שינויים

קפיצה אל: ניווט, חיפוש
/* דגימה והתמרת פורייה בדידה */
== דגימה והתמרת פורייה בדידה ==
* <math>f\in G(\mathbb R)</math> נקראת "חסומה בתדר" אם <math>\exists L>0:\ \forall |\omega|>L:\ \hat f(\omega)=0</math>. ה־<math>L</math> המינימלי שמקיים זאת נקרא "רוחב הפס" של <math>f</math>.
* נניח כי <math>f</math> חסומה בתדר ובעלת רוחב פס <math>L</math>. אזי <math>\forall x\in\mathbb R:\ f(x)=\sum_{n\to-\infty}^\infty f\!\left(\frac{\pi n}L\right)\frac{\sin(Lx-\pi n)}{Lx-\pi n}</math>.
* '''התמרת פורייה בדידה (DFT):''' בהינתן סדרה <math>x=\{x_0,x_1,\dots,x_{N-1}\}</math> של <math>N</math> נקודות, נגדיר את התמרת פורייה הבדידה שלה ע״י <math>\forall k:\ \mathcal F_N(x)_k=X_k=\frac1\sqrt N\sum_{m=0}^{N-1} x_m w^{mk}</math> כאשר <math>w:=\mathrm e^{-2\pi\mathrm i/N}</math>. זו התמרה של <math>N</math> נקודות ל־<math>N</math> נקודות אחרות.
* '''ההתמרת פורייה הבדידה ההפוכה (IDFT)''' נותנת את ערכי הסדרה המקורית <math>x</math> לפי ערכי התמרת פורייה הבדידה <math>X</math> שלה: <math>\forall k:\ \mathcal F_N^{-1}(X)_k=\frac1\sqrt N\sum_{m=0}^{N-1} X_m w^{-mk}</math>.
:* ''שימוש בהתמרת פורייה:'' נסמן <math>\hat u(\omega,t)=\frac1{2\pi}\int\limits_{-\infty}^\infty u(x,t)\mathrm e^{-\mathrm i\omega x}\mathrm dx</math> (כלומר, זו התמרת פורייה של <math>u</math> לפי <math>x</math>). לפי המד״ח <math>\frac{\partial\hat u}{\partial t}(\omega,t)=\frac k{2\pi}\int\limits_{-\infty}^\infty \frac{\partial^2 u}{\partial x^2}(x,t)\mathrm e^{-\mathrm i\omega x}\mathrm dx=k\mathcal F\!\left[\frac{\partial^2u}{\partial x^2}\right]\!(\omega,t)=k(\mathrm i\omega)^2\hat u(\omega,t)</math>. פתרונה של המד״ר הזו הוא <math>\hat u(\omega,t)=A(\omega)\mathrm e^{-k\omega^2t}</math>, והצבה של <math>t=0</math> תתן <math>A(\omega)=\hat u(\omega,0)=\hat f(\omega)</math>. עתה נחפש פונקציה <math>g</math> כך שהתמרת פורייה שלה לפי <math>x</math> תהא <math>\hat g(\omega,t)=\mathrm e^{-k\omega^2 t}</math>. לפי ההתמרה של <math>\mathrm e^{-x^2}</math> וכמה מתכונות ההתמרה נקבל <math>g(x,t)=\sqrt\frac\pi{kt}\exp\!\left(-\frac{x^2}{4kt}\right)</math> ולכן, לפי משפט הקונבולוציה, <math>u(x,t)=\frac{g(x,t)*f(x)}{2\pi}=\frac1{2\pi}\int\limits_{-\infty}^\infty f(s)\sqrt\frac\pi{kt}\exp\!\left(-\frac{(x-s)^2}{4kt}\right)\mathrm ds</math>.
* '''משוואות גלים:''' נתונה המד״ח <math>\frac{\partial^2 u}{\partial t^2}=k^2\frac{\partial^2 u}{\partial x^2}</math> (<math>k\ne0</math> קבוע) עם תנאי ההתחלה <math>u(x,0)=\varphi(x)</math> ו־<math>\frac{\partial u}{\partial t}(x,0)=\psi(x)</math> ותנאי שפה <math>u(0,t)=u(L,t)=0</math>. נניח כי הפתרון מוצג כמכפלה <math>X(x)\cdot T(t)</math> (''שיטת הפרדת משתנים'') ולכן <math>\frac{T''}{k^2 T}=\frac{X''}X=:-\lambda</math> עבור <math>\lambda</math> מספר חיובי. נקבל שתי מד״ר נפרדות: <math>\begin{cases}X''+\lambda X=0\\T''+k^2\lambda T=0\end{cases}</math>, ובאופן דומה למה שעשינו במשוואות מעבר חום נקבל <math>u(x,t)=\sum_{n=1}^\infty\left(a_n\cos\!\left(\frac{\pi kn}L t\right)+b_n\sin\!\left(\frac{\pi kn}L t\right)\right)\sin\!\left(\frac{\pi n}L x\right)</math> כאשר <math>a_n=\frac2L\int\limits_0^L\varphi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx\ \and\ b_n=\frac2{\pi kn}\int\limits_0^L\psi(x)\sin\!\left(\frac{\pi n}L x\right)\mathrm dx</math>.
* נתונה מד״ר לינארית־הומוגנית <math>ay''(x)+by'(x)+cy(x)=0</math> לינארית עם מקדמים קבועים. נפעיל התמרת לפלס על אגפי המד״ר, נבודד את <math>\mathcal L[y]</math> (תוך שימוש בהתמרת הנגזרת ובנוסחאות אחרות) ונמצא את ההתמרה ההפוכה שלה.