הבדלים בין גרסאות בדף "מדר קיץ תשעב/סיכומים/תקציר"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(מד״ר לינארית)
(המשך יבוא)
שורה 26: שורה 26:
 
=== מד״ר מכל סדר ===
 
=== מד״ר מכל סדר ===
 
==== מד״ר לינארית ====
 
==== מד״ר לינארית ====
בפרק זה המד״ר היא תמיד <math>y^{(n)}+\sum_{k=0}^{n-1}a_k(x) y^{(k)}=f(x)</math>, וכן <math>P_m(x),Q_m(x)</math> הם פולינומים ממעלה <math>m</math> או פחות.
+
בפרק זה, אלא אם צוין אחרת, המד״ר היא <math>y^{(n)}+\sum_{k=0}^{n-1}a_k(x) y^{(k)}=f(x)</math>.
 
* אם המד״ר לינארית־הומוגנית אז מרחב הפתרונות שלה הוא מרחב וקטורי.
 
* אם המד״ר לינארית־הומוגנית אז מרחב הפתרונות שלה הוא מרחב וקטורי.
 
** אם בנוסף המד״ר מקיימת את משפט הקיום והיחידות אזי מרחב הפתרונות <math>n</math> מימדי.
 
** אם בנוסף המד״ר מקיימת את משפט הקיום והיחידות אזי מרחב הפתרונות <math>n</math> מימדי.
שורה 35: שורה 35:
 
* הפתרון הכללי של המד״ר הוא <math>y=y_h+y_p</math>, כאשר <math>y_h</math> הפתרון הכללי של המד״ר הלינארית־הומוגנית המתאימה ו־<math>y_p</math> פתרון פרטי כלשהו של המד״ר.
 
* הפתרון הכללי של המד״ר הוא <math>y=y_h+y_p</math>, כאשר <math>y_h</math> הפתרון הכללי של המד״ר הלינארית־הומוגנית המתאימה ו־<math>y_p</math> פתרון פרטי כלשהו של המד״ר.
 
* '''וריאציית הפרמטרים:''' נתונים <math>y_1,\dots,y_n</math> פתרונות בת״ל של המד״ר הלינארית־הומוגנית המתאימה. אזי הפתרון הכללי של המד״ר הוא <math>\sum_{k=1}^n y_k(x)\int c_k'(x)\mathrm dx</math> כאשר <math>\begin{pmatrix}y_1(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{pmatrix}\begin{pmatrix}c_1'\\c_2'\\\vdots\\c_n'\end{pmatrix}=\begin{pmatrix}0\\0\\\vdots\\f(x)\end{pmatrix}</math>. באופן שקול: <math>c_k'(x)=\frac{W_k(x)}{W(x)}</math>, כאשר <math>W_k(x)=\begin{vmatrix}y_1(x)&\cdots&y_{k-1}(x)&0&y_{k+1}(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_{k-1}'(x)&0&y_{k+1}'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_{k-1}^{(n-1)}(x)&f(x)&y_{k+1}^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{vmatrix}</math>.
 
