שינויים

קפיצה אל: ניווט, חיפוש

אנליזת פורייה ויישומים קיץ תשעב/סיכומים/תקציר

נוספו 3,372 בתים, 21:44, 22 בספטמבר 2012
== התמרות פורייה ==
* <math>G(\mathbb R)</math> הוא המרחב הלינארי של כל הפונקציות המוגדרות מ־<math>\mathbb R</math> ל־<math>\mathbb C</math> שהן רציפות למקוטעין ואינטגרביליות בהחלט ב־<math>\mathbb R</math>.
* '''התמרת פורייה:''' <math>\hat f=\mathcal F([f)]:\mathbb R\to\mathbb C</math> נקראת "התמרת פורייה של <math>f</math>" ומוגדרת ע״י <math>\hat f(\omega):=\frac1{2\pi}\int\limits_{-\infty}^\infty f(x)\mathrm e^{-\mathrm i\omega x}\mathrm dx</math>.
* אם <math>f\in G(\mathbb R)</math> אזי <math>\hat f</math> מוגדרת ורציפה בכל נקודה <math>\omega\in\mathbb R</math>. בנוסף, <math>\lim_{\omega\to\pm\infty}\hat f(\omega)=0</math>.
* לכל <math>f,g\in G(\mathbb R)</math> ולכל <math>a,b\in\mathbb C</math> מתקיים:
:* <math>\mathcal F([af+bg)]=a\mathcal F([f)]+b\mathcal F([g)]</math>
:* אם <math>f</math> ממשית אזי <math>\hat f(-\omega)=\overline{\hat f(\omega)}</math>.
::* {{הערה|מקרה פרטי:}} אם <math>f</math> ממשית וזוגית אזי <math>\hat f(\omega)=\hat f(-\omega)</math> והיא פונקציה ממשית.
::* {{הערה|מקרה פרטי:}} אם <math>f</math> ממשית ואי־זוגית אזי <math>\hat f(-\omega)=-\hat f(\omega)</math> והיא פונקציה מדומה.
:* אם <math>f</math> מדומה אזי <math>\hat f(-\omega)=-\overline{\hat f(\omega)}</math>.
:* אם <math>a\ne0</math> אזי <math>\mathcal F([f(ax+b))](\omega)=\frac1{|a|}\exp\!\left(\frac{\mathrm ib\omega}2\right)\mathcal F([f)]\left(\frac\omega a\right)</math>.:* אם <math>a\in\mathbb R</math> אזי <math>\mathcal F\!\left([\mathrm e^{\mathrm iax}f(x)\right)]\!(\omega)=\mathcal F([f)](\omega-a)</math>.:* אם <math>a\in\mathbb R</math> אזי <math>\mathcal F([\cos(ax)f(x))](\omega)=\frac{\mathcal F([f)](\omega-a)-\mathcal F([f)](\omega+a)}2</math>.:* אם <math>a\in\mathbb R</math> אזי <math>\mathcal F([\sin(ax)f(x))](\omega)=\frac{\mathcal F([f)](\omega-a)-\mathcal F([f)](\omega+a)}{2\mathrm i}</math>.:* אם <math>f,f',\dots,f^{(n)}\in G(\mathbb R)</math> ו־<math>\lim_{x\to\pm\infty}f(x)=0</math> אזי <math>\mathcal F\!\left([f^{(n)}\right)]\!(\omega)=(\mathrm i\omega)^n\mathcal F([f)(\omega)</math>.::* {{הערה|מקרה פרטי:}} אם <math>f,f'\in G(\mathbb R)</math> ו־<math>\lim_{x\to\pm\infty}=0</math> אזי <math>\mathcal F(f')(\omega)=\mathrm i\omega\mathcal F(f)](\omega)</math>.:* אם <math>\int\limits_{-\infty}^\infty x|f(x)|\mathrm dx</math> מתכנס אזי <math>\hat f</math> גזירה ברציפות ומתקיים <math>\mathcal F\!\left([x^n f(x)\right)]\!(\omega)=\mathrm i^n\frac{\mathrm d^n}{\mathrm d\omega^n}\mathcal F([f)](\omega)</math>.
