חדוא 2 - ארז שיינר
תקציר ההרצאות
פרק 1 - האינטגרל הלא מסויים
- הגדרה: F נקראת פונקציה קדומה של f בקטע A אם לכל נקודה בקטע מתקיים כי
- האינטגרל הלא מסויים
מסמן פונקציה קדומה של f.
- תהי F קדומה של f, אזי קבוצת כל הקדומות של f שווה ל
- אינטגרלים מיידיים ידועים לנו מנוסחאות הגזירה.
שיטות למציאת קדומה
- תהיינה f,g פונקציות בעלות קדומות, אזי:
אינטגרציה בחלקים
שיטת הההצבה
פונקציה רציונאלית
- הורדת דרגת המונה ע"י חילוק פולינומים
- פירוק לשברים חלקיים
- חישוב אינטגרל של כל שבר חלקי
- נסמן
- אזי
- נסמן
כאשר תנאי ההתחלה הוא
פרק 2 - האינטגרל המסויים
סכומי דרבו ואינטגרל עליון ותחתון
- תהי חלוקה
ותהי העדנה שלה