* '''וריאציית הפרמטרים:''' נתונים <math>y_1,\dots,y_n</math> פתרונות בת״ל של המד״ר הלינארית־הומוגנית המתאימה. אזי הפתרון הכללי של המד״ר הוא <math>\sum_{k=1}^n y_k(x)\int c_k'(x)\mathrm dx</math> כאשר <math>\begin{pmatrix}y_1(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{pmatrix}\begin{pmatrix}c_1'\\c_2'\\\vdots\\c_n'\end{pmatrix}=\begin{pmatrix}0\\0\\\vdots\\f(x)\end{pmatrix}</math>. באופן שקול: <math>c_k'(x)=\frac{W_k(x)}{W(x)}</math>, כאשר <math>W_k(x)=\begin{vmatrix}y_1(x)&\cdots&y_{k-1}(x)&0&y_{k+1}(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_{k-1}'(x)&0&y_{k+1}'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_{k-1}^{(n-1)}(x)&f(x)&y_{k+1}^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{vmatrix}</math>.
* נניח שהמד״ר לינארית־הומוגנית עם מקדמים קבועים. אזי נציב <math>y=\mathrm e^{rx}</math>, ולכן <math>y^{(k)}=r^k\mathrm e^{rx}</math> וגם <math>r^n+\sum_{k=0}^{n-1} a_k r^k</math> (זה הפולינום האופייני של המשוואה) שווה ל־0. אם השורשים השונים זה מזה הם <math>r_1,\dots,r_m</math> והריבויים שלהם <math>d_1,\dots,d_m</math> בהתאמה אזי הפתרון הכללי הוא <math>y=\sum_{k=1}^m\mathrm e^{r_kx}\sum_{i=0}^{d_k-1}c_{k,i}x^i</math>. אם <math>r_k</math> אינו ממשי ניתן לכתוב <math>r_k=\alpha+\beta\mathrm i</math> ואז, כיוון ש־<math>\overline{r_k}</math> שורש עם אותו ריבוי, נציב <math>C_1\mathrm e^{r_kx}+C_2\mathrm e^{\overline{r_k}x}=\mathrm e^{\alpha x}\Big(c_1\sin(\beta x)+c_2\cos(\beta x)\Big)</math>.
+
* נניח שהמד״ר לינארית־הומוגנית עם מקדמים קבועים. אזי נציב <math>y=\mathrm e^{rx}</math>, ולכן <math>y^{(k)}=r^k\mathrm e^{rx}</math> וגם <math>r^n+\sum_{k=0}^{n-1} a_k r^k</math> (זה הפולינום האופייני של המשוואה) שווה ל־0. אם השורשים השונים זה מזה הם <math>r_1,\dots,r_m</math> והריבויים שלהם <math>d_1,\dots,d_m</math> בהתאמה אזי הפתרון הכללי הוא <math>y=\sum_{k=1}^m\mathrm e^{r_kx}\sum_{i=0}^{d_k-1}c_{k,i}x^i</math>. אם <math>r_k</math> אינו ממשי ניתן לכתוב <math>r_k=\alpha+\beta\mathrm i</math> ואז, כיוון ש־<math>\overline{r_k}</math> שורש עם אותו ריבוי, נציב <math>C_1\mathrm e^{r_kx}+C_2\mathrm e^{\overline{r_k}x}=\mathrm e^{\alpha x}\Big(c_1\cos(\beta x)+c_2\sin(\beta x)\Big)</math>.
