הבדלים בין גרסאות בדף "אנליזת פורייה ויישומים קיץ תשעב/סיכומים/תקציר"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(המשך יבוא)
(אין הבדלים)

גרסה מ־20:00, 18 באוגוסט 2012

להבא, אלא אם צוין אחרת, נסמן:

  • f פונקציה.
  • a_n,b_n הם מקדמי פורייה בטור פורייה של f, ו־c_n מקדמי פורייה בטור פורייה המרוכב.
  • n!! היא העצרת הכפולה של n, והיא שווה למכפלת כל המספרים הזוגיים (אם n זוגי) מ־1 עד n, או כל המספרים האי־זוגיים (אחרת). כלומר: (2n)!!=\prod_{k=1}^n (2k)=2^n n! ו־(2n-1)!!=\prod_{k=1}^n (2k-1).
  • אי־שיוויון הולדר: אם x\in\ell_p\ \and\ y\in\ell_q כאשר \frac1p+\frac1q=1 (כלומר, \ell_p,\ell_q צמודים) אזי \sum_{n=1}^\infty|x_n\cdot y_n|\le\|x\|_p\cdot\|y\|_q.
  • אם \mathbf u=\sum_{k=1}^n a_k\mathbf e_k אזי \forall k:\ a_k=\langle\mathbf u,\mathbf e_k\rangle.
  • ההיטל של \mathbf u על \mathbf v הוא \mbox{proj}_{\mathbf v}(\mathbf u)=\frac{\langle\mathbf u,\mathbf v\rangle}{\langle\mathbf v,\mathbf v\rangle}\mathbf v.
  • אם S=\{\mathbf b_1,\dots,\mathbf b_n\} בסיס אורתוגונלי אזי הקירוב הטוב ביותר ל־\mathbf u ב־\mbox{span}(S) הוא \tilde\mathbf u=\sum_{k=1}^n\mbox{proj}_{\mathbf b_k}(\mathbf u), כלומר \min_{\mathbf v\in W}\|\mathbf u-\mathbf v\|=\|\mathbf u-\tilde\mathbf u\|.
  • אי־שיוויון בסל: \|\mathbf u\|^2\ge\sum_{k=1}^n|\langle\mathbf u,\mathbf e_k\rangle|^2.
  • תהליך גרם־שמידט: בהנתן בסיס \{\mathbf u_1,\dots,\mathbf u_n\} נוכל להגדיר בסיס אורתוגונלי \{\mathbf b_1,\dots,\mathbf b_n\} ובסיס אורתונורמלי \{\mathbf e_1,\dots,\mathbf e_n\} באופן הבא:
    \begin{array}{ll}\mathbf b_1:=\mathbf u_1,&\displaystyle\mathbf e_1:=\frac{\mathbf b_1}{\|\mathbf b_1\|}\\\mathbf b_2:=\mathbf u_2-\mbox{proj}_{\mathbf b_1}(\mathbf u_2),&\mathbf e_2:=\displaystyle\frac{\mathbf b_2}{\|\mathbf b_2\|}\\\vdots&\vdots\\\displaystyle\mathbf b_k:=\mathbf u_k-\sum_{i=1}^{k-1}\mbox{proj}_{\mathbf b_i}(\mathbf u_k),&\displaystyle\mathbf e_k:=\frac{\mathbf b_k}{\|\mathbf b_k\|}\\\vdots&\vdots\end{array}
  • מרחב הפולינומים ממעלה n או פחות מסומן P_n[x].
  • פולינומי לז׳נדר: בהנתן המכפלה הפנימית \langle f,g\rangle=\int\limits_{-1}^1 f(x)g(x)\mathrm dx על מרחב הפולינומים P_n[x], הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס \{1,x,x^2,\dots,x^n\} הם
    \begin{array}{l}P_0(x)=1\\P_1(x)=x\\\displaystyle P_2(x)=\frac{3x^2-1}2\\\displaystyle P_3(x)=\frac{5x^3-3x}2\\\vdots\end{array}
    ניתן לחשב אותם גם ע״י P_n(x)=\frac1{2^n\cdot n!}\frac{\mathrm d^n}{\mathrm dx^n}\left(x^2-1\right)^n או P_{n+1}(x)=\frac{(2n+1)x\cdot P_n(x)-n\cdot P_{n-1}(x)}{n+1}, והם מקיימים \|P_n\|^2=\frac2{2n+1}.
  • פולינומי צבישב: בהנתן המכפלה הפנימית \langle f,g\rangle=\int\limits_{-1}^1\frac{f(x)g(x)}\sqrt{1-x^2}\mathrm dx על מרחב הפולינומים P_n[x], הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס \{1,x,x^2,\dots,x^n\} הם
    \begin{array}{l}T_0(x)=1\\T_1(x)=x\\T_2(x)=2x^2-1\\T_3(x)=4x^3-3x\\\vdots\end{array}
    ניתן לחשב אותם גם ע״י T_n(x)=\frac{\sqrt{1-x^2}}{(-1)^n(2n-1)!!}\frac{\mathrm d^n}{\mathrm dx^n}\left(1-x^2\right)^{n-\frac12} או T_{n+1}(x)=2x\cdot T_n(x)-T_{n-1}(x), והם מקיימים \|T_n\|^2=\begin{cases}\pi,&n=0\\\frac\pi2,&\text{else}\end{cases}.