* '''התמרת פורייה ההפוכה:''' אם <math>f\in G(\mathbb R)</math> אזי בכל נקודה <math>x_0</math> שבה קיימות הנגזרות החד־צדדיות מתקיים <math>\frac{\displaystyle\lim_{x\to x_0^+}f(x)+\lim_{x\to x_0^-}f(x)}2=\lim_{R\to\infty}\int\limits_{-R}^R\hat f(\omega)\mathrm e^{\mathrm i\omega x}\mathrm d\omega</math>.
:* {{הערה|מקרה פרטי:}} אם <math>f'\in E(\mathbb R)</math> אזי <math>f(x)=\int\limits_{-\infty}^\infty\hat f(\omega)\mathrm e^{\mathrm i\omega x}\mathrm d\omega</math>.
* <math>f*(g+h)=f*g+f*h</math>
* אם <math>f,g</math> אינטגרביליות בהחלט אז <math>f*g</math> מוגדרת עבורן בכל <math>\mathbb R</math> וגם היא אינטגרבילית בהחלט.
* '''משפט הקונבולוציה:''' <math>\forall f,g\in G(\mathbb R):\ \mathcal F([f*g)]=2\pi\mathcal F([f)]\mathcal F([g)]</math>.
:* {{הערה|שימוש חשוב:}} נניח שידועות <math>f,g,\hat f,\hat g</math> ונרצה למצוא <math>h</math> כך ש־<math>\hat h=\hat f\cdot\hat g</math>. אזי <math>h=\frac1{2\pi}f*g</math>.
*
=== התמרות פורייה שימושיות ===
* <math>\mathcal F\!\left([\mathrm e^{-|x|}\right)]\!(\omega)=\frac1{\pi(1+\omega^2)}</math>* <math>\mathcal F\!\left([\mathrm e^{-x^2}\right)]\!(\omega)=\frac{\mathrm e^{-\omega^2/4}}{2\sqrt\pi}</math> (הוכחה ע״י חישוב הנגזרת של האינטגרל שמגדיר את ההתמרה ופתרון המד״ר המתקבלת: <math>\hat f'(\omega)=-\frac\omega2\hat f(\omega)</math>).* עבור <math>a\ge0</math>: <math>\mathcal F([1_{[-a,a]}](\omega)=\frac{\sin(a\omega)}{\pi\omega}</math> (כאשר <math>1_A</math> היא הפונקציה המציינת של קבוצה <math>A</math>, ומוגדרת ע״י <math>1_A(x)=\begin{cases}1,&x\in A\\0,&\text{else}\end{cases}</math>). == התמרות לפלס ==* '''חסימות מעריכית:''' נאמר ש־<math>f</math> חסומה מעריכית אם קיימים <math>M>0</math> (''חסם מעריכי'') ו־<math>\alpha</math> (''סדר מעריכי'') שעבורם <math>\forall t:\ |f(t)|\le M\mathrm e^{\alpha t}</math>.* <math>\Lambda(\mathbb R)</math> הוא המרחב הלינארי של פונקציות <math>f:\mathbb R\to\mathbb C</math> חסומות מעריכית כך ש־<math>f\in E[0,\infty)</math> והן אינטגרביליות בהחלט ב־<math>[0,R]</math> לכל <math>0<R<\infty</math>.* '''התמרת לפלס:''' תהי <math>f\in E[0,\infty)</math> המקבלת ערכים ב־<math>\mathbb C</math>. אזי <math>\mathcal L[f]:\mathbb R\to\mathbb C</math> נקראת "התמרת לפלס של <math>f</math>" ומוגדרת ע״י <math>\mathcal L[f](s)=\int\limits_0^\infty f(t)\mathrm e^{-st}\mathrm dt</math>.