משתמש:אור שחף/133 - תרגול/10.4.11

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

האינטגרל המסויים (המשך)

הוכחנו בהרצאה שאם f גזירה ב-[math]\displaystyle{ (a,b) }[/math] ו-c נקודה כלשהי בקטע אז מתקיים [math]\displaystyle{ \frac{\mathrm{d}}{\mathrm{d}x}\int\limits_c^x f\mathrm{d}t=f(x) }[/math].

דוגמה 1

גזור את הפונקציות הבאות:

  1. [math]\displaystyle{ I(x)=\int\limits_1^x e^{t^2}\mathrm dt }[/math]:

    פתרון

    ברור כי [math]\displaystyle{ e^{t^2} }[/math] פונקציה גזירה, ולכן [math]\displaystyle{ \frac{\mathrm dI(x)}{\mathrm dx}=e^{t^2} }[/math].

  2. [math]\displaystyle{ I(x)=\int\limits_1^{x^3}\frac{\ln(t)}{t^2}\mathrm dt }[/math]:

    פתרון

    [math]\displaystyle{ \frac{\ln(t)}{t^2} }[/math] בוודאי גזירה בתחום. נסמן [math]\displaystyle{ y=x^3 }[/math] ולכן [math]\displaystyle{ \frac{\mathrm dI(x)}{\mathrm dx}=\frac{\mathrm dI(x)}{\mathrm dy}\cdot\frac{\mathrm dy}{\mathrm dx}=\frac{\ln(y)}{y^2}\cdot3x^2=\frac{\ln(x^3)}{x^6}\cdot3x^2=9\frac{\ln(x)}{x^4} }[/math]. [math]\displaystyle{ \blacksquare }[/math]

הערה: במקרה של [math]\displaystyle{ \frac{\mathrm{d}}{\mathrm{d}x}\int\limits_{g(x)}^{h(x)} f\mathrm{d}t }[/math] נפרק את האינטגרל לסכום [math]\displaystyle{ \int\limits_c^{h(x)} f\mathrm{d}t+\int\limits_{g(x)}^c f\mathrm{d}t }[/math].

אינטגרלים לא אמיתיים מסוג I

לפחות אחד מגבולות האינטגרציה אינסופי. נסמן [math]\displaystyle{ \int\limits_a^\infty f=\lim_{b\to\infty}\int\limits_a^b f }[/math] ובאופן דומה [math]\displaystyle{ \int\limits_{-\infty}^b f=\lim_{a\to-\infty}\int\limits_a^b f }[/math] וכן [math]\displaystyle{ \int\limits_{-\infty}^\infty f=\int\limits_{-\infty}^c f+\int\limits_c^\infty f }[/math] עבור c כך ששני האינטגרלים יהיו קיימים.

כלל ידוע: [math]\displaystyle{ \int\limits_a^\infty\frac{\mathrm dx}{x^\alpha} }[/math] מתכנס אם"ם [math]\displaystyle{ \alpha\gt 1 }[/math].

דוגמה 2

חשבו את [math]\displaystyle{ \int\limits_1^\infty\cos }[/math], אם קיים.

פתרון

[math]\displaystyle{ \int=\lim_{b\to\infty}[\sin(x)]_{x=1}^b=\lim_{b\to\infty}\sin(b)-\sin(1)\not\in\mathbb R\cup\{\pm\infty\} }[/math], כלומר מתבדר.

דוגמה 3

חשבו את [math]\displaystyle{ \int\limits_{-\infty}^\infty\frac{\arctan(x)}{1+x^2}\mathrm dx }[/math].

פתרון

נציב [math]\displaystyle{ y=\arctan(x) }[/math] ולכן [math]\displaystyle{ \mathrm dy=\frac{\mathrm dx}{1+x^2} }[/math]. מכאן נובע ש-

[math]\displaystyle{ \begin{align}\int&=\lim_{R\to\infty}\int\limits_{\arctan(-R)}^{\arctan(0)} y\mathrm dy+\lim_{R\to\infty}\int\limits_{\arctan(0)}^{\arctan(R)} y\mathrm dy\\&=\left[\frac{y^2}2\right]_{y=-\frac\pi2}^0+\left[\frac{y^2}2\right]_{y=0}^\frac\pi2\\&=-\frac{\pi^2}8+\frac{\pi^2}8\\&=0\end{align} }[/math]

[math]\displaystyle{ \blacksquare }[/math]

דוגמה 4

חשבו [math]\displaystyle{ \int\limits_{-\infty}^\infty xe^x\mathrm dx }[/math].

פתרון

[math]\displaystyle{ \int=\lim_{R\to\infty}\left[xe^x\right]_{x=-R}^R-\int\limits_{-R}^R e^x\mathrm dx=\lim_{R\to\infty}Re^R-\left(-Re^{-R}\right)-e^R+e^{-R}=\infty }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מבחני התכנסות

מבחן ההשוואה

[math]\displaystyle{ 0\le f(x)\le g(x) }[/math] אזי אם [math]\displaystyle{ \int\limits_a^\infty g }[/math] מתכנס אז [math]\displaystyle{ \int\limits_a^\infty f }[/math] מתכנס.

