הבדלים בין גרסאות בדף "מדר קיץ תשעב/סיכומים/תקציר"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
מ
שורה 1: שורה 1:
 
== משפטים חשובים ==
 
== משפטים חשובים ==
* '''משפט הקיום והיחידות למד״ר מסדר 1 בצורה נורמלית:''' תהי <math>\vec f(x,\vec y)</math> פוקנציה וקטורית המקיימת את תנאי ליפשיץ ב־<math>\vec y</math> בתיבה <math>B=[x_0-a,x_0+a]\times\prod_{k=1}^n[y_{0,k}-b_k,y_{0,k}+b_k]</math>, ונתונים תנאי ההתחלה <math>\vec y(x_0)=\vec y_0</math>. אזי למערכת יש פתרון אחד בדיוק בקטע <math>|x-x_0|<\min\left(\{a\}\cup\left\{\frac{b_k}{\displaystyle\max_{(x,\vec y)\in B}|f_k(x,\vec y)|}:k\in\{1,\dots,n\}\right\}\right)</math>.
+
* '''משפט הקיום והיחידות למד״ר מסדר 1 בצורה נורמלית:''' תהי <math>\vec f(x,\vec y)</math> פוקנציה וקטורית המקיימת את תנאי ליפשיץ ב־<math>\vec y</math> בתיבה <math>B=[x_0-a,x_0+a]\times\prod_{k=1}^n[y_{0,k}-b_k,y_{0,k}+b_k]</math>, ונתונים תנאי ההתחלה <math>\vec y(x_0)=\vec y_0</math>. אזי למערכת יש פתרון אחד בדיוק בקטע <math>|x-x_0|<\min\!\left(\{a\}\cup\left\{\frac{b_k}{\displaystyle\max_{(x,\vec y)\in B}|f_k(x,\vec y)|}:k\in\{1,\dots,n\}\right\}\right)</math>.
* כל מד״ר מסדר <math>n</math> שקולה למערכת של <math>n</math> מד״ר מסדר 1: <math>F\left(x,y,y',\dots,y^{(n)}\right)=0\iff\begin{cases}y_1=y'\\y_2=y_1'\\\vdots\\y_{n-1}=y_{n-2}'\\F(x,y,y_1,y_2,\dots,y_{n-1},y_{n-1}')=0\end{cases}</math>. כמו כן, המערכת נורמלית/לינארית/לינארית־הומוגנית בהתאם למד״ר המקורית.
+
* כל מד״ר מסדר <math>n</math> שקולה למערכת של <math>n</math> מד״ר מסדר 1: <math>F\!\left(x,y,y',\dots,y^{(n)}\right)=0\iff\begin{cases}y_1=y'\\y_2=y_1'\\\vdots\\y_{n-1}=y_{n-2}'\\F\!\left(x,y,y_1,y_2,\dots,y_{n-1},y_{n-1}'\right)=0\end{cases}</math>. כמו כן, המערכת נורמלית/לינארית/לינארית־הומוגנית בהתאם למד״ר המקורית.
  
 
== שיטות לפתרון מד״ר ==
 
== שיטות לפתרון מד״ר ==
 
=== מד״ר מסדר 1 ===
 
=== מד״ר מסדר 1 ===
* מד״ר בצורה דיפרנציאלית עם משתנים מופרדים היא מהצורה <math>M_1(x)N_1(y)\mathrm dx+M_2(x)N_2(y)\mathrm dx=0</math>. אם <math>\exists y_0:\ N_1(y_0)=0</math> אזי <math>y\equiv0</math> פתרון, ואם <math>\exists x_0:\ M_2(x_0)=0</math> אזי <math>x\equiv0</math> פתרון. אחרת <math>\int\frac{M_1(x)}{M_2(x)}\mathrm dx+\int\frac{N_2(y)}{N_1(y)}\mathrm dy=0</math>.
+
* מד״ר בצורה דיפרנציאלית עם משתנים מופרדים היא מהצורה <math>M_1(x)N_1(y)\mathrm dx+M_2(x)N_2(y)\mathrm dy=0</math>. אם <math>\exists y_0:\ N_1(y_0)=0</math> אזי <math>y\equiv y_0</math> פתרון, ואם <math>\exists x_0:\ M_2(x_0)=0</math> אזי <math>x\equiv x_0</math> פתרון. אחרת <math>\int\frac{M_1(x)}{M_2(x)}\mathrm dx+\int\frac{N_2(y)}{N_1(y)}\mathrm dy=0</math>.
 
