הבדלים בין גרסאות בדף "תרגול 10 תשעז"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(יצירת דף עם התוכן "'''הגדרות.''' יהיו A קבוצה, B קבוצה המוכלת בה וR יחס סדר חלקי: *חסם מלעיל של B הוא איבר <math>x\in A</mat...")
 
שורה 28: שורה 28:
 
'''הגדרה.''' יהי R יחס סדר חלקי על A. אם לכל שני איברים a,b בA מתקיים <math>[(a,b)\in R]\or[(b,a)\in R]</math> אזי R נקרא '''יחס סדר מלא'''.
 
'''הגדרה.''' יהי R יחס סדר חלקי על A. אם לכל שני איברים a,b בA מתקיים <math>[(a,b)\in R]\or[(b,a)\in R]</math> אזי R נקרא '''יחס סדר מלא'''.
  
=== תרגיל (ממבחן קיץ תשעה מועד ב) ===
+
למשל: היחס 'קטן שווה' על השלמים/הממשיים הוא יחס סדר מלא.
תהא <math>X</math> קבוצת כל הסדרות הבינאריות (סדרה בינארית היא <math>a_1a_2a_3\dots</math> כאשר <math>a_n\in \{0,1\}</math>). נגדיר יחס <math>R</math> על <math>X</math> כך:
+
שימו לב כי זו דוגמא ליחס סדר בלי איברים מינימליים או מקסימליים.
עבור <math>a=a_1a_2\dots ,b=b_1b_2\dots \in X</math>
+
  
<math>aRb \iff \; \forall n\; a_n-b_n \neq (-1)^n</math>
+
===יחסי שקילות===
 +
הגדרה: תהא A קבוצה ו-R יחס עליה. R יקרה יחס שקילות אם הוא
 +
#רפלקסיבי
 +
#סימטרי
 +
#טרנזיטיבי
  
א. הוכיחו ש <math>R</math> יחס סדר על <math>X</math>
+
דוגמא: תהא <math>A=\{1,2,3,4,5,6\}</math>. נגדיר תת הקבוצות <math>A_1=\{1,3\},A_2=\{2,4,5\},A_3=\{6\}</math>  
  
ב. קבעו האם <math>R</math> יחס סדר '''מלא''' על <math>X</math>
+
נגדיר יחס R על A כך <math>\exist 1\leq i \leq 3 : x,y\in A_i \Leftrightarrow xRy</math>
  
ג. מצאו (אם קיימים) איבר קטן וגדול ביותר ב <math>X</math> (ביחס ל <math>R</math>)
+
טענה R יחס שקילות
  
==== פתרון ====
+
הוכחה:
+
דרך שקולה לתאר את היחס שמפשטת את השאלה היא כך
+
  
<math>aRb \iff \big( \forall k \; a_{2k}=1 \Rightarrow b_{2k}=1, \; a_{2k-1}=0\Rightarrow b_{2k-1}=0\big)</math>
+
1. רפלקסיביות - נניח <math>x\in A</math> לכן x שייך ל <math>A_i</math> עבור i מסוים (שכן האיחוד שלהן שווה לA) ולכן <math>(x,x)\in R</math>.
  
כלומר במיקומים הזוגיים, אם a שווה 1 אז זה גורר ש b שווה 1
+
2. סימטריות - נניח <math>(x,y)\in R</math> אזי <math>x,y\in A_i</math> עבור i מסוים, מכיוון שאין משמעות לסדר שייכות לקבוצה, נובע שגם <math>(y,x)\in R</math>.
  
ובמיקומים האי זוגיים, אם a שווה 0 אז זה גורר ש b שווה 0
+
3. טרנזיטיביות - נניח <math>[(x,y)\in R] \and [(y,z)\in R]</math> אזי קיימים i,j כך ש <math>x,y\in Aֹ_i</math> וגם <math>y,z\in A_j</math>. לכן <math>y\in A_i\cap A_j</math>. מכיוון שהחיתוך בין תתי הקבוצות הוא ריק מוכרח להיות ש<math>A_i=A_j</math> ולכן <math>x,y,z\in A_i</math> ולכן <math>(x,z)\in R</math> כפי שרצינו.
  