* '''שיטת הניחוש/הבחירה/המקדמים הנעלמים:''' נניח שהמד״ר לינארית עם מקדמים קבועים וכן <math>f(x)=P_m(x)\mathrm e^{\lambda x}</math>, כאשר <math>\lambda</math> קבועה (יכולה להיות גם 0), והריבוי של <math>\lambda</math> בפולינום האופייני הוא <math>d</math> (במידה ו־<math>\lambda</math> לא שורש נאמר <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>x^dQ_m(x)\mathrm e^{\lambda x}</math> כאשר <math>\deg P_m=\deg Q_m</math>. ''הערה:'' אם <math>f(x)=g(x)+h(x)</math> נוכל לפתור עבור <math>g(x),h(x)</math> בנפרד ולסכום את הפתרונות הפרטיים.
+
:* '''שיטת הניחוש/הבחירה/המקדמים הנעלמים:''' נניח שהמד״ר לינארית עם מקדמים קבועים וכן <math>f(x)=\mathrm e^{\lambda x}\sum_{k=0}^m b_k x^k</math>, כאשר <math>\lambda</math> קבועה (יכולה להיות גם 0), והריבוי של <math>\lambda</math> בפולינום האופייני הוא <math>d</math> (במידה ו־<math>\lambda</math> לא שורש נאמר <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>\mathrm e^{\lambda x}x^d\sum_{k=0}^m B_k x^k</math> כאשר <math>b_m,B_m\ne0</math>. ''הערה:'' אם <math>f(x)=g(x)+h(x)</math> נוכל לפתור עבור <math>g(x),h(x)</math> בנפרד ולסכום את הפתרונות הפרטיים.
 +
* '''משוואת אוילר(־לגראנג׳)''' היא מד״ר לינארית מהצורה <math>x^ny^{(n)}+\sum_{k=0}^{n-1}a_k x^k y^{(k)}=f(x)</math> עם <math>\forall k:\ a_k=\text{const.}</math>. מציבים <math>x=\begin{cases}\mathrm e^t,&x>0\\-\mathrm e^t,&x<0\end{cases}</math> במד״ר ההומוגנית ואז <math>y'=\frac{\mathrm dy}{\mathrm dt}\frac{\mathrm dt}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\frac1x,\ y''=\mathrm e^{-2t}\left(\frac{\mathrm d^2y}{\mathrm dt^2}-\frac{\mathrm dy}{\mathrm dt}\right),\ \dots</math>. נקבל משוואה לינארית־הומוגנית עם מקדמים קבועים, וניתן להמשיך לפתור אותה באופן זה. לחלופין, אפשר להציב <math>y=x^r</math> במד״ר ההומוגנית ולקבל <math>r^n+\sum_{k=0}^{n-1} b_k r^k=0</math> (משוואה אינדיציאלית). אם השורשים השונים זה מזה הם <math>r_1,\dots,r_m</math> והריבויים שלהם <math>d_1,\dots,d_m</math> בהתאמה אזי הפתרון הכללי הוא <math>y=\sum_{k=1}^m x^{r_k}\sum_{i=0}^{d_k-1}c_{k,i}\ln^i(x)</math>. אם <math>r_k</math> אינו ממשי ניתן לכתוב <math>r_k=\alpha+\beta\mathrm i</math> ואז, כיוון ש־<math>\overline{r_k}</math> שורש עם אותו ריבוי, נציב <math>C_1x^{r_k}+C_2x^{\overline{r_k}}=x^\alpha\Big(c_1\cos(\ln(\beta x))+c_2\sin(\ln(\beta x))\Big)</math>.
 +
:* אם <math>f(x)=x^\lambda\sum_{k=0}^m b_k \ln^k(x)</math> כאשר <math>\lambda</math> קבועה (יכולה להיות גם 0), והריבוי של <math>\lambda</math> במשוואה האינדיציאלית הוא <math>d</math> (אם לא שורש <math>d=0</math>). אזי קיים פתרון פרטי מהצורה <math>\ln^d(x)x^\lambda\sum_{k=0}^m B_k \ln^k(x)</math> כאשר <math>b_m,B_m\ne0</math>.
 +
 
