שינויים

/* סכום תתי מרחבים */
=== סכום תתי מרחבים===
יהי <math>V</math> מרחב וקטורי מעל <math>\mathbb{F}</math> . יהיו <math>W_1,W_2\leq V</math> תתי מרחבים.נרצה למצוא את התת מרחב הכי "קטן" שמכיל את <math>W_1,W_2</math>. נסמן תת מרחב זה ב <math>W</math> אז פורמאלית, נרצה כי כל תת מרחב <math>U</math> המקיים <math> W_1,W_2\subseteq U</math> בהכרח יקיים גם <math>W\subseteq U</math>. יש שיחשבו שהתת מרחב הכי קטן שמכיל את <math>W_1,W_2</math> הוא האיחוד את <math>W_1,\cup W_2</math>.אבל התשובה שגויה כיוון שהאיחוד לא בהכרח תת מרחב כפי שנוכיח בתרגיל הבא. תרגיל: איחוד אינו יהי <math>V</math> מרחב וקטורי מעל <math>\mathbb{F}</math> . יהיו <math>W_1,W_2\leq V</math> תתי מרחבים. אזי <math>W_1,\cup W_2\leq V</math> אמ"מ (<math>W_1\subseteq W_2 \lor W_2\subseteq W_3</math>) כלומר אחד מתת המרחב מוכל בשני. הוכחה:כיוון ראשון (<math>\Leftarrow</math>): פשוט, אם אחד מוכל בשני אזי האיחוד שווה ל <math>W_i</math> (כאשר <math>i</math> שווה ל-1 או 2, תלוי במקרה) שהוא תת מרחב. כיוון שני (<math>\Rightarrow</math>): נניח בשלילה כי (<math>W_1\not\subseteq W_2 \land W_2\not\subseteq W_3</math>) אזי קיימים <math>w_1\in W_1\setminus W_2 \</math> וגם <math>w_2\in W_2\setminus W_1 \</math>. שני הוקטורים <math>w_1,w_2</math> נמצאים באיחוד ולכן גם הסכום שלהם <math>w_1+w_2</math> נמצא באיחוד כי נתון שהוא תת מרחב. כעת מהגדרת האיחוד <math>w_1+w_2</math> נמצא ב <math>W_i</math> (כאשר <math>i</math> שווה ל-1 או 2, תלוי במקרה). בה"כ נניח <math>w_1+w_2\in W_1</math>. כיוון ש <math>w_1\in W_1</math> אזי חיסור שני הוקטורים <math>(w_1+w_2)-w_1 \in W_1</math> נמצא גם כן ב <math>W_1</math> אבל החיסור שווה ל <math>w_2</math>. סתירה לכך ש <math>w_2 \not\in W_1</math> 
====סכום ישר ====
659
עריכות