א. תרגיל לבד!
 
  
ב. לא סדר מלא, למשל <math>a=000\dots, b=111\dots </math> לא מתייחסים זה לזה.
+
הגדרה: תהא A קבוצה. '''חלוקה''' של A היא חלוקה של A לקבוצות זרות. באופן פורמלי קיימות תת קבוצות <math>\{A_i\}_{i\in I}</math>
 +
כך ש:
 +
* <math>\forall i\in I: A_i \neq \emptyset </math>
 +
* <math>\cup _{i\in I} A_i =A </math> כלומר האיחוד של כל תתי הקבוצות שווה לקבוצה כולה 
 +
* הקבוצות <math>A_i</math> הן '''זרות''' זו לו = החיתוך בין כל שתי תתי קבוצות הוא ריק (<math>\forall i\not= j\in I : A_i\cap A_j = \phi </math>)
  
ג. קימיים, <math>M=010101\dots</math> הינו איבר הגדול ביותר כי לכל <math>a</math> מתקים <math>aRM</math>
+
כפי שראינו בדוגמה הקודמת חלוקה של A מגדירה יחס שקילות (אמנם זה "רק" דוגמא אבל ניתן להוכיח את המקרה הכללי באותו אופן).  
  
<math>m=101010\dots</math> הינו איבר קטן ביותר כי לכל <math>a</math> מתקים <math>mRa</math>
+
 
 +
דוגמא נוספת:
 +
 
 +
נגדיר יחס שקילות R על <math>\mathbb{Z}</math> ע"י  <math>3|(x-y) \Leftrightarrow xRy</math>
 +
 
 +
טענה: R אכן יחס שקילות
 +
 
 +
הוכחה:
 +
 
 +
1. רפלקסיביות - נניח <math>\forall x\in \mathbb{Z}:3|0=x-x</math> לכן <math>xRx</math>
 +
 
 +
2. סימטריות - נניח <math>(x,y)\in R</math> אזי <math>3|(x-y)</math> ולכן גם <math>3|(y-x)=-(x-y)</math>
 +
 
 +
3. טרנזיטיביות - נניח <math>[(x,y)\in R] \and [(y,z)\in R]</math> אזי <math>3|(x-y)\and 3|(y-z) </math> 
 +
ולכן גם <math>3|(z-x)=(z-y)+(y-x)</math>
 +
 
 +
 
 +
הגדרה:
 +
 
 +
יהא R יחס שקילות על A  אזי
 +
 
 +
# לכל <math>x\in A</math> מוגדרת '''מחלקת השקילות של x ''' להיות  <math>\bar{x}=[x]_R:=\{y\in A | (x,y)\in R\} </math>
 +
# ''' קבוצת המנה ''' מוגדרת <math>A/R := \{ [x]_R | x\in A\} </math>
 +
 
 +
 
 +
למשל, בדוגמא הראשונה <math>A_1,A_2,A_3</math> הן מחלקות השקילות. קבוצת המנה היא <math>A/R=\{A_1,A_2,A_3\}</math>
 +
 
 +
בדוגמא השניה מחלקת השקילות של 0 היא <math>[0]_R=\{ 0 \pm 3 \pm 6 \dots \}</math> וקבוצת המנה היא
 +
<math>\mathbb{Z}/R= \{[0]_R,[1]_R,[2]_R\}</math> (כלומר כל השאריות האפשריות בחלוקה ב-3).
 +
 
