קוד:אפיון ערכים עצמיים

מתוך Math-Wiki
גרסה מ־12:21, 10 באוגוסט 2014 מאת גיא בלשר (שיחה) (יצירת דף עם התוכן "\textit{תזכורת:} $A$ איננה הפיכה אם ורק אם $\det\left (A\right )=0$. \textbf{משפט:} $\lambda \in\mathbb{F}$\textbf{ הוא ערך ע...")

(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה אל: ניווט, חיפוש

\textit{תזכורת:} $A$ איננה הפיכה אם ורק אם $\det\left (A\right )=0$.

\textbf{משפט:}

$\lambda \in\mathbb{F}$\textbf{ הוא ערך עצמי של מטריצה }$A\in M_{n}(\mathbb{F})$\textbf{ אם ורק אם }$\det\left (\lambda I-A\right )=0$\textbf{.}

<textit>הוכחה:</textit>

$\lambda \in\mathbb{F}$ הוא ע"ע של $A$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$Av=\lambda v$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\lambda v-Av=0$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\left (\lambda I-A\right )v=0$ $\Leftrightarrow$ המטריצה $\lambda I-A$ אינה הפיכה $\Leftrightarrow$ $\det(\lambda I-A)=0$.

המשפט מאפשר לנו לחשב ערכים עצמיים מבלי לנסות לכפול וקטורים במטריצה בתקווה ש"ייצא טוב". לפי המשפט, כדי למצוא ערכים עצמיים של המטריצה נוכל לפתור את המשוואה $\det\left (\lambda I-A\right )=0$. זהו פולינום ממעלה $n$, ובהמשך נקרא לו הפולינום האופייני של $A$, והוא ישחק תפקיד חשוב בתיאוריה שלנו.