 +
===== פתרון מד״ר באמצעות טורי חזקות =====
 +
* נתונה מד״ר מהצורה <math>y^{(n)}+\sum_{k=0}^{n-1} a_k(x)y^{(k)}=f(x)</math> כאשר <math>\forall k:\ f(x),a_k(x)\in C(a,b)</math> ותהי <math>x_0\in(a,b)</math>. אם <math>f</math> וכל המקדמים <math>a_k</math> אנליטיים סביב <math>x_0</math> עם רדיוס התכנסות <math>R</math> או יותר אזי קיים פתרון אנליטי סביב <math>x_0</math> של המד״ר עם רדיוס התכנסות <math>R</math> או יותר.
 +
* '''טור פרוביניוס''' הוא טור מהצורה <math>(x-x_0)^r\sum_{k=0}^\infty a_k(x-x_0)^k</math>.
 +
* בהנתן <math>a_2(x)y''+a_1(x)y'+a_0(x)y=0</math> נחלק ב־<math>a_2(x)</math>. תהי <math>x_0</math> נקודה סינגולרית של <math>\frac1{a_2(x)}</math>. אם קיימים הגבולות <math>L_k=\lim_{x\to x_0}(x-x_0)^{2-k}\frac{a_k(x)}{a_2(x)}</math> הנקודה נקראת סינגולרית־רגולרית. בקרבת <math>x_0</math> נקבל <math>0=(x-x_0)^2y''+\frac{a_1(x)}{a_2(x)}(x-x_0)y'+\frac{a_0(x)}{a_2(x)}y=(x-x_0)^2y''+(L_1+o(1))(x-x_0)y'+(L_0+o(1))y</math>. לפי משפט, אם <math>x_0</math> נקודה סינגולרית־רגולרית אזי קיים פתרון אנליטי למד״ר סביב <math>x_0</math> בצורת בצורת טור פרוביניוס. לכן נפתור עבור <math>o(1)=0</math>, נציב <math>y=(x-x_0)^r</math> ונקבל את הפתרונות בצורת טורים של המד״ר עם <math>o(1)=0</math> (אם פתרונות הפולינום האופייני של המד״ר עם <math>o(1)=0</math> הם <math>r_1,r_2</math> אז <math>y_k=(x-x_0)^{r_k}\sum_{i=0}^\infty (x-x_0)^i b_{k,i} x^i</math> פתרון פרטי). נציב פתרונות אלו במד״ר המקורית ונקבל את מקדמי הטורים. לכן אם <math>r_1-r_2\not\in\mathbb Z</math> הפתרון הכללי הוא <math>c_1y_1+c_2y_2</math> ואחרת (כאשר בה״כ <math>r_1\le r_2</math>) <math>c_1y_1\ln(x)+c_2y_2</math>.<br>''הערה:'' נאמר ש־<math>f\in o(g)</math> אם <math>\lim_{x\to x_0}\frac{f(x)}{g(x)}=0</math>. לעתים כותבים "<math>o(1)</math>" לציון איבר הנמצא בקבוצה זו, ולא הקבוצה עצמה.
 +
:* '''משוואת בסל:''' <math>x^2y''+xy'+(x^2-m^2)y=0</math>. מתקיים <math>y''+\frac1xy'+\left(1-\frac{m^2}{x^2}\right)=0</math> ולכן <math>\lim x\frac1x=1,\ \lim x^2\left(1-\frac{m^2}{x^2}\right)=-m^2</math>, כלומר <math>0</math> סיגולריות־רגולרית.
 +
:* '''פונציית גמא:''' <math>\Gamma(x):=\int\limits_0^\infty t^{x-1}\mathrm e^{-t}\mathrm dt</math>. היא מקיימת <math>\Gamma(x)=x\Gamma(x)</math> וגם <math>\forall n\in\mathbb N:\ \Gamma(n)=(n-1)!</math>.
 +
:* '''משוואת אוילר:''' <math>x^2y''+xy'-m^2y=0</math>.