 +
 
 +
משפט: יהא R יחס שקילות על A אזי
 +
# לכל <math>x,y\in A</math> מתקיים <math>[x]=[y]</math> או <math>[x]\cap [y] =\phi </math> (כלומר מחלקות השקילות זרות)
 +
# <math>A=\bigcup_{[x]\in A/R}[x]</math> כלומר (איחוד מחלקות השקילות תתן את כל A)
 +
הערה: זה בדיוק אומר שמיחס שקילות ניתן להגיע לחלוקה של A
 +
 
 +
 
 +
מסקנה:
 +
תהא A קבוצה אזי יש התאמה {<math>R</math> יחס שקילות על A }
 +
<math>\leftrightarrow</math> {חלוקות של A}
 +
 
 +
חידוד: מהותו העיקרית של יחס שקילויות הוא לשים לב לשקילות מסוימת בין אברים שונים (כמו שיוויון) ולצמצם את החזרות המיותרות על ידי קיבוץ כל האיברים השקולים לקבוצה אחת.

גרסה מ־10:20, 17 בינואר 2017

הגדרות. יהיו A קבוצה, B קבוצה המוכלת בה וR יחס סדר חלקי:

  • חסם מלעיל של B הוא איבר x\in A כך שמתקיים \forall y\in B:(y,x)\in R
  • חסם מלרע של B הוא איבר x\in A כך שמתקיים \forall y\in B:(x,y)\in R
  • החסם העליון (סופרמום) של B הינו המינימום של קבוצת חסמי המלעיל (אם קיים). מסומן sup(B)
  • החסם התחתון (אינפימום) של B הינו המקסימום של קבוצת חסמי המלרע (אם קיים). מסומן inf(B)

דוגמאות

דוגמא. נביט בקבוצת הטבעיים, ובתת קבוצה סופית שלה B. נביט ביחס "מחלק את". הסופרמום של B הוא המכפלה המשותפת המינימלית (lcm), והאינפימום הוא המחלק המשותף המקסימלי(gcd).

למשל sup\{12,33,10\}=lcm(12,33,10)=3\cdot 4 \cdot 11 \cdot 5, inf\{12,33,10\}=gcd(12,33,10)=1

דוגמא עבור \{A_i\}_{i\in I} אוסף קבוצות. החסם העליון שלה הוא (ביחס להכלה) הוא \cup _{i\in I} A_i

דוגמא.

נביט בקבוצה A=\{1,2,3,4,5\} ונגדיר עליה יחס סדר חלקי:

R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(2,4),(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)\}

(הזוגיים 'גדולים' מכל אי הזוגיים ומהזוגיים הקטנים מהם)

נביט בתת הקבוצה המכילה את המספרים האי זוגיים בלבד B=\{1,3,5\}. קבוצת חסמי המלעיל של B הינה \{2,4\}. המינימום של קבוצה זו הוא 2 ולכן הוא החסם העליון של B. אין חסם מלרע ל-B ולכן בוודאי אין לה חסם תחתון.

הגדרה. יהי R יחס סדר חלקי על A. אם לכל שני איברים a,b בA מתקיים [(a,b)\in R]\or[(b,a)\in R] אזי R נקרא יחס סדר מלא.

למשל: היחס 'קטן שווה' על השלמים/הממשיים הוא יחס סדר מלא. שימו לב כי זו דוגמא ליחס סדר בלי איברים מינימליים או מקסימליים.

יחסי שקילות

הגדרה: תהא A קבוצה ו-R יחס עליה. R יקרה יחס שקילות אם הוא

  1. רפלקסיבי
  2. סימטרי
  3. טרנזיטיבי

דוגמא: תהא A=\{1,2,3,4,5,6\}. נגדיר תת הקבוצות A_1=\{1,3\},A_2=\{2,4,5\},A_3=\{6\}

נגדיר יחס R על A כך \exist 1\leq i \leq 3 : x,y\in A_i \Leftrightarrow xRy

טענה R יחס שקילות

הוכחה:

1. רפלקסיביות - נניח x\in A לכן x שייך ל A_i עבור i מסוים (שכן האיחוד שלהן שווה לA) ולכן (x,x)\in R.