* נתונה מד״ר <math>y'=f(ax+by)</math>. אז נציב <math>z=ax+by</math> ו־<math>y'=\frac{z'-a}b</math>.
 
* נתונה מד״ר <math>y'=f(ax+by)</math>. אז נציב <math>z=ax+by</math> ו־<math>y'=\frac{z'-a}b</math>.
** {{הערה|הכללה:}} נתונה מד״ר <math>y'=f\left(\frac{Ax+By+C}{ax+by+c}\right)</math> . אם <math>\begin{vmatrix}A&B\\a&b\end{vmatrix}\ne0</math> נציב <math>\begin{cases}x=p+\alpha\\y=q+\beta\end{cases}</math> כאשר <math>\begin{pmatrix}A&B\\a&b\end{pmatrix}\begin{pmatrix}\alpha\\\beta\end{pmatrix}=-\begin{pmatrix}C\\c\end{pmatrix}</math>. אחרת נבחר <math>\lambda=\frac Aa=\frac Bb</math> ונציב <math>z=ax+by</math>.
+
** {{הערה|הכללה:}} נתונה מד״ר <math>y'=f\!\left(\frac{Ax+By+C}{ax+by+c}\right)</math> . אם <math>\begin{vmatrix}A&B\\a&b\end{vmatrix}\ne0</math> נציב <math>\begin{cases}x=p+\alpha\\y=q+\beta\end{cases}</math> כאשר <math>\begin{pmatrix}A&B\\a&b\end{pmatrix}\begin{pmatrix}\alpha\\\beta\end{pmatrix}=-\begin{pmatrix}C\\c\end{pmatrix}</math> ונקבל <math>q_p'=g\!\left(\frac qp\right)</math>. אחרת נבחר <math>\lambda=\frac Aa=\frac Bb</math> ונציב <math>z=ax+by</math>.
* '''מד״ר הומוגנית:''' נתונה מד״ר <math>y'=f\left(\frac yx\right)</math>. אזי נציב <math>z=\frac yx</math> ו־<math>y'=z'x+z</math>.
+
* '''מד״ר הומוגנית:''' נתונה מד״ר <math>y'=f\!\left(\frac yx\right)</math>. אזי נציב <math>z=\frac yx</math> ו־<math>y'=z'x+z</math>.
* '''מד״ר לינארית:''' נתונה מד״ר <math>y'+p(x)y=q(x)</math>. אם היא לינארית־הומוגנית אזי <math>y=c\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}</math>, ובכל מקרה <math>y=\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}\int q(x)\mathrm e^{\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx</math>.
+
* '''מד״ר לינארית:''' נתונה מד״ר <math>y'+p(x)y=q(x)</math>. אם היא לינארית־הומוגנית אזי <math>y=\mathrm e^{-\int p(x)\mathrm dx}</math>, ובכל מקרה <math>y=\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}\int q(x)\mathrm e^{\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx</math>.
 
* '''משוואת ברנולי:''' נתונה מד״ר <math>y'+p(x)y=q(x)y^n,\quad n\ne0,1</math>. נציב <math>z=y^{1-n}</math>, כאשר אם <math>n>1</math> אז <math>y\equiv0</math> פתרון רגולרי (כאשר הקבוע החופשי שואף ל־<math>\pm\infty</math>), אם <math>0<n<1</math> אז פתרון סינגולרי, ואם <math>n<0</math> אז לא פתרון. הפתרונות הרגולריים: <math>y=\sqrt[1-n]{\mathrm e^{-(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\int(1-n)q(x)\mathrm e^{(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx}</math>.
 
* '''משוואת ברנולי:''' נתונה מד״ר <math>y'+p(x)y=q(x)y^n,\quad n\ne0,1</math>. נציב <math>z=y^{1-n}</math>, כאשר אם <math>n>1</math> אז <math>y\equiv0</math> פתרון רגולרי (כאשר הקבוע החופשי שואף ל־<math>\pm\infty</math>), אם <math>0<n<1</math> אז פתרון סינגולרי, ואם <math>n<0</math> אז לא פתרון. הפתרונות הרגולריים: <math>y=\sqrt[1-n]{\mathrm e^{-(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\int(1-n)q(x)\mathrm e^{(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx}</math>.
 
