שינויים

משתמש:אור שחף/133 - הרצאה/15.5.11

נוספו 15 בתים, 05:30, 1 ביוני 2015
/* משפט 10 */
====דוגמה====
נוכיח שהטור ההנדסי <math>\sum_{n=0}^\infty x^n</math> מתכנס נקודתית בקטע <math>(-1,1)</math> אבל לא במ"ש ונוכיח שאם <math>0<r<1</math> הטור מתכנס במ"ש ב-<math>[-r,r]</math>: כבר הוכחנו שאם <math>-1<x<1</math> אז <math>\sum_{n=0}^\infty x^n</math> מתכנס ל-<math>\frac1{1-x}</math>.
כבר הוכחנו שאם <math>-1<x<1</math> אז <math>\sum_{n=0}^\infty x^n</math> מתכנס ל-<math>\frac1{1-x}</math>. נראה כי ההתכנסות אינה במ"ש. כל סכום חלקי <math>S_N</math> חסום בקטע <math>(-1,1)</math>: <math>|S_N(x)|\le\sum_{n=0}^N |x^n|\le\sum_{n=0}^N 1=N</math>. אם היה נכון ש-<math>S_N(x)\to\frac1{1-x}</math> במ"ש ב-<math>(-1,1)</math> היינו מסיקים מהתרגיל בתחילת ההרצאה שהפונקציה <math>\frac1{1-x}</math> חסומה וזה אינו נכון. לכן ההתכנסות לא במ"ש.
נותר להוכיח שאם <math>r\in(0,1)</math> אז <math>\sum_{n=0}^\infty x^n=\frac1{1-x}</math> במ"ש על <math>[-r,r]</math>. ובכן בקטע <math>[-r,r]</math> מתקייים <math>|x^n|\le r^n=M_n</math> כאן <math>\sum_{n=0}^\infty M_n=\sum_{n=0}^\infty r^n=\frac1{1-r}</math>. כיוון שסכום החסמים מתכנס מבחן ויירשראס אומר ש-<math>\sum_{n=0}^\infty x^n</math> מתכנס במ"ש ב-<math>[-r,r]</math>. {{משל}}
* עבור נקודה <math>x_0\in I</math> אחת לפחות הטור <math>\sum_{n=1}^\infty f_n(x_0)</math> מתכנס.
* טור הנגזרות <math>\sum_{n=1}^\infty f_n'</math> מתכנס במ"ש לפונקציה s על I.
אזי <math>\sum_{n=1}^\infty f_n</math> מתכנס במ"ש על I לפונקציה גזירה S ומתקיים <math>S'=s</math>. בפרט, בתנאים אלה <math>\frac{\mathrm d}{\mathrm dx}\sum_{n=1}^\infty f_n(x)=\sum_{n=1}^\infty f_n'(x)</math>.
{{המשך סיכום|תאריך=17.5.11}}
===הוכחה===
נגדיר סכומים חלקיים <math>S_N=\sum_{n=1}^N f_n</math>. הנתון הראשון אומר שלפחות בנקודה <math>x=x_0</math> קיים <math>\lim_{N\to\infty} S_N(x)</math>. הנתון השני אומר שקיים <math>s(x)=\lim_{N\to\infty} S_N'(x)</math> במ"ש ב-I. ז"א הסדרה <math>\{S_N(x)\}</math> מקיימת את התנאים של משפט 4 ולכן קיים <math>S(x)=\lim_{N\to\infty} S_N(x)</math> ב-I כך ש-S גזירה ב-I ו-<math>S'=s</math>. עתה <math>S(x)=\sum_{n=1}^\infty f_n(x)</math> וכן <math>s(x)=\lim_{N\to\infty}\sum_{n=1}^N f_n'(x)=\sum_{n=1}^\infty f_n'</math>. מכיוון ש-<math>S'=s</math> נסיק <math>\frac{\mathrm {d}}{\mathrm {dx}}\sum_{n=1}^\infty f_n(x)=\frac{\mathrm {d}}{\mathrm {dx}}S(x)=s(x)=\sum_{n=1}^\infty f_n'</math>. {{משל}}
===דוגמה ממבחן===
לכל <math>x\in\mathbb R</math> נגדיר <math>S(x)=\sum_{n=1}^\infty\frac{\sin(nx)}{n^3}</math>. הוכיחו ש-S מוגדרת היטב (ז"א הטור מתכנס לכל <math>x\in\mathbb R</math>) ו-S בעלת נגזרת רציפה לכל <math>x\in\mathbb R</math>.
====פתרון====
לפי מבחן ה-M של ויירשראס, נמצא חסם עליון לערך המוחלט איברי הטור: <math>\forall n:\ \sup_{x\in\mathbb R}\left|\frac{\sin(nx)}{n^3}\right|=\frac1{n^3}</math>. כעת <math>\sum\frac1{n^3}</math> מתכנס, לכן <math>\sum_{n=1}^\infty\frac{\sin(nx)}{n^3}</math> מתכנס במ"ש על <math>\mathbb R</math>, כלומר S מוגדרת היטב. נותר להוכיח ש-<math>S'</math> קיימת ורציפה. נעזר במשפט 10: הטור <math>\sum_{n=1}^\infty\frac{\sin(nx)}{n^3}</math> מתכנס בכל נקודה ב-<math>\mathbb R</math> וכן הטור הגזור איבר-איבר הוא <math>\sum_{n=1}^\infty\frac{\cos(nx)}{n^2}</math>. לכל n מתקיים <math>\sup_{x\in\mathbb R}\left|\frac{\cos(nx)}{n^2}\right|=\frac1{n^2}</math> ו-<math>\sum\frac1{n^2}</math> מתכנס. ע"י מבחן ה-M של ויירשראס נסיק שהטור הגזור מתכנס במ"ש על <math>\mathbb R</math> ולכן <math>S'</math> קיימת ובפרט <math>S'(x)=\sum_{n=1}^\infty\frac{\cos(nx)}{n^2}</math>. ברור כי <math>\frac{\cos(nx)}{n^2}</math> רציפה ב-<math>\mathbb R</math> ולכן, מכיוון שההתכנסות ל-<math>S'</math> במ"ש, גם <math>S'</math> רציפה (לפי משפט 8). {{משל}}