שיחה:88-230 אינפי 3 סמסטר א תשעג/תיכוניסטים: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(←‏תרגיל 5 שאלה 7: פסקה חדשה)
(←‏תרגיל 5 שאלה 7: פסקה חדשה)
שורה 96: שורה 96:


לכן עבור <math>f</math> דיפרנציאבילית ב <math>a</math>, הביטוי <math>D_u(f)(a)</math> תמיד מוגדר.--[[משתמש:איתמר שטיין|איתמר שטיין]] 15:39, 30 בנובמבר 2012 (IST)
לכן עבור <math>f</math> דיפרנציאבילית ב <math>a</math>, הביטוי <math>D_u(f)(a)</math> תמיד מוגדר.--[[משתמש:איתמר שטיין|איתמר שטיין]] 15:39, 30 בנובמבר 2012 (IST)
== תרגיל 5 שאלה 7 ==
למה הכוונה ב Ux?
--[[משתמש:ג.יפית|ג.יפית]] 14:46, 1 בדצמבר 2012 (IST)


== תרגיל 5 שאלה 7 ==
== תרגיל 5 שאלה 7 ==

גרסה מ־12:46, 1 בדצמבר 2012

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

תשובה לשאלה של אוהד:

אפשר להניח שפונקציות אלמנטריות הן רציפות (ולכן אפשר "סתם" להציב בהן את הגבולות - כל עוד אין חלוקה באפס ובעיות דומות). כרגע זאת באמת סתם הנחה בלי להבין למה. נראה לזה הצדקה כשנגיע לרציפות - בעוד שבוע שבועיים.

ודרך אגב - אני אשמח אם תשאלו שאלות כאן ולא דרך facebook.--איתמר שטיין 10:41, 30 באוקטובר 2012 (IST)

תרגיל 3 שאלה 1

הפונקציה f מוגדרת מE לממשיים, אבל אם הראשית או כל נקודה על הישר y=0 נמצאים בE אז הפונקציה לא מוגדרת באותן הנקודות.

השאלה היא האם אפשר להניח שהנקודות הנ"ל לא נמצאות בE?

תשובה:כן, זאת הייתה הכוונה. אפשר להניח שב [math]\displaystyle{ E }[/math] אין נקודות עם [math]\displaystyle{ y=0 }[/math].--איתמר שטיין 13:03, 13 בנובמבר 2012 (IST)

תרגיל 3 שאלה 2.

אפשר לקבל הכוונה לא',

h(y) תלויה בערכי הx שאתה מציב בה,זאת אומרת h1(y)=f(x', y) h2(y)=f(x, y) הינן פונקציות שונות כל עוד x' שונה מx

רציתי לפרק את הבעיה לפי הצירים,(להביט ברציפות על x וברציפות על y) וודבר זה מוביל לבעייתיות, שכן בעבור כל x הפונקציה h(y) שונה ויש לדרוש דלתא אחר בהגדרת הגבול.


כמו שאמרנו - אתם צודקים, הייתה טעות בשאלה.--איתמר שטיין 23:48, 18 בנובמבר 2012 (IST)

תרגיל 4 שאלות 4 5

לדעתי יש טעות בשאלה משום שלא נתונות לנו ערכי הנגזרות החלקיות של פונקציה F(שאלה 4) בנוסף בשאלה 5 - האם מדובר על נגזרות חלקיות ?


תשובה: בשאלה 4 אין טעות. (אני חושב שיש אפילו נתון מיותר).

לגבי שאלה 5, כן. [math]\displaystyle{ f_x,f_y }[/math] הן הנגזרות החלקיות לפי [math]\displaystyle{ x,y }[/math] בהתאמה. זה מקובל פעמים רבות לסמן אותם בלי התג של נגזרת.--איתמר שטיין 08:32, 21 בנובמבר 2012 (IST)


עדכון: לגבי שאלה 4. דיברתי עם מיכאל (שהוא גם כתב את השאלה וגם מבין באנליזה הרבה יותר ממני), והוא מסכים שהשאלה במתכונתה הנוכחית לא מספיק ברורה.