* מד״ר מהצורה <math>P(x,y)\mathrm dx+Q(x,y)\mathrm dy=0</math> היא מדויקת אם״ם יש <math>U</math> כך ש־<math>\mathrm dU</math> שווה לאגף ימין, מה שמתרחש אם״ם <math>\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}</math>.
 
* מד״ר מהצורה <math>P(x,y)\mathrm dx+Q(x,y)\mathrm dy=0</math> היא מדויקת אם״ם יש <math>U</math> כך ש־<math>\mathrm dU</math> שווה לאגף ימין, מה שמתרחש אם״ם <math>\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}</math>.
 
** אם המד״ר אינה מדויקת ניתן לנסות להכפיל אותה ב־<math>\mu</math> כך שתהפוך למדויקת. <math>\mu</math> תלויה רק ב־<math>x</math> אם״ם <math>a=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}Q</math> תלויה רק ב־<math>x</math>, ואז <math>\mu(x)=\mathrm e^{\sim\!\!\!\!\int a\mathrm dx}</math>. היא תלויה רק ב־<math>y</math> אם״ם <math>b=\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}P</math> תלויה רק ב־<math>y</math>, ואז <math>\mu(y)=\mathrm e^{\sim\!\!\!\!\int b\mathrm dy}</math>.
 
** אם המד״ר אינה מדויקת ניתן לנסות להכפיל אותה ב־<math>\mu</math> כך שתהפוך למדויקת. <math>\mu</math> תלויה רק ב־<math>x</math> אם״ם <math>a=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}Q</math> תלויה רק ב־<math>x</math>, ואז <math>\mu(x)=\mathrm e^{\sim\!\!\!\!\int a\mathrm dx}</math>. היא תלויה רק ב־<math>y</math> אם״ם <math>b=\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}P</math> תלויה רק ב־<math>y</math>, ואז <math>\mu(y)=\mathrm e^{\sim\!\!\!\!\int b\mathrm dy}</math>.
* '''משוואת ריקרטי:''' מד״ר מהצורה <math>y'+f(x)y^2+g(x)y+h(x)=0</math>. הפתרון הכללי הוא מהצורה <math>y=\frac{ca(x)+b(x)}{cA(x)+B(x)}</math>. אם <math>y(x)=y_p(x)</math> פתרון אזי <math>y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1}</math> הפתרון הכללי.
+
* '''משוואת ריקרטי:''' מד״ר מהצורה <math>y'+f(x)y^2+g(x)y+h(x)=0</math>. הפתרון הכללי הוא מהצורה <math>y=\frac{ca(x)+b(x)}{cA(x)+B(x)}</math>. אם <math>y(x)\equiv y_p(x)</math> פתרון אזי <math>y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1}</math> הפתרון הכללי.
 
* נתונה מד״ר <math>\sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0</math> ממעלה <math>n</math>. אזי קיימות פונקציות <math>f_k</math> שעבורן <math>\prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0</math>.
 
* נתונה מד״ר <math>\sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0</math> ממעלה <math>n</math>. אזי קיימות פונקציות <math>f_k</math> שעבורן <math>\prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0</math>.
 
* אם <math>F(y,y')=0</math> נציב <math>z=y'</math> ואז <math>x=\frac yz+\int\frac y{z^2}\mathrm dz</math>. בנוסף, אם <math>y=\varphi(t)</math> ו־<math>z=\psi(t)</math> אזי <math>x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt</math>.
 
* אם <math>F(y,y')=0</math> נציב <math>z=y'</math> ואז <math>x=\frac yz+\int\frac y{z^2}\mathrm dz</math>. בנוסף, אם <math>y=\varphi(t)</math> ו־<math>z=\psi(t)</math> אזי <math>x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt</math>.