2. סימטריות - נניח (x,y)\in R אזי x,y\in A_i עבור i מסוים, מכיוון שאין משמעות לסדר שייכות לקבוצה, נובע שגם (y,x)\in R.

3. טרנזיטיביות - נניח [(x,y)\in R] \and [(y,z)\in R] אזי קיימים i,j כך ש x,y\in Aֹ_i וגם y,z\in A_j. לכן y\in A_i\cap A_j. מכיוון שהחיתוך בין תתי הקבוצות הוא ריק מוכרח להיות שA_i=A_j ולכן x,y,z\in A_i ולכן (x,z)\in R כפי שרצינו.


הגדרה: תהא A קבוצה. חלוקה של A היא חלוקה של A לקבוצות זרות. באופן פורמלי קיימות תת קבוצות \{A_i\}_{i\in I} כך ש:

  • \forall i\in I: A_i \neq \emptyset
  • \cup _{i\in I} A_i =A כלומר האיחוד של כל תתי הקבוצות שווה לקבוצה כולה
  • הקבוצות A_i הן זרות זו לו = החיתוך בין כל שתי תתי קבוצות הוא ריק (\forall i\not= j\in I : A_i\cap A_j = \phi )

כפי שראינו בדוגמה הקודמת חלוקה של A מגדירה יחס שקילות (אמנם זה "רק" דוגמא אבל ניתן להוכיח את המקרה הכללי באותו אופן).


דוגמא נוספת:

נגדיר יחס שקילות R על \mathbb{Z} ע"י 3|(x-y) \Leftrightarrow xRy

טענה: R אכן יחס שקילות

הוכחה:

1. רפלקסיביות - נניח \forall x\in \mathbb{Z}:3|0=x-x לכן xRx

2. סימטריות - נניח (x,y)\in R אזי 3|(x-y) ולכן גם 3|(y-x)=-(x-y)

3. טרנזיטיביות - נניח [(x,y)\in R] \and [(y,z)\in R] אזי 3|(x-y)\and 3|(y-z) ולכן גם 3|(z-x)=(z-y)+(y-x)


הגדרה:

יהא R יחס שקילות על A אזי

  1. לכל x\in A מוגדרת מחלקת השקילות של x להיות \bar{x}=[x]_R:=\{y\in A | (x,y)\in R\}
  2. קבוצת המנה מוגדרת A/R := \{ [x]_R | x\in A\}


למשל, בדוגמא הראשונה A_1,A_2,A_3 הן מחלקות השקילות. קבוצת המנה היא A/R=\{A_1,A_2,A_3\}

בדוגמא השניה מחלקת השקילות של 0 היא [0]_R=\{ 0 \pm 3 \pm 6 \dots \} וקבוצת המנה היא \mathbb{Z}/R= \{[0]_R,[1]_R,[2]_R\} (כלומר כל השאריות האפשריות בחלוקה ב-3).


משפט: יהא R יחס שקילות על A אזי

  1. לכל x,y\in A מתקיים [x]=[y] או [x]\cap [y] =\phi (כלומר מחלקות השקילות זרות)
  2. A=\bigcup_{[x]\in A/R}[x] כלומר (איחוד מחלקות השקילות תתן את כל A)

הערה: זה בדיוק אומר שמיחס שקילות ניתן להגיע לחלוקה של A


מסקנה: תהא A קבוצה אזי יש התאמה {R יחס שקילות על A } \leftrightarrow {חלוקות של A}

חידוד: מהותו העיקרית של יחס שקילויות הוא לשים לב לשקילות מסוימת בין אברים שונים (כמו שיוויון) ולצמצם את החזרות המיותרות על ידי קיבוץ כל האיברים השקולים לקבוצה אחת.