ועדת המשמעת מזהיףה! נבחן שימצאו ברשותו חומרי עזר אסורים או יתפס בהעתקה יענש בחומרה עד כדי הרחקתו מהאוניברסיטה.

88-576-01

DIFFERENTIAL GEOMETRY 88-526-FINAL EXAM-MOED

24 february '09

PLEASE JUSTIFY ALL ANSWERS

Duration of exam: 2.5 hours (150 minutes)

- 1. This problem deals with curves in Euclidean space.
 - (a) Define the arclength parameter s of a curve;
 - (b) Consider the curve $\alpha(t) = (4\cos t, 5 5\sin t, -3\cos t)$. Find an arclength parametrisation s of the curve;
 - (c) Calculate the curvature k(s) of the curve in part (b).
- 2. This problem deals with surfaces in Euclidean space. Throughout this problem, assume that $g_{ij} = L_{ij} = 0$ if $i \neq j$.
 - (a) Define principal curvatures κ_1 and κ_2 ;
 - (b) Choose a suitable basis and express the Weingarten map of M as a matrix;
 - (c) Express the ratio κ_1/κ_2 as a functio fo the coefficients of the first and second fundamental forms;
 - (d) Calculate the ratio κ_1/κ_2 for the surface of revolution obtained by rotating the parabola $x = z^2 + \frac{1}{4}$ around the z-axis.
- 3. In coordinates $(u^1,u^2)=(x,y)$, let $f(x,y)=\frac{2}{y}$, and consider the metric $f(x,y)^2(dx^2+dy^2).$
 - (a) Calculate the symbol Γ¹₁₁ of the metric;
 - (b) Calculate the Gaussian curvature function K = K(x, y) of the metric.
- This problem deals with surfaces.

 - (a) Derive an expression for Γ_{ij}^k in terms of the metric coefficients g_{ij} ; (b) Prove that the expression $\frac{\partial}{\partial u^k} \left(\Gamma_{ij}^{\ell} x_{\ell} + L_{ij} n \right)$ is symmetric in j and k; Explain the relation between L_{ij} and L_{ℓ}^{k} ;
 - (c) Express $L_{i[j}L_{\ell]}^{k}$ in terms of the metric coefficients.
- 5. Consider the torus T_0^2 in \mathbb{R}^3 parametrized by

$$x(\theta, \phi) = ((5 + \cos \phi)\cos \theta, (5 + \cos \phi)\sin \theta, \sin \phi).$$

- (a) Define the stable norm $\| \|$ in 1-dimensional homology $H_1(T^2;\mathbb{Z})$ of a torus T^2 ;
- (b) Calculate all the successive minima λ_1 and λ_2 of $H_1(T_0^2; \mathbb{Z})$ with respect to the norm $\| \|$;
- (c) Express the conformal parameter $\tau_0 = \tau(T_0^2)$ in terms of an integral;
- (d) Does every Riemannian torus T^2 conformally equivalent to T_0^2 necessarily satisfy the inequality

$$sys_1(\mathbb{T})^2 \leq area(\mathbb{T})?$$

and provide an explanation.

GOOD LUCK!