במקום [math]\displaystyle{ \frac{\partial z}{\partial u},\quad \frac{\partial z}{\partial v} }[/math]

אתם יכולים להניח שכתוב [math]\displaystyle{ \frac{\partial f}{\partial u},\quad \frac{\partial f}{\partial v} }[/math].

נתקן את הקובץ בקרוב.

(כשכותבים [math]\displaystyle{ \frac{\partial z}{\partial u} }[/math], הכוונה היא הנגזרת במשתנה הראשון של [math]\displaystyle{ z }[/math], כאשר הוא מוגדר כפונקציה של [math]\displaystyle{ u,v }[/math] שזה שווה ל [math]\displaystyle{ \frac{\partial f}{\partial u} }[/math] במקרה שלנו).

דרך אגב למי שרוצה: אם אין לי טעות חישוב, מספיק לדעת את [math]\displaystyle{ \frac{\partial z}{\partial u} }[/math] כדי לחשב את הערך המבוקש בשאלה. --איתמר שטיין 12:20, 21 בנובמבר 2012 (IST)

תרגיל 4 שאלה 4ב

האם למשוואה עם הנגזרות החלקיות שם יש משמעות גיאומטרית יפה (או, האם הפתרונות הן צורות גיאומטריות יפות)? קשה לי לדמיין אותו (גם אחרי המרת המשוואה כדרוש בשאלה)

אבוי! הייתה לי טעות קטנה, כעת המשמעות של המשוואה מאוד יפה :)

תרגיל 4 שאלה 2 סעיפים א', ב'

בסעיפים אלה הכוונה לנגזרת החלקית לפי x?

תשובה: כן. שאלו על הסימון הזה כמה שאלות קודם.--איתמר שטיין 23:09, 24 בנובמבר 2012 (IST)

פתרונות לתרגילים

אפשר בבקשה לפרסם את הפתרונות לשיעורי הבית?


תשובה: כן, נתחיל השבוע להעלות פתרונות.--איתמר שטיין 23:12, 24 בנובמבר 2012 (IST)

נגזרת מכוונת

ההגדרה הראשונית עם הגבול, תופסת לכל וקטור או רק לוקטור יחידה?

וכנ"ל לגבי המשפט בנוגע למצב בו f דיפרנציאבילית?


תשובה: אני מקווה שהבנתי את השאלה נכון.

אם מסמנים [math]\displaystyle{ D_u(f)(a)=\lim_{t\rightarrow 0}\frac{f(a+tu)-f(a)}{t} }[/math] כמו שאני סימנתי.

אז הגבול הזה הוא הנגזרת הכיוונית בכיוון [math]\displaystyle{ u }[/math] רק כש [math]\displaystyle{ u }[/math] מנורמל. אם הוא לא מנורמל אז ייתכן שיהיה גבול אבל הוא לא הנגזרת הכיוונית - יהיה צריך לנרמל.

כאשר [math]\displaystyle{ f }[/math] דיפרנציאבילית, מתקיים לכל [math]\displaystyle{ u }[/math] (לאו דווקא מנורמל), כי

[math]\displaystyle{ \nabla f(a) \cdot u=D_u(f)(a) }[/math]

אבל רק כאשר [math]\displaystyle{ u }[/math] מנורמל זאת באמת הנגזרת הכיוונית.--איתמר שטיין 15:36, 30 בנובמבר 2012 (IST)


עוד הערה: גם אם [math]\displaystyle{ u }[/math] לא וקטור יחידה, ברור ש [math]\displaystyle{ D_u(f)(a) }[/math] קיים אם ורק אם הנגזרת הכיוונית בכיוון [math]\displaystyle{ u }[/math] קיימת.

לכן עבור [math]\displaystyle{ f }[/math] דיפרנציאבילית ב [math]\displaystyle{ a }[/math], הביטוי [math]\displaystyle{ D_u(f)(a) }[/math] תמיד מוגדר.--איתמר שטיין 15:39, 30 בנובמבר 2012 (IST)

תרגיל 5 שאלה 7

למה הכוונה ב Ux? --ג.יפית 14:46, 1 בדצמבר 2012 (IST)

תרגיל 5 שאלה 7

למה הכוונה ב Ux? --ג.יפית 14:46, 1 בדצמבר 2012 (IST)