גרסה מ־17:53, 20 באוגוסט 2012

משפטים חשובים

  • משפט הקיום והיחידות למד״ר מסדר 1 בצורה נורמלית: תהי \vec f(x,\vec y) פוקנציה וקטורית המקיימת את תנאי ליפשיץ ב־\vec y בתיבה B=[x_0-a,x_0+a]\times\prod_{k=1}^n[y_{0,k}-b_k,y_{0,k}+b_k], ונתונים תנאי ההתחלה \vec y(x_0)=\vec y_0. אזי למערכת יש פתרון אחד בדיוק בקטע |x-x_0|<\min\left(\{a\}\cup\left\{\frac{b_k}{\displaystyle\max_{(x,\vec y)\in B}|f_k(x,\vec y)|}:k\in\{1,\dots,n\}\right\}\right).
  • כל מד״ר מסדר n שקולה למערכת של n מד״ר מסדר 1: F\left(x,y,y',\dots,y^{(n)}\right)=0\iff\begin{cases}y_1=y'\\y_2=y_1'\\\vdots\\y_{n-1}=y_{n-2}'\\F(x,y,y_1,y_2,\dots,y_{n-1},y_{n-1}')=0\end{cases}. כמו כן, המערכת נורמלית/לינארית/לינארית־הומוגנית בהתאם למד״ר המקורית.

