88-133 אינפי 2 תשעב סמסטר ב/תרגילים/תרגיל 4: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "==1== ===א=== תהי f פונקציה רציפה בקטע <math>(0,1]</math> המקיימת <math>\lim_{x\rightarrow 0+}f(x)=\infty</math>. הוכח כי אורך ...")
 
שורה 7: שורה 7:


==2==
==2==
חשב לאילו ערכים של הפרמטרים האינטגרלים הבאים מתכנסים
===א===
<math>\int_0^\infty\frac{sin^2(x)}{x^\alpha}dx</math>
===ב===
<math>\int_0^1ln^\alpha(x)dx</math>
===ג===
<math>\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}tan^\alpha(x)dx</math>
==3==
חשב אילו מן האינטגרלים הבאים מתכנס
===א===

גרסה מ־07:23, 14 במאי 2012

1

א

תהי f פונקציה רציפה בקטע [math]\displaystyle{ (0,1] }[/math] המקיימת [math]\displaystyle{ \lim_{x\rightarrow 0+}f(x)=\infty }[/math]. הוכח כי אורך העקומה של f בקטע הוא אינסוף.

ב

תהי f פונקציה רציפה בקטע [math]\displaystyle{ (0,1] }[/math] שאינה חסומה שם. הוכח כי אורך העקומה של f בקטע הוא אינסוף.

2

חשב לאילו ערכים של הפרמטרים האינטגרלים הבאים מתכנסים

א

[math]\displaystyle{ \int_0^\infty\frac{sin^2(x)}{x^\alpha}dx }[/math]

ב

[math]\displaystyle{ \int_0^1ln^\alpha(x)dx }[/math]

ג

[math]\displaystyle{ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}tan^\alpha(x)dx }[/math]

3

חשב אילו מן האינטגרלים הבאים מתכנס

א