שינויים

קפיצה אל: ניווט, חיפוש
להבא, אלא אם צוין אחרת, נסמן:
* <math>f,g</math> פונקציות.
* <math>a_n,b_n</math> הם מקדמי פורייה של <math>\cos(nx),\sin(nx)</math> (בהתאמה) בטור פורייה של <math>f</math>, ו־<math>c_n</math> מקדמי פורייה של <math>\mathrm e^{\mathrm inx}</math> בטור פורייה המרוכב.
* <math>n!!</math> היא ''העצרת הכפולה'' של <math>n</math>, והיא שווה למכפלת כל המספרים האי־זוגיים (אם <math>n</math> אי־זוגי) מ־1 עד <math>n</math>, או כל המספרים הזוגיים (אחרת). כלומר: <math>(2n-1)!!=\prod_{k=1}^n (2k-1)</math> ו־<math>(2n)!!=\prod_{k=1}^n 2k=2^n n!</math>.
* <math>\{\mathbf e_1,\dots,\mathbf e_n\}</math> אורתונורמלית ו־<math>\{\mathbf b_1,\dots,\mathbf b_n\}</math> אורתוגונלית.
 
----
 * '''אי־שיוויון אי־שוויון הולדר:''' אם <math>x\in\ell_p\ \and\ y\in\ell_q</math> כאשר <math>\frac1p+\frac1q=1</math> (כלומר, <math>\ell_p,\ell_q</math> צמודים) אזי <math>\sum_{n=1}^\infty|x_n\cdot y_n|\le\|x\|_p\cdot\|y\|_q</math>.
* אם <math>\mathbf u=\sum_{k=1}^n a_k\mathbf e_k</math> אזי <math>\forall k:\ a_k=\langle\mathbf u,\mathbf e_k\rangle</math>.
* ההיטל של <math>\mathbf u</math> על <math>\mathbf v</math> הוא <math>\mbox{proj}_{\mathbf v}(\mathbf u)=\frac{\langle\mathbf u,\mathbf v\rangle}{\langle\mathbf v,\mathbf v\rangle}\mathbf v</math>.
* אם <math>S=\{\mathbf b_1,\dots,\mathbf b_n\}</math> בסיס אורתוגונלי אזי הקירוב הטוב ביותר ל־<math>\mathbf u</math> ב־<math>\mbox{span}(S)</math> הוא <math>\tilde\mathbf u=\sum_{k=1}^n\mbox{proj}_{\mathbf b_k}(\mathbf u)</math>, כלומר <math>\min_{\mathbf v\in W}\|\mathbf u-\mathbf v\|=\|\mathbf u-\tilde\mathbf u\|</math>.
* '''אי־שיוויון אי־שוויון בסל:''' <math>\|\mathbf u\|^2\ge\sum_{k=1}^n|\langle\mathbf u,\mathbf e_k\rangle|^2</math>.
* '''תהליך גרם־שמידט:''' בהנתן בסיס <math>\{\mathbf u_1,\dots,\mathbf u_n\}</math> נוכל להגדיר בסיס אורתוגונלי <math>\{\mathbf b_1,\dots,\mathbf b_n\}</math> ובסיס אורתונורמלי <math>\{\mathbf e_1,\dots,\mathbf e_n\}</math> באופן הבא: {{left|<math>\begin{array}{ll}\mathbf b_1:=\mathbf u_1,&\displaystyle\mathbf e_1:=\frac{\mathbf b_1}{\|\mathbf b_1\|}\\\mathbf b_2:=\mathbf u_2-\mbox{proj}_{\mathbf b_1}(\mathbf u_2),&\mathbf e_2:=\displaystyle\frac{\mathbf b_2}{\|\mathbf b_2\|}\\\vdots&\vdots\\\displaystyle\mathbf b_k:=\mathbf u_k-\sum_{i=1}^{k-1}\mbox{proj}_{\mathbf b_i}(\mathbf u_k),&\displaystyle\mathbf e_k:=\frac{\mathbf b_k}{\|\mathbf b_k\|}\\\vdots&\vdots\end{array}</math>}}
* מרחב הפולינומים ממעלה <math>n</math> או פחות מסומן <math>P_n[x]</math>.
