88-211 תשעו סמסטר א

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

88-211 אלגברה מופשטת 1

מרצים:

מתרגלים: שירה גילת, תומר באואר, אורלי בארשבסקי, תמר נחשוני

מייל: כאן

קישורים

הודעות

ציוני בוחן 2

טבלת הציונים נמצאת כאן.

רשימת משפטים למבחן לקבוצה 01

בקובץ הזה מופיעה רשימה של משפטים למבחן לקבוצה של פרופ' מגרל.

ציוני בוחן 1 ופתרונות

ציוני הבוחן בקבוצה של פרופ' וישנה ובקבוצה של פרופ' מגרל (לפי ארבע ספרות אחרונות).

פתרון הבוחן בקבוצה של פרופ' וישנה ובקבוצה של פרופ' מגרל.

בוחן 2

הבוחן השני הוא עבודה אותה עליכם לפתור לבד ולהגיש עד ה28.1.16.

העבודה מצורפת כאן.

בהצלחה!

שימו לב לכך ששאלה 4 הפכה להיות שאלת בונוס. הסבר לגבי הסימונים שם:

  • [math]\displaystyle{ \mathbb{Z}\oplus\mathbb{Z}=\mathbb{Z}\times\mathbb{Z} }[/math], עם אותן פעולות. ההבדל בין הסימונים מתבטא במקרה האינסופי, כלומר כשיש אינסוף חבורות ולוקחים להן סכום ישר או מכפלה ישרה.
  • [math]\displaystyle{ \mathbb{Z}\left(4,6\right)=\left\langle\left(4,6\right)\right\rangle=\left\{\left(4n,6n\right)\middle|n\in\mathbb{Z}\right\} }[/math]

בהצלחה, --גיא (שיחה) 19:01, 21 בינואר 2016 (UTC)

תיקון לעבודה

שימו לב לתיקונים בשאלה 5: בסעיף ב', מותר (וצריך) להניח שהחבורות [math]\displaystyle{ G }[/math], [math]\displaystyle{ H }[/math] ו-[math]\displaystyle{ K }[/math] הן אבליות, וב"סכום ישר" הכוונה לסכום ישר פנימי (כפי שכתוב בקובץ המעודכן). --גיא (שיחה) 19:14, 10 בינואר 2016 (UTC)

תאריכי בחנים

בוחן ראשון לקבוצה 88-211-03 נקבע לתאריך 7.12.2015 בשעה 15:00 בכיתה 6, בניין 305. באותו יום התרגול גם יעבור לשם.

בוחן ראשון לשאר הקבוצות בתאריך 8.12.2015 בשעה 10:00.

ציון הקורס

את תרגילי הבית יש לפתור; אין חובת הגשה. במהלך הסמסטר יתקיימו שני בחנים. ההשתתפות חובה. ציון הבחנים יקבע את ציון התרגיל, שיהיה 20% מציון הקורס.

בחינה

הבחינה בסוף הסמסטר תהווה 80%; בחומר סגור. עליכם להבין את המושגים העיקריים שנלמדים בקורס, להכיר את האובייקטים והבניות המרכזיות, ולדעת להוכיח את הטענות החשובות.

קישורים מגניבים

הינה דוגמא מגניבה לשימוש בתמורות, שכל מתמטיקאי צריך להכיר:

משפט פיוצ'רמה

אתם מוזמנים לצפות בפרק:)

הצפנת RSA- או: הינה דוגמא לשימוש בפונקציית אוילר ומשפט לגרנז' בחיי היום יום:)