גרסה מ־17:40, 3 באוקטובר 2012

משפטים חשובים

  • משפט הקיום והיחידות למד״ר מסדר 1 בצורה נורמלית: תהי \vec f(x,\vec y) פוקנציה וקטורית המקיימת את תנאי ליפשיץ ב־\vec y בתיבה B=[x_0-a,x_0+a]\times\prod_{k=1}^n[y_{0,k}-b_k,y_{0,k}+b_k], ונתונים תנאי ההתחלה \vec y(x_0)=\vec y_0. אזי למערכת יש פתרון אחד בדיוק בקטע |x-x_0|<\min\!\left(\{a\}\cup\left\{\frac{b_k}{\displaystyle\max_{(x,\vec y)\in B}|f_k(x,\vec y)|}:k\in\{1,\dots,n\}\right\}\right).
  • כל מד״ר מסדר n שקולה למערכת של n מד״ר מסדר 1: F\!\left(x,y,y',\dots,y^{(n)}\right)=0\iff\begin{cases}y_1=y'\\y_2=y_1'\\\vdots\\y_{n-1}=y_{n-2}'\\F\!\left(x,y,y_1,y_2,\dots,y_{n-1},y_{n-1}'\right)=0\end{cases}. כמו כן, המערכת נורמלית/לינארית/לינארית־הומוגנית בהתאם למד״ר המקורית.

שיטות לפתרון מד״ר

מד״ר מסדר 1

  • מד״ר בצורה דיפרנציאלית עם משתנים מופרדים היא מהצורה M_1(x)N_1(y)\mathrm dx+M_2(x)N_2(y)\mathrm dy=0. אם \exists y_0:\ N_1(y_0)=0 אזי y\equiv y_0 פתרון, ואם \exists x_0:\ M_2(x_0)=0 אזי x\equiv x_0 פתרון. אחרת \int\frac{M_1(x)}{M_2(x)}\mathrm dx+\int\frac{N_2(y)}{N_1(y)}\mathrm dy=0.
  • נתונה מד״ר y'=f(ax+by). אז נציב z=ax+by ו־y'=\frac{z'-a}b.
    • הכללה: נתונה מד״ר y'=f\!\left(\frac{Ax+By+C}{ax+by+c}\right) . אם \begin{vmatrix}A&B\\a&b\end{vmatrix}\ne0 נציב \begin{cases}x=p+\alpha\\y=q+\beta\end{cases} כאשר \begin{pmatrix}A&B\\a&b\end{pmatrix}\begin{pmatrix}\alpha\\\beta\end{pmatrix}=-\begin{pmatrix}C\\c\end{pmatrix} ונקבל q_p'=g\!\left(\frac qp\right). אחרת נבחר \lambda=\frac Aa=\frac Bb ונציב z=ax+by.
  • מד״ר הומוגנית: נתונה מד״ר y'=f\!\left(\frac yx\right). אזי נציב z=\frac yx ו־y'=z'x+z.
  • מד״ר לינארית: נתונה מד״ר y'+p(x)y=q(x). אם היא לינארית־הומוגנית אזי y=\mathrm e^{-\int p(x)\mathrm dx}, ובכל מקרה y=\mathrm e^{-\sim\!\!\!\!\int p(x)\mathrm dx}\int q(x)\mathrm e^{\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx.
  • משוואת ברנולי: נתונה מד״ר y'+p(x)y=q(x)y^n,\quad n\ne0,1. נציב z=y^{1-n}, כאשר אם n>1 אז y\equiv0 פתרון רגולרי (כאשר הקבוע החופשי שואף ל־\pm\infty), אם 0<n<1 אז פתרון סינגולרי, ואם n<0 אז לא פתרון. הפתרונות הרגולריים: y=\sqrt[1-n]{\mathrm e^{-(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\int(1-n)q(x)\mathrm e^{(1-n)\sim\!\!\!\!\int p(x)\mathrm dx}\mathrm dx}.