דוגמה 5

קבעו התכנסות של [math]\displaystyle{ \int\limits_1^\infty x^{-x}\mathrm dx }[/math].

פתרון

נבדוק מתי [math]\displaystyle{ x^{-x}\le\frac1{x^2} }[/math]: [math]\displaystyle{ x^{-x+2}\le1\Longleftarrow x\ge2 }[/math]. לכן נרשום [math]\displaystyle{ \int=\underbrace{\int\limits_1^2 x^{-x}\mathrm dx}_I+\underbrace{\int\limits_2^\infty x^{-x}\mathrm dx}_{II} }[/math]. האינטגרל I בוודאי מתכנס, כי גבולות האינטגרציה סופיים והפונקציה רציפה בתחום. נותר להראות ש-II מתכנס: כפי שכבר הראנו, בתחום הזה [math]\displaystyle{ x^{-x}\le\frac1{x^2} }[/math] ולכן מספיק לבדוק התכנסות האינטגרל [math]\displaystyle{ \int\limits_2^\infty\frac{\mathrm dx}{x^2} }[/math], שכידוע מתכנס. [math]\displaystyle{ \blacksquare }[/math]

דוגמה 6

קבעו התכנסות האינטגרל (האמיתי) [math]\displaystyle{ \int\limits_0^1 x^{-x}\mathrm dx }[/math].

פתרון

ברור שפרט לנקודה 0 האינטגרנד מוגדר בקטע. נסתכל על הגבול כאשר [math]\displaystyle{ x\to0^+ }[/math]: [math]\displaystyle{ \lim_{x\to0^+} x^{-x}=\lim_{x\to0^+} e^{-x\ln(x)}=\lim_{x\to0^+}e^{-\frac{\ln(x)}{1/x}}=\lim_{x\to0^+}e^{-\frac{1/x}{-1/x^2}}=\lim_{x\to0^+}e^x=1 }[/math]. לכן נגדיר [math]\displaystyle{ g(x)=\begin{cases}x^{-x}&0\lt x\le1\\1&x=0\end{cases} }[/math]. פונקציה זו רציפה בקטע הסגור [math]\displaystyle{ [0,1] }[/math] ולכן ברור שהאינטגרל שלה בקטע מתכנס. מכיוון שהיא שונה מהאינטגרנד המקורי במספר סופי של נקודות גם [math]\displaystyle{ \int\limits_0^1 x^{-x}\mathrm dx }[/math] מתכנס. [math]\displaystyle{ \blacksquare }[/math]

דוגמה 7

קבעו התכנסות של [math]\displaystyle{ \int\limits_1^\infty\frac{\arctan(x)}x\mathrm dx }[/math].

פתרון

בקטע הנ"ל arctan היא פונקציה עולה. לכן אם נכוון להתבדרות נשים לב כי [math]\displaystyle{ \frac\pi4=\arctan(1)\le\arctan(x) }[/math] ולכן [math]\displaystyle{ \frac\pi4\cdot\frac1x\frac{\arctan(x)}x }[/math]. אבל [math]\displaystyle{ \frac\pi4\int\limits_1^\infty \frac{\mathrm dx}x }[/math] מתבדר ולכן כך גם האינטגרל הנתון. [math]\displaystyle{ \blacksquare }[/math]

מבחן ההשוואה הגבולי

נתון [math]\displaystyle{ \lim_{x\to\infty}\frac{f(x)}{g(x)}=L }[/math] כאשר f,g פונקציות אי-שליליות.

  • אם [math]\displaystyle{ 0\lt L\lt \infty }[/math] אז [math]\displaystyle{ \int f }[/math] ו-[math]\displaystyle{ \int g }[/math] מתכנסים ומתבדרים יחדיו.
  • אם [math]\displaystyle{ L=0 }[/math] אז התכנסות [math]\displaystyle{ \int g }[/math] גוררת התכנסות [math]\displaystyle{ \int f }[/math].
  • אם [math]\displaystyle{ L=\infty }[/math] אז התכנסות [math]\displaystyle{ \int f }[/math] גוררת התכנסות [math]\displaystyle{ \int g }[/math].

דוגמה 8

קבעו התכנסות של [math]\displaystyle{ \int\limits_1^\infty\frac{\arctan(x)}{x^2}\mathrm dx }[/math].

פתרון

ידוע כי [math]\displaystyle{ \int\limits_1^\infty\frac{\mathrm dx}{x^2} }[/math] מתכנס. הגבול [math]\displaystyle{ \lim_{x\to\infty}\frac{\;\frac{\arctan(x)}{x^2}\;}{\frac{1}{x^2}}=\lim_{x\to\infty}\arctan(x)=\frac\pi2\lt \infty }[/math] קיים ולכן [math]\displaystyle{ \int\limits_1^\infty\frac{\arctan(x)}{x^2}\mathrm dx }[/math] מתכנס. [math]\displaystyle{ \blacksquare }[/math]