* '''פולינומי לז׳נדר:''' בהנתן המכפלה הפנימית <math>\langle f,g\rangle=\int\limits_{-1}^1 f(x)g(x)\mathrm dx</math> על מרחב הפולינומים <math>P_n[x]</math>, הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס <math>\{1,x,x^2,\dots,x^n\}</math> הם {{left|<math>\begin{array}{l}P_0(x)=1\\P_1(x)=x\\\displaystyle P_2(x)=\frac{3x^2-1}2\\\displaystyle P_3(x)=\frac{5x^3-3x}2\\\vdots\end{array}</math>}}ניתן לחשב אותם גם ע״י <math>P_n(x)=\frac1{2^n\cdot n!}\frac{\mathrm d^n}{\mathrm dx^n}\left(x^2-1\right)^n</math> או <math>P_{n+1}(x)=\frac{(2n+1)x\cdot P_n(x)-n\cdot P_{n-1}(x)}{n+1}</math>, והם מקיימים <math>\|P_n\|^2=\frac2{2n+1}</math>.
* '''פולינומי צבישב:''' בהנתן המכפלה הפנימית <math>\langle f,g\rangle=\int\limits_{-1}^1\frac{f(x)g(x)}\sqrt{1-x^2}\mathrm dx</math> על מרחב הפולינומים <math>P_n[x]</math>, הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס <math>\{1,x,x^2,\dots,x^n\}</math> הם {{left|<math>\begin{array}{l}T_0(x)=1\\T_1(x)=x\\T_2(x)=2x^2-1\\T_3(x)=4x^3-3x\\\vdots\end{array}</math>}}ניתן לחשב אותם גם ע״י <math>T_n(x)=\frac{\sqrt{1-x^2}}{(-1)^n(2n-1)!!}\frac{\mathrm d^n}{\mathrm dx^n}\left(1-x^2\right)^{n-\frac12}</math> (נוסחת רודריגז) או <math>T_{n+1}(x)=2x\cdot T_n(x)-T_{n-1}(x)</math>, והם מקיימים <math>\|T_n\|^2=\begin{cases}\pi,&n=0\\\frac\pi2,&\text{else}\end{cases}</math>.
* '''פונקציה רציפה למקוטעין''' היא פונקציה רציפה למעט במספר סופי של נקודות אי־רציפות שאינן מסוג שני. הפונקציות הרציפות למקוטעין יוצרות מרחב מכפלה פנימית <math>E</math> עם <math>\langle f,g\ranglerangle_1=\frac1\pi\int\limits_{-\pi}^\pi f(x)\overline{g(x)}\mathrm dx</math> (במקרה הממשי) או <math>\langle f,g\ranglerangle_2=\frac1{2\pi}\int\limits_{-\pi}^\pi f(x)\overline{g(x)}\mathrm dx</math> (במקרה המרוכב).
* '''מערכת סגורה:''' נתונה קבוצה אורתונורמלית אינסופית <math>\{\mathbf e_1,\mathbf e_2,\dots\}</math> במרחב מכפלה פנימית. המערכת תקרא סגורה אם היא מקיימת לכל וקטור <math>\mathbf u</math> את התנאי <math>\lim_{n\to\infty}\left\|\mathbf u-\sum_{k=1}^n\langle\mathbf u,\mathbf e_k\rangle\mathbf e_k\right\|=0</math>.
* המערכת המערכות <math>\left\{\frac1\sqrt2\right\}\cup\{\cos(nx)\}_{n=1}^\infty\cup\{\sin(nx)\}_{n=1}^\infty</math> אורתונורמלית סגורה ו־<math>\left\{\mathrm e^{\mathrm inx}\right\}_{n\to-\infty}^\infty</math> אורתונורמליות סגורות ב־<math>E</math>.* טור פורייה של <math>f</math> הוא <math>\frac{a_0}2+\sum_{n=1}^\infty\Big(a_n\cos(nx)+b_n\sin(nx)\Big)</math> כאשר <math>\forall n:\ a_n:=\langle f,\cos(nx)\ranglerangle_1</math> ו־<math>b_n:=\langle f,\sin(nx)\ranglerangle_1</math>.