  • מד״ר מהצורה P(x,y)\mathrm dx+Q(x,y)\mathrm dy=0 היא מדויקת אם״ם יש U כך ש־\mathrm dU שווה לאגף ימין, מה שמתרחש אם״ם \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}.
    • אם המד״ר אינה מדויקת ניתן לנסות להכפיל אותה ב־\mu כך שתהפוך למדויקת. \mu תלויה רק ב־x אם״ם a=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}Q תלויה רק ב־x, ואז \mu(x)=\mathrm e^{\sim\!\!\!\!\int a\mathrm dx}. היא תלויה רק ב־y אם״ם b=\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}P תלויה רק ב־y, ואז \mu(y)=\mathrm e^{\sim\!\!\!\!\int b\mathrm dy}.
  • משוואת ריקרטי: מד״ר מהצורה y'+f(x)y^2+g(x)y+h(x)=0. הפתרון הכללי הוא מהצורה y=\frac{ca(x)+b(x)}{cA(x)+B(x)}. אם y(x)\equiv y_p(x) פתרון אזי y(x)=y_p(x)+\left(\mathrm e^{\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\int\mathrm e^{-\sim\!\!\!\!\int(2f(x)y_p(x)+g(x))\mathrm dx}\mathrm dx\right)^{-1} הפתרון הכללי.
  • נתונה מד״ר \sum_{k=0}^{n-1}p_k(x,y)(y')^k+(y')^n=0 ממעלה n. אזי קיימות פונקציות f_k שעבורן \prod_{k=1}^n\Big(y'-f_k(x,y)\Big)=0.
  • אם F(y,y')=0 נציב z=y' ואז x=\frac yz+\int\frac y{z^2}\mathrm dz. בנוסף, אם y=\varphi(t) ו־z=\psi(t) אזי x=\int\frac{\varphi_t'(t)}{\psi(t)}\mathrm dt.
  • אם F(x,y')=0 נציב z=y' ואז y=zx-\int x\mathrm dz. בנוסף, אם x=\varphi(t) ו־z=\psi(t) אזי y=\int\varphi_t'(t)\psi(t)\mathrm dt.
  • שיטת פיקארד: נתונה בעיית ההתחלה \begin{cases}y'=f(x,y)\\y(x_0)=y_0\end{cases}. נבחר פונקציה \varphi_0 שעבורה \varphi_0(x)\equiv y_0, וניצור ממנה את סדרת הפונקציות המקיימת \varphi_n(x)=y_0+\int\limits_{x_0}^x f(t,\varphi_{n-1}(t))\mathrm dt. במידה והסדרה הנ״ל מוגדרת היטב (כלומר, כל האינטגרלים קיימים) \varphi=\lim_{n\to\infty}\varphi_n היא פתרון של הבעיה.
  • משוואת קלרו: נתונה המד״ר y=xy'+\psi(y'). אזי y=cx+\psi(c),\quad c\in\mathbb R או (כאשר p:=y') \begin{cases}x=-\psi_p'(p)\\y=-p\psi_p'(p)+\psi(p)\end{cases}.
  • משוואת לגראנז׳: נתונה המד״ר y=x\varphi(y')+\psi(y') עבור \varphi(y')\not\equiv y'. נציב p:=y' ואז p=\varphi(p)+\Big(x\varphi_p'(p)+\psi_p'(p)\Big)\frac{\mathrm dp}{\mathrm dx}. לפיכך x מקיים x=\mathrm e^{\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\int\frac{\psi_p'(p)}{p-\varphi(p)}\mathrm e^{-\sim\!\!\!\!\int\frac{\varphi_p'(p)}{p-\varphi(p)}\mathrm dp}\mathrm dp או \varphi(p)\equiv p (מקרה זה יש לבדוק בנפרד), ו־y מקיים y=x\varphi(p)+\psi(p).