שיטות לפתרון מד״ר

מד״ר מסדר 1

  • מד״ר בצורה דיפרנציאלית עם משתנים מופרדים היא מהצורה M_1(x)N_1(y)\mathrm dx+M_2(x)N_2(y)\mathrm dx=0. אם \exists y_0:\ N_1(y_0)=0 אזי y\equiv0 פתרון, ואם \exists x_0:\ M_2(x_0)=0 אזי x\equiv0 פתרון. אחרת \int\frac{M_1(x)}{M_2(x)}\mathrm dx+\int\frac{N_2(y)}{N_1(y)}\mathrm dy=0.
  • נתונה מד״ר y'=f(ax+by). אז נציב z=ax+by ו־y'=\frac{z'-a}b.
    • הכללה: נתונה מד״ר y'=f\left(\frac{Ax+By+C}{ax+by+c}\right) . אם \begin{vmatrix}A&B\\a&b\end{vmatrix}\ne0 נציב \begin{cases}x=p+\alpha\\y=q+\beta\end{cases} כאשר \begin{pmatrix}A&B\\a&b\end{pmatrix}\begin{pmatrix}\alpha\\\beta\end{pmatrix}=-\begin{pmatrix}C\\c\end{pmatrix}. אחרת נבחר \lambda=\frac Aa=\frac Bb ונציב z=ax+by.
  • מד״ר הומוגנית: נתונה מד״ר y'=f\left(\frac yx\right). אזי נציב z=\frac yx ו־y'=z'x+z.
  • מד״ר לינארית: נתונה מד״ר y'+p(x)y=q(x). אם היא לינארית־הומוגנית אזי y=c\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}, ובכל מקרה y=\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}\int q(x)\mathrm e^{\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx.
  • משוואת ברנולי: נתונה מד״ר y'+p(x)y=q(x)y^n,\quad n\ne0,1. נציב z=y^{1-n}, כאשר אם n>1 אז y\equiv0 פתרון רגולרי (כאשר הקבוע החופשי שואף ל־\pm\infty), אם 0<n<1 אז פתרון סינגולרי, ואם n<0 אז לא פתרון. הפתרונות הרגולריים: y=\sqrt[1-n]{\mathrm e^{-(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\int(1-n)q(x)\mathrm e^{(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx}.
  • מד״ר מהצורה P(x,y)\mathrm dx+Q(x,y)\mathrm dy=0 היא מדויקת אם״ם יש U כך ש־\mathrm dU שווה לאגף ימין, מה שמתרחש אם״ם \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}.
    • אם המד״ר אינה מדויקת ניתן לנסות להכפיל אותה ב־\mu כך שתהפוך למדויקת. \mu תלויה רק ב־x אם״ם a=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}Q תלויה רק ב־x, ואז \mu(x)=\mathrm e^{\sim\!\!\!\!\int a\mathrm dx}. היא תלויה רק ב־y אם״ם b=\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}P תלויה רק ב־y, ואז \mu(y)=\mathrm e^{\sim\!\!\!\!\int b\mathrm dy}.
  • משוואת ריקרטי: מד״ר מהצורה y'+f(x)y^2+g(x)y+h(x)=0. הפתרון הכללי הוא מהצורה y=\frac{ca(x)+b(x)}{cA(x)+B(x)}. אם y(x)=y_p(x) פתרון אזי y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1} הפתרון הכללי.
  • נתונה מד״ר \sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0 ממעלה n. אזי קיימות פונקציות f_k שעבורן \prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0.
  • אם F(y,y')=0 נציב z=y' ואז x=\frac yz+\int\frac y{z^2}\mathrm dz. בנוסף, אם y=\varphi(t) ו־z=\psi(t) אזי x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt.
  • אם F(x,y')=0 נציב z=y' ואז y=zx-\int x\mathrm dz. בנוסף, אם x=\varphi(t) ו־z=\psi(t) אזי y=\int\varphi_t'(t)\psi(t)\mathrm dt.
  • שיטת פיקארד: נתונה בעיית ההתחלה \begin{cases}y'=f(x,y)\\y(x_0)=y_0\end{cases}. נבחר פונקציה \varphi_0 שעבורה \varphi_0(x)\equiv y_0, וניצור ממנה את סדרת הפונקציות המקיימת \varphi_n(x)=y_0+\int\limits_{x_0}^x f(t,\varphi_{n-1}(t))\mathrm dt. במידה והסדרה הנ״ל מוגדרת היטב (כלומר, כל האינטגרלים קיימים) \varphi=\lim_{n\to\infty}\varphi_n היא פתרון של הבעיה.
  • משוואת קלרו: נתונה המד״ר y=xy'+\psi(y'). אזי y=cx+\psi(c),\quad c\in\mathbb R או (כאשר p:=y') \begin{cases}x=-\psi_p'(p)\\y=-p\psi_p'(p)+\psi(p)\end{cases}.
  • משוואת לגראנז׳: נתונה המד״ר y=x\varphi(y')+\psi(y') עבור \varphi(y')\not\equiv y'. נציב p:=y' ואז p=\varphi(p)+\Big(x\varphi_p'(p)+\psi_p'(p)\Big)\frac{\mathrm dp}{\mathrm dx}. לפיכך x מקיים x=\mathrm e^{\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\int\frac{\psi_p'(p)}{p-\varphi(p)}\mathrm e^{-\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\mathrm dp או \varphi(p)\equiv p (מקרה זה יש לבדוק בנפרד), ו־y מקיים y=x\varphi(p)+\psi(p).

