שינויים

קפיצה אל: ניווט, חיפוש
/* תזכורות ותוספות לאלגברה לינארית */
* אם <math>\mathbf u=\sum_{k=1}^n a_k\mathbf e_k</math> אזי <math>\forall k:\ a_k=\langle\mathbf u,\mathbf e_k\rangle</math>.
* ההיטל של <math>\mathbf u</math> על <math>\mathbf v</math> הוא <math>\mbox{proj}_{\mathbf v}(\mathbf u)=\frac{\langle\mathbf u,\mathbf v\rangle}{\langle\mathbf v,\mathbf v\rangle}\mathbf v</math>.
* אם <math>S=\{\mathbf b_1,\dots,\mathbf b_n\}</math> בסיס אורתוגונלי אזי הקירוב הטוב ביותר ל־<math>\mathbf u</math> ב־<math>W=\mbox{span}(S)</math> הוא <math>\tilde\mathbf u=\sum_{k=1}^n\mbox{proj}_{\mathbf b_k}(\mathbf u)</math>, כלומר <math>\min_{\mathbf v\in W}\|\mathbf u-\mathbf v\|=\|\mathbf u-\tilde\mathbf u\|</math>.
* '''אי־שוויון בסל:''' <math>\|\mathbf u\|^2\ge\sum_{k=1}^n|\langle\mathbf u,\mathbf e_k\rangle|^2</math>.
* '''תהליך גרם–שמידט:''' בהנתן בסיס <math>\{\mathbf u_1,\dots,\mathbf u_n\}</math> נוכל להגדיר בסיס אורתוגונלי <math>\{\mathbf b_1,\dots,\mathbf b_n\}</math> ובסיס אורתונורמלי <math>\{\mathbf e_1,\dots,\mathbf e_n\}</math> באופן הבא: {{left|<math>\begin{array}{ll}\mathbf b_1:=\mathbf u_1,&\displaystyle\mathbf e_1:=\frac{\mathbf b_1}{\|\mathbf b_1\|}\\\mathbf b_2:=\mathbf u_2-\mbox{proj}_{\mathbf b_1}(\mathbf u_2),&\mathbf e_2:=\displaystyle\frac{\mathbf b_2}{\|\mathbf b_2\|}\\\vdots&\vdots\\\displaystyle\mathbf b_k:=\mathbf u_k-\sum_{i=1}^{k-1}\mbox{proj}_{\mathbf b_i}(\mathbf u_k),&\displaystyle\mathbf e_k:=\frac{\mathbf b_k}{\|\mathbf b_k\|}\\\vdots&\vdots\end{array}</math>}}