מד״ר מסדר 2

  • בהנתן מד״ר y''=f(x,y') או y''=f(y,y') נציב z=y' ונקבל z'=f(x,z) או zz_y'=f(y,z), בהתאמה. מתקיים x=\int\frac{\mathrm dy}z=\frac yz+\int\frac y{z^2}\mathrm dz ו־y=\int z\mathrm dx.

מד״ר מכל סדר

מד״ר לינארית

בפרק זה, אלא אם צוין אחרת, המד״ר היא y^{(n)}+\sum_{k=0}^{n-1}a_k(x) y^{(k)}=f(x).

  • אם המד״ר לינארית־הומוגנית אז מרחב הפתרונות שלה הוא מרחב וקטורי.
    • אם בנוסף המד״ר מקיימת את משפט הקיום והיחידות אזי מרחב הפתרונות n מימדי.
  • ורונסקיאן: עבור קבוצת פונקציות y_1,\dots,y_n מגדירים W(y_1,\dots,y_n)(x)=W(x):=\begin{vmatrix}y_1(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{vmatrix}.
    • אם y_1,\dots,y_n ת״ל אזי W(x)\equiv0.
    • אם y_1,\dots,y_n פתרונות של מד״ר לינארית־הומוגנית המקיימת את תנאי משפט הקיום והיחידות בתחום D וכן \exists x_0\in D:\ W(x_0)=0 אזי הם ת״ל.
  • משפט ליוביל: אם y_1,\dots,y_n פתרונות בת״ל של המד״ר והיא הומוגנית אזי \forall x:\ W(x)=W(x_0)\mathrm e^{-\int\limits_{x_0}^x a_{n-1}(t)\mathrm dt}.
  • הפתרון הכללי של המד״ר הוא y=y_h+y_p, כאשר y_h הפתרון הכללי של המד״ר הלינארית־הומוגנית המתאימה ו־y_p פתרון פרטי כלשהו של המד״ר.
  • וריאציית הפרמטרים: נתונים y_1,\dots,y_n פתרונות בת״ל של המד״ר הלינארית־הומוגנית המתאימה. אזי הפתרון הכללי של המד״ר הוא \sum_{k=1}^n y_k(x)\int c_k'(x)\mathrm dx כאשר \begin{pmatrix}y_1(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{pmatrix}\begin{pmatrix}c_1'\\c_2'\\\vdots\\c_n'\end{pmatrix}=\begin{pmatrix}0\\0\\\vdots\\f(x)\end{pmatrix}. באופן שקול: c_k'(x)=\frac{W_k(x)}{W(x)}, כאשר W_k(x)=\begin{vmatrix}y_1(x)&\cdots&y_{k-1}(x)&0&y_{k+1}(x)&\cdots&y_n(x)\\y_1'(x)&\cdots&y_{k-1}'(x)&0&y_{k+1}'(x)&\cdots&y_n'(x)\\\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\y_1^{(n-1)}(x)&\cdots&y_{k-1}^{(n-1)}(x)&f(x)&y_{k+1}^{(n-1)}(x)&\cdots&y_n^{(n-1)}(x)\end{vmatrix}.
  • נניח שהמד״ר לינארית־הומוגנית עם מקדמים קבועים. אזי נציב y=\mathrm e^{rx}, ולכן y^{(k)}=r^k\mathrm e^{rx} וגם r^n+\sum_{k=0}^{n-1} a_k r^k (זה הפולינום האופייני של המשוואה) שווה ל־0. אם השורשים השונים זה מזה הם r_1,\dots,r_m והריבויים שלהם d_1,\dots,d_m בהתאמה אזי הפתרון הכללי הוא y=\sum_{k=1}^m\mathrm e^{r_kx}\sum_{i=0}^{d_k-1}c_{k,i}x^i. אם r_k אינו ממשי ניתן לכתוב r_k=\alpha+\beta\mathrm i ואז, כיוון ש־\overline{r_k} שורש עם אותו ריבוי, נציב C_1\mathrm e^{r_kx}+C_2\mathrm e^{\overline{r_k}x}=\mathrm e^{\alpha x}\Big(c_1\cos(\beta x)+c_2\sin(\beta x)\Big).
  • שיטת הניחוש/הבחירה/המקדמים הנעלמים: נניח שהמד״ר לינארית עם מקדמים קבועים וכן f(x)=\mathrm e^{\lambda x}\sum_{k=0}^m b_k x^k, כאשר \lambda קבועה (יכולה להיות גם 0), והריבוי של \lambda בפולינום האופייני הוא d (במידה ו־\lambda לא שורש נאמר d=0). אזי קיים פתרון פרטי מהצורה \mathrm e^{\lambda x}x^d\sum_{k=0}^m B_k x^k כאשר b_m,B_m\ne0. הערה: אם f(x)=g(x)+h(x) נוכל לפתור עבור g(x),h(x) בנפרד ולסכום את הפתרונות הפרטיים.