* אם <math>f\in E[0,\infty)</math> וחסומה מעריכית אזי <math>\lim_{s\to\infty}\mathcal L[f](s)=0</math>.* אם <math>f\in\Lambda(\mathbb R)</math> עם סדר מעריכי <math>\alpha</math> אז קיימת לה התמרת לפלס ב־<math>(\alpha,\infty)</math>.* <math>\forall a,b\in\mathbb C:\ \mathcal L[af+bg]=a\mathcal L[f]+b\mathcal L[g]</math>* <math>\mathcal L\!\left[t^n f(t)\right]\!(s)=(-1)^n\frac{\mathrm d^n}{\mathrm ds^n}\mathcal L[f](s)</math>* '''משפט התמורה של הנגזרת:''' תהי <math>f</math> עם חסם מעריכי <math>\alpha</math> וכך ש־<math>f^{(n)}\in\Lambda(\mathbb R)</math>. אזי התמרת לפלס של <math>f^{(n)}</math> מוגדרת ב־<math>(\alpha,\infty)</math> ומתקיים <math>\mathcal L\!\left[f^{(n)}\right]\!(s)=s^n\mathcal L[f](s)-\sum_{k=0}^{n-1} s^{n-k}f^{(k)}(0)</math>.* '''קונבולוציה:''' יהיו <math>f,g\in\Lambda(\mathbb R)</math>. אזי <math>\forall t\in[0,\infty):\ (f*g)(t)=\int\limits_0^t f(t-x)g(x)\mathrm dx</math>.* '''משפט הקונבולוציה:''' <math>\forall f,g\in\Lambda(\mathbb R):\ \mathcal L[f*g]=\mathcal L[f]\mathcal L[g]</math>. אם בנוסף <math>f,g</math> עם סדר מעריכי אז <math>\mathcal L[f*g](s)</math> מוגדר לכל <math>s>\alpha</math>.* תהא <math>f\in\Lambda(\mathbb R)</math> ונתונה <math>F(t)=\int\limits_0^t f(x)\mathrm dx</math>. ממשפט הקונבולוציה עם <math>g(t)\equiv1</math> נקבל <math>\mathcal L[F](s)=\frac{\mathcal L[f](s)}s</math>.* '''פונקציית הביסייד (Heaviside)''' היא <math>H_c(t)=\begin{cases}0,&0\le t\le c\\1,&t\ge c\end{cases}</math>.* <math>\mathcal L[H_c](s)=\frac{\mathrm e^{-cs}}s,\quad s>0</math>* <math>\mathcal L[H_c(t)f(t-c)](s)=\mathrm e^{-cs}\mathcal L[f](s)</math> === התמרות לפלס שימושיות ===בהתמרות הבאות, <math>a</math> הוא מספר ממשי כרצוננו.* <math>\mathcal L\!\left[\mathrm e^{at}\right]\!(s)=\frac1{s-a},\quad s>a</math>* <math>\mathcal L\!\left[t\mathrm e^{at}\right]\!(s)=\frac1{(s-a)^2},\quad s>a</math>* <math>\mathcal L[\sin(at)](s)=\frac a{s^2+a^2},\quad s>0</math>* <math>\mathcal L[\cos(at)](s)=\frac s{s^2+a^2},\quad s>0</math>* <math>\mathcal L[H_c](s)=\frac{\mathrm e^{-cs}}s,\quad s>0</math>
== מד״ח ==
* '''מעבר חום:''' נתונה המד״ח <math>\frac{\partial u}{\partial t}=k\frac{\partial^2 u}{\partial x^2}</math> (<math>k</math> קבוע) עם תנאי ההתחלה <math>\forall -L\le x\le L:\ u(x,0)=f(x)</math> ותנאי השפה <math>\forall t\ge0:\ u(-L,t)=u(L,t)\ \and\ \frac{\partial u}{\partial x}(-L,t)=\frac{\partial u}{\partial x}(L,t)</math>.