מד״ר מסדר 2

  • בהנתן מד״ר y''=f(x,y') או y''=f(y,y') נציב z=y' ונקבל z'=f(x,z) או zz_y'=f(y,z), בהתאמה. מתקיים x=\int\frac{\mathrm dy}z=\frac yz+\int\frac y{z^2}\mathrm dz ו־y=\int z\mathrm dx.

מד״ר מכל סדר

מד״ר לינארית

בפרק זה, אלא אם צוין אחרת, המד״ר היא y^{(n)}+\sum_{k=0}^{n-1}a_k(x) y^{(k)}=f(x).

  • אם המד״ר לינארית־הומוגנית אז מרחב הפתרונות שלה הוא מרחב וקטורי.
    • אם בנוסף המד״ר מקיימת את משפט הקיום והיחידות אזי מרחב הפתרונות n מימדי.
  • ורונסקיאן: עבור קבוצת פונקציות y_1,\dots,y_n מגדירים W(y_1,\dots,y_n)(x)=W(x):=\begin{vmatrix}y_1(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{vmatrix}.
    • אם y_1,\dots,y_n ת״ל אזי W(x)\equiv0.
    • אם y_1,\dots,y_n פתרונות של מד״ר לינארית־הומוגנית המקיימת את תנאי משפט הקיום והיחידות בתחום D וכן \exists x_0\in D:\ W(x_0)=0 אזי הם ת״ל.
  • משפט ליוביל: אם y_1,\dots,y_n פתרונות בת״ל של המד״ר והיא הומוגנית אזי \forall x:\ W(x)=W(x_0)\mathrm e^{-\int\limits_{x_0}^x a_{n-1}(t)\mathrm dt}.
  • הפתרון הכללי של המד״ר הוא y=y_h+y_p, כאשר y_h הפתרון הכללי של המד״ר הלינארית־הומוגנית המתאימה ו־y_p פתרון פרטי כלשהו של המד״ר.
  • וריאציית הפרמטרים: נתונים y_1,\dots,y_n פתרונות בת״ל של המד״ר הלינארית־הומוגנית המתאימה. אזי הפתרון הכללי של המד״ר הוא \sum_{k=1}^n y_k(x)\int c_k'(x)\mathrm dx כאשר \begin{pmatrix}y_1(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{pmatrix}\begin{pmatrix}c_1'\\c_2'\\\vdots\\c_n'\end{pmatrix}=\begin{pmatrix}0\\0\\\vdots\\f(x)\end{pmatrix}. באופן שקול: c_k'(x)=\frac{W_k(x)}{W(x)}, כאשר W_k(x)=\begin{vmatrix}y_1(x)&\cdots&y_{k-1}(x)&0&y_{k+1}(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_{k-1}'(x)&0&y_{k+1}'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_{k-1}^{(n-1)}(x)&f(x)&y_{k+1}^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{vmatrix}.
  • נניח שהמד״ר לינארית־הומוגנית עם מקדמים קבועים. אזי נציב y=\mathrm e^{rx}, ולכן y^{(k)}=r^k\mathrm e^{rx} וגם r^n+\sum_{k=0}^{n-1} a_k r^k (זה הפולינום האופייני של המשוואה) שווה ל־0. אם השורשים השונים זה מזה הם r_1,\dots,r_m והריבויים שלהם d_1,\dots,d_m בהתאמה אזי הפתרון הכללי הוא y=\sum_{k=1}^m\mathrm e^{r_kx}\sum_{i=0}^{d_k-1}c_{k,i}x^i. אם r_k אינו ממשי ניתן לכתוב r_k=\alpha+\beta\mathrm i ואז, כיוון ש־\overline{r_k} שורש עם אותו ריבוי, נציב C_1\mathrm e^{r_kx}+C_2\mathrm e^{\overline{r_k}x}=\mathrm e^{\alpha x}\Big(c_1\cos(\beta x)+c_2\sin(\beta x)\Big).
  • שיטת הניחוש/הבחירה/המקדמים הנעלמים: נניח שהמד״ר לינארית עם מקדמים קבועים וכן f(x)=\mathrm e^{\lambda x}\sum_{k=0}^m b_k x^k, כאשר \lambda קבועה (יכולה להיות גם 0), והריבוי של \lambda בפולינום האופייני הוא d (במידה ו־\lambda לא שורש נאמר d=0). אזי קיים פתרון פרטי מהצורה \mathrm e^{\lambda x}x^d\sum_{k=0}^m B_k x^k כאשר b_m,B_m\ne0. הערה: אם f(x)=g(x)+h(x) נוכל לפתור עבור g(x),h(x) בנפרד ולסכום את הפתרונות הפרטיים.