  • משוואת אוילר(־לגראנג׳) היא מד״ר לינארית מהצורה (x-x_0)^ny^{(n)}+\sum_{k=0}^{n-1}a_k (x-x_0)^k y^{(k)}=f(x) עם \forall k:\ a_k=\text{const.}. מציבים x-x_0=\begin{cases}\mathrm e^t,&x>x_0\\-\mathrm e^t,&x<x_0\end{cases} במד״ר ההומוגנית ואז y'=\frac{\mathrm dy}{\mathrm dt}\frac{\mathrm dt}{\mathrm dx}=\frac{\mathrm dy}{\mathrm dt}\frac1{x-x_0},\ y''=\mathrm e^{-2t}\left(\frac{\mathrm d^2y}{\mathrm dt^2}-\frac{\mathrm dy}{\mathrm dt}\right),\ \dots. נקבל משוואה לינארית־הומוגנית עם מקדמים קבועים, וניתן להמשיך לפתור אותה באופן זה. לחלופין, אנו לומדים מכך שאפשר להציב y=(x-x_0)^r במד״ר ההומוגנית ולקבל r^n+\sum_{k=0}^{n-1} b_k r^k=0 (משוואה אינדיציאלית). אם השורשים השונים זה מזה הם r_1,\dots,r_m והריבויים שלהם d_1,\dots,d_m בהתאמה אזי הפתרון ההומוגני הכללי הוא y=\sum_{k=1}^m (x-x_0)^{r_k}\sum_{i=0}^{d_k-1}c_{k,i}\ln^i(x-x_0). אם r_k אינו ממשי ניתן לכתוב r_k=\alpha+\beta\mathrm i ואז, כיוון ש־\overline{r_k} שורש עם אותו ריבוי, נציב C_1(x-x_0)^{r_k}+C_2(x-x_0)^{\overline{r_k}}=(x-x_0)^\alpha\Big(c_1\cos(\beta\ln(x-x_0))+c_2\sin(\beta\ln(x-x_0))\Big).
  • אם f(x)=(x-x_0)^\lambda\sum_{k=0}^m b_k \ln^k(x-x_0) כאשר \lambda קבועה (יכולה להיות גם 0), והריבוי של \lambda במשוואה האינדיציאלית הוא d (אם לא שורש d=0). אזי קיים פתרון פרטי מהצורה (x-x_0)^\lambda\ln^d(x-x_0)\sum_{k=0}^m B_k \ln^k(x-x_0) כאשר b_m,B_m\ne0.
פתרון מד״ר באמצעות טורי חזקות
  • נתונה מד״ר מהצורה y^{(n)}+\sum_{k=0}^{n-1} a_k(x)y^{(k)}=f(x) כאשר \forall k:\ f(x),a_k(x)\in C(a,b) ותהי x_0\in(a,b). אם f וכל המקדמים a_k אנליטיים סביב x_0 עם רדיוס התכנסות R או יותר אזי קיים פתרון אנליטי סביב x_0 של המד״ר עם רדיוס התכנסות R או יותר.
  • טור פרוביניוס הוא טור מהצורה (x-x_0)^r\sum_{k=0}^\infty a_k(x-x_0)^k.
  • בהנתן a_2(x)y''+a_1(x)y'+a_0(x)y=0 נחלק ב־a_2(x). תהי x_0 נקודה סינגולרית של \frac1{a_2(x)}. אם קיימים הגבולות L_k=\lim_{x\to x_0}(x-x_0)^{2-k}\frac{a_k(x)}{a_2(x)} הנקודה נקראת סינגולרית־רגולרית. בקרבת x_0 נקבל 0=(x-x_0)^2y''+\frac{a_1(x)}{a_2(x)}(x-x_0)y'+\frac{a_0(x)}{a_2(x)}y=(x-x_0)^2y''+(L_1+o(1))(x-x_0)y'+(L_0+o(1))y. לפי משפט, אם x_0 נקודה סינגולרית־רגולרית אזי קיים פתרון אנליטי למד״ר סביב x_0 בצורת בצורת טור פרוביניוס. לכן נפתור עבור o(1)=0, נציב y=(x-x_0)^r ונקבל את הפתרונות בצורת טורים של המד״ר עם o(1)=0 (אם פתרונות הפולינום האופייני של המד״ר עם o(1)=0 הם r_1,r_2 אז y_k=(x-x_0)^{r_k}\sum_{i=0}^\infty b_{k,i}(x-x_0)^i פתרון פרטי). נציב פתרונות אלו במד״ר המקורית ונקבל את מקדמי הטורים.
    הערה: נאמר ש־f\in o(g) אם \lim_{x\to x_0}\frac{f(x)}{g(x)}=0. לעתים כותבים "o(1)" לציון איבר הנמצא בקבוצה זו, ולא הקבוצה עצמה.
  • משוואת בסל: x^2y''+xy'+(x^2-m^2)y=0. מתקיים y''+\frac1xy'+\left(1-\frac{m^2}{x^2}\right)=0 ולכן \lim x\frac1x=1,\ \lim x^2\left(1-\frac{m^2}{x^2}\right)=-m^2, כלומר 0 סיגולריות־רגולרית.
  • פונציית גמא: \Gamma(x):=\int\limits_0^\infty t^{x-1}\mathrm e^{-t}\mathrm dt. היא מקיימת \Gamma(xּּ+1)=x\Gamma(x) וגם \forall n\in\mathbb N:\ \Gamma(n)=(n-1)!.
  • משוואת אוילר: x^2y''+xy'-m^2y=0.