\displaystyle{ ax^2+bx+c }[/math] פריק (מעל הממשיים, כמובן). נסמן [math]\displaystyle{ ax^2+bx+c=a(x-\alpha)(x-\beta) }[/math] .

הצבת אוילר: נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=u(x-\alpha) }[/math] (אפשר גם את השורש השני). נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא גם את [math]\displaystyle{ x }[/math] וגם את [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

דוגמא

[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}} }[/math]


נעזר בהצבת אוילר: נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1) }[/math] .


לכן [math]\displaystyle{ (x-1)(x-6)=u^2(x-1)^2 }[/math] , כלומר [math]\displaystyle{ x-6=u^2(x-1) }[/math] , ומכאן [math]\displaystyle{ x=\frac{u^2-6}{u^2-1} }[/math] .


לכן [math]\displaystyle{ dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du }[/math] .


בנוסף, [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1} }[/math]

מקבלים:

[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6} }[/math] כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.

אוילר 2 - פולינום יותר כללי

ישנן שתי אפשרויות:

  1. בהינתן [math]\displaystyle{ a\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=\sqrt{a}x+u }[/math] .
  2. בהינתן [math]\displaystyle{ c\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=xu+\sqrt c }[/math] .

נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא את [math]\displaystyle{ dx }[/math] ואת [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

דוגמא

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}} }[/math]

ניעזר בהצבת אוילר (האופציה הראשונה): נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u }[/math] .


נעלה בריבוע ונקבל [math]\displaystyle{ x^2-7x+6=x^2+2xu+u^2 }[/math] , כלומר [math]\displaystyle{ x=\frac{6-u^2}{2u+7} }[/math] .


לכן [math]\displaystyle{ dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du }[/math] ,


וכן [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7} }[/math] .

מקבלים:

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C }[/math]


הרחבה

סיכום

דף מסכם