  • משוואת אוילר(־לגראנג׳) היא מד״ר לינארית מהצורה x^ny^{(n)}+\sum_{k=0}^{n-1}a_k x^k y^{(k)}=f(x) עם \forall k:\ a_k=\text{const.}. מציבים x=\begin{cases}\mathrm e^t,&x>0\\-\mathrm e^t,&x<0\end{cases} במד״ר ההומוגנית ואז y'=\frac{\mathrm dy}{\mathrm dt}\frac{\mathrm dt}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\frac1x,\ y''=\mathrm e^{-2t}\left(\frac{\mathrm d^2y}{\mathrm dt^2}-\frac{\mathrm dy}{\mathrm dt}\right),\ \dots. נקבל משוואה לינארית־הומוגנית עם מקדמים קבועים, וניתן להמשיך לפתור אותה באופן זה. לחלופין, אפשר להציב y=x^r במד״ר ההומוגנית ולקבל r^n+\sum_{k=0}^{n-1} b_k r^k=0 (משוואה אינדיציאלית). אם השורשים השונים זה מזה הם r_1,\dots,r_m והריבויים שלהם d_1,\dots,d_m בהתאמה אזי הפתרון הכללי הוא y=\sum_{k=1}^m x^{r_k}\sum_{i=0}^{d_k-1}c_{k,i}\ln^i(x). אם r_k אינו ממשי ניתן לכתוב r_k=\alpha+\beta\mathrm i ואז, כיוון ש־\overline{r_k} שורש עם אותו ריבוי, נציב C_1x^{r_k}+C_2x^{\overline{r_k}}=x^\alpha\Big(c_1\cos(\ln(\beta x))+c_2\sin(\ln(\beta x))\Big).
  • אם f(x)=x^\lambda\sum_{k=0}^m b_k \ln^k(x) כאשר \lambda קבועה (יכולה להיות גם 0), והריבוי של \lambda במשוואה האינדיציאלית הוא d (אם לא שורש d=0). אזי קיים פתרון פרטי מהצורה \ln^d(x)x^\lambda\sum_{k=0}^m B_k \ln^k(x) כאשר b_m,B_m\ne0.
פתרון מד״ר באמצעות טורי חזקות
  • נתונה מד״ר מהצורה y^{(n)}+\sum_{k=0}^{n-1} a_k(x)y^{(k)}=f(x) כאשר \forall k:\ f(x),a_k(x)\in C(a,b) ותהי x_0\in(a,b). אם f וכל המקדמים a_k אנליטיים סביב x_0 עם רדיוס התכנסות R או יותר אזי קיים פתרון אנליטי סביב x_0 של המד״ר עם רדיוס התכנסות R או יותר.
  • טור פרוביניוס הוא טור מהצורה (x-x_0)^r\sum_{k=0}^\infty a_k(x-x_0)^k.
  • בהנתן a_2(x)y''+a_1(x)y'+a_0(x)y=0 נחלק ב־a_2(x). תהי x_0 נקודה סינגולרית של \frac1{a_2(x)}. אם קיימים הגבולות L_k=\lim_{x\to x_0}(x-x_0)^{2-k}\frac{a_k(x)}{a_2(x)} הנקודה נקראת סינגולרית־רגולרית. בקרבת x_0 נקבל 0=(x-x_0)^2y''+\frac{a_1(x)}{a_2(x)}(x-x_0)y'+\frac{a_0(x)}{a_2(x)}y=(x-x_0)^2y''+(L_1+o(1))(x-x_0)y'+(L_0+o(1))y. לפי משפט, אם x_0 נקודה סינגולרית־רגולרית אזי קיים פתרון אנליטי למד״ר סביב x_0 בצורת בצורת טור פרוביניוס. לכן נפתור עבור o(1)=0, נציב y=(x-x_0)^r ונקבל את הפתרונות בצורת טורים של המד״ר עם o(1)=0 (אם פתרונות הפולינום האופייני של המד״ר עם o(1)=0 הם r_1,r_2 אז y_k=(x-x_0)^{r_k}\sum_{i=0}^\infty (x-x_0)^i b_{k,i} x^i פתרון פרטי). נציב פתרונות אלו במד״ר המקורית ונקבל את מקדמי הטורים. לכן אם r_1-r_2\not\in\mathbb Z הפתרון הכללי הוא c_1y_1+c_2y_2 ואחרת (כאשר בה״כ r_1\le r_2) c_1y_1\ln(x)+c_2y_2.
    הערה: נאמר ש־f\in o(g) אם \lim_{x\to x_0}\frac{f(x)}{g(x)}=0. לעתים כותבים "o(1)" לציון איבר הנמצא בקבוצה זו, ולא הקבוצה עצמה.
  • משוואת בסל: x^2y''+xy'+(x^2-m^2)y=0. מתקיים y''+\frac1xy'+\left(1-\frac{m^2}{x^2}\right)=0 ולכן \lim x\frac1x=1,\ \lim x^2\left(1-\frac{m^2}{x^2}\right)=-m^2, כלומר 0 סיגולריות־רגולרית.
  • פונציית גמא: \Gamma(x):=\int\limits_0^\infty t^{x-1}\mathrm e^{-t}\mathrm dt. היא מקיימת \Gamma(x)=x\Gamma(x) וגם \forall n\in\mathbb N:\ \Gamma(n)=(n-1)!.
  • משוואת אוילר: x^2y''+xy'-m^2y=0.