:* אם <math>f</math> זוגית זה טור קוסינוסים, ואם היא אי־זוגית זה טור סינוסים.
:* מתקיים <math>\frac{|a_0|^2}2+\sum_{n=1}^\infty\left(|a_n|^2+|b_n|^2\right)\le\|f\|^2</math>* המערכת <math>\left\{\mathrm e^{\mathrm inx}\right\}_{n\to-\infty}^\infty</math> אורתונורמלית סגורה ב־<math>E</math>.* טור פורייה המרוכב של <math>f</math> הוא <math>\sum_{n=-\infty}^\infty c_n\mathrm e^{\mathrm inx}</math> כאשר <math>\forall n:\ c_n:=\langle f,\mathrm e^{\mathrm inx}\ranglerangle_2</math>.:* מתקיים <math>\forall n\in\mathbb Z:\ c_n=\frac{a_{|n|}-\mathrm i\cdot\sgn(n)\mathrm ib_b_{|n|}}2</math> וכן <math>a_n=c_n+c_{-n}\ \and\ b_n=\mathrm i(c_n-c_{-n})</math>.
* אם <math>f\in E</math> ו־<math>S_N</math> הסכום החלקי ה־<math>N</math>־י של טור פורייה (מרוכב או ממשי) של <math>f</math>, אזי <math>\lim_{N\to\infty}\|f-S_N\|=0</math>.
* <math>E'</math> הוא מרחב כל הפוקנציות ב־<math>E</math> שקיימות להן הנגזרות החד־צדדיות בכל נקודה למעט, אולי, בקצות הקטע.
* '''למת רימן־לבג:''' אם <math>f</math> אינטגרבילית בהחלט אזי <math>\lim_{n\to\infty}\int\limits_a^b f(x)\sin(nx)\mathrm dx=\lim_{n\to\infty}\int\limits_a^b f(x)\cos(nx)\mathrm dx=0</math> כאשר <math>n\in\mathbb R</math> (זה גבול של פונקציה, ולא רק של סדרה).
* '''גרעין דיריכלה:''' <math>\frac12+\sum_{k=1}^n \cos(kx)=\frac{\sin\!\left(\left(n+\frac12\right)x\right)}{2\sin\!\left(\frac x2\right)}</math>. בנוסף, האינטגרל של הביטוי ב־<math>(-\pi,\pi)</math> שווה ל־<math>\pi</math>.
* אם <math>f\in E'</math> רציפה ב־<math>[-\pi,\pi]</math> ו־<math>f(-\pi)=f(\pi)</math> אז טור פורייה של <math>f</math> יתכנס אליה בכל במ״ש על הקטע.:* '''שוויון פרסבל:''' אם בנוסף <math>f\in E</math> אזי <math>\|f\|_1^2=\frac1\pi\int\limits_{-\pi}^\pi |f(x)|^2\mathrm dx=\frac{|a_0|^2}2+\sum_{n=1}^\infty\Big(|a_n|^2+|b_n|^2\Big)</math> ו־<math>\|f\|_2^2=\frac1{2\pi}\int\limits_{-\pi}^\pi |f(x)|^2\mathrm dx=\sum_{n\to-\infty}^\infty |c_n|^2</math>.:* '''שוויון פרסבל המוכלל:''' אם <math>f,g\in E</math> אזי טור פורייה של <math>\langle f,g\rangle_1=\frac1\pi\int\limits_{-\pi}^\pi f(x)\overline{g(x)}\mathrm dx=\frac{a_0\overline{c_0}}2+\sum_{n=1}^\infty\Big(a_n\overline{c_n}+b_n\overline{d_n}\Big)</math> כאשר <math>g(x)\sim\frac{c_0}2+\sum_{n=1}^\infty\Big(c_n\cos(nx)+d_n\sin(nx)\Big)</math> מתכנס אליה במ״ש על הקטע.