:* ''שיטת הפרדת משתנים'': נניח שניתן להציג את הפתרון <math>u(x,t)</math> כמכפלה <math>X(x)\cdot T(t)</math>. אזי <math>\frac{T'}{k T}=\frac{X''}X=:-\lambda</math> כאשר <math>\lambda</math> מספר חיובי (אם אי־חיובי תנאי השפה לא יתקיימו). מקבלים שתי מד״ר נפרדות: <math>\begin{cases}X''+\lambda X=0\\T'+\lambda T=0\end{cases}</math>. לגבי המד״ר הראשונה, תנאי השפה דורשים ש־<math>\lambda=\frac{\pi^2n^2}{L^2}</math> עבור <math>n\in\mathbb N\cup\{0\}</math> ולכן, עבור <math>n</math> נתון, <math>X_n(x)=a_n\sin\!\left(\frac{\pi n}L x\right)+b_n\cos\!\left(\frac{\pi n}L x\right)</math> פתרון עבור לכל <math>a_n,b_n</math> כרצוננו. לגבי המד״ר השנייה, <math>T_n(t)=\exp\!\left(-k\frac{\pi^2n^2}{L^2}t\right)</math> הוא פתרון עבור <math>n</math> נתון. הפתרון הכללי של <math>u</math> הוא צירוף לינארי של פתרונות הבסיס: <math>u(x,t)=\frac{a_0}2+\sum_{n=1}^\infty\exp\!\left(-k\frac{\pi^2n^2}{L^2}t\right)\left(a_n\cos\!\left(\frac{\pi n}L x\right)+b_n\sin\!\left(\frac{\pi n}L x\right)\right)</math>, כאשר מתנאי ההתחלה נובע ש־<math>a_n,b_n</math> מקדמי טור פורייה של <math>f</math> ב־<math>[-L,L]</math>.:* ''שימוש בהתמרת פורייה:'' נסמן <math>\hat u(\omega,t)=\frac1{2\pi}\int\limits_{-\infty}^\infty u(x,t)\mathrm e^{-\mathrm i\omega x}\mathrm dx</math> (כלומר, זו התמרת פורייה של <math>u</math> לפי <math>x</math>). לפי המד״ח <math>\frac{\partial\hat u}{\partial t}(\omega,t)=\frac k{2\pi}\int\limits_{-\infty}^\infty \frac{\partial^2 u}{\partial x^2}(x,t)\mathrm e^{-\mathrm i\omega x}\mathrm dx=k\mathcal F\!\left([\frac{\partial^2u}{\partial x^2}\right)]\!(\omega,t)=k(\mathrm i\omega)^2\hat u(\omega,t)</math>. פתרונה של המד״ר הזו הוא <math>\hat u(\omega,t)=A(\omega)\mathrm e^{-k\omega^2t}</math>, והצבה של <math>t=0</math> תתן <math>A(\omega)=\hat u(\omega,0)=\hat f(\omega)</math>. עתה נחפש פונקציה <math>g</math> כך שהתמרת פורייה שלה לפי <math>x</math> תהא <math>\hat g(\omega,t)=\mathrm e^{-k\omega^2 t}</math>. לפי ההתמרה של <math>\mathrm e^{-x^2}</math> וכמה מתכונות ההתמרה נקבל <math>g(x,t)=\sqrt\frac\pi{kt}\exp\!\left(-\frac{x^2}{4kt}\right)</math> ולכן, לפי משפט הקונבולוציה, <math>u(x,t)=\frac{g(x,t)*f(x)}{2\pi}=\frac1{2\pi}\int\limits_{-\infty}^\infty f(s)\sqrt\frac\pi{kt}\exp\!\left(-\frac{(x-s)^2}{4kt}\right)\mathrm ds</math>.
* '''משוואות גלים:''' נתונה המד״ח <math>\frac{\partial^2 u}{\partial t^2}=k^2\frac{\partial^2 u}{\partial x^2}</math> (<math>k\ne0</math> קבוע) עם תנאי ההתחלה <math>u(x,0)=\varphi(x)</math> ו־<math>\frac{\partial u}{\partial t}(x,0)=\psi(x)</math> ותנאי שפה <math>u(0,t)=u(L,t)=0</math>. נניח כי הפתרון מוצג כמכפלה <math>X(x)\cdot T(t)</math> (''שיטת הפרדת משתנים'') ולכן <math>\frac{T''}{k^2 T}=\frac{X''}X=:-\lambda</math> עבור <math>\lambda</math> מספר חיובי. נקבל שתי מד״ר נפרדות: <math>\begin{cases}X''+\lambda X=0\\T''+k^2\lambda T=0\end{cases}</math>, ובאופן דומה למה שעשינו במשוואות מעבר חום נקבל <math>u(x,t)=\sum_{n=1}^\infty\left(a_n\cos\!\left(\frac{\pi kn}L t\right)+b_n\sin\!\left(\frac{\pi kn}L t\right)\right)\sin\!\left(\frac{\pi n}L x\right)</math> כאשר <math>a_n=\frac2L\int\limits_0^L\varphi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx\ \and\ b_n=\frac2{\pi kn}\int\limits_0^L\psi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx</math>.
* נתונה מד״ר לינארית־הומוגנית עם מקדמים קבועים. נפעיל התמרת לפלס על אגפי המד״ר, נבודד את <math>\mathcal L[y]</math> (תוך שימוש בהתמרת הנגזרת ובנוסחאות אחרות) ונמצא את ההתמרה ההפוכה שלה.