יהי $\boldsymbol{H}, K<G$ חבורות סופיות. נגדיר העתקה

$$
\begin{gather*}
H \times K \rightarrow H K \\
.(h, k) \mapsto h k
\end{gather*}
$$

 (ha, $\left.a^{-1} k\right) \in H \times K, a \in H \cap K$ אכן, יה

$$
\begin{gathered}
k_{1}=a^{-1} k, h_{1}=h a \imath a:=h^{-1} h_{1}=k k_{1}^{-1} \in H \cap K \\
\left..|H K|=\frac{H \times K}{H \cap K}=\frac{H \mid K}{H \cap K} \right\rvert\,
\end{gathered}
$$

$: 2$ т 2 20

 אם $G / H=\langle H a\rangle$ חיא ציקלית

:3 ת2\% ת

 יש לה רק חבורה חלקית אחת מסדר p ורק חבורה חלקית אחת מסדו

$$
\cdot\left(p^{2}-p\right) \cdot p^{2}+\left(p^{2}-p\right) \cdot p=\left(p^{2}-p\right)\left(p^{2}+p\right)=p^{4}-p^{2}
$$

זותו שם מספר האברים מסדר

$$
\text { . } p^{2} \text { חבורות חלקיות ציקליות מסור } \frac{\left(p^{2}-p\right)\left(p^{2}+p\right)}{p^{2}-p}=p^{2}+p
$$

:4 T2, 2 m

$$
\begin{aligned}
& . i=1, \ldots, n-1,\left|G_{i}\right|=p^{i} \curlyvee G_{i} \triangleleft G, G_{1}<G_{2}<\ldots<G_{n-1}<G \text { שך } G_{1}, \ldots, G_{n-1} \\
& \text {. }\left|G_{1}\right|=p \text { ו } Z(G) \neq\{1\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { חבורות חלקיות של } G \text { המקימות } G\left|=p_{i}, G_{i} \triangleleft G, G_{i}<G_{i+1}\right| \\
& H \triangleleft G \text { זמקימת } H=\{a \in G \mid K a \in L\}<G
\end{aligned}
$$

:5, T2TEn

א) קול ומבע מהתגדרה.

 $N(H)$
 (1,3,5\} $\}$
 מבּילה אתבל התמדות בעלות אוח בצנה).
(2) ת"ח אחת ב- (H) הא האוצורפית ל-

לנש

$$
\begin{aligned}
& \text { ה }
\end{aligned}
$$

צשים לב ש- G היא חבורה לא אבלית מסדר 53 ועיתן להוכיח ש-

$$
\text { המטריצה } z=\left(\begin{array}{ccc}
1 & 0 & \mathbb{Z}_{5} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot
$$

רואים בקלות שכ"א מהאיברים פורש את הכניסה המתאימה לו המטריצה ו-

$$
k 1, k 2, k 3 \in \mathbb{Z}_{5} \quad z^{k 1} x^{k 2} y^{k 3}=\left(\begin{array}{ccc}
1 & k 3 & k 1 \\
0 & 1 & k 2 \\
0 & 0 & 1
\end{array}\right)
$$

תשובה 7:
א א א א א K

תשובד 8:

(- $g z g^{-1} * n=n * g z g^{-1}-\boldsymbol{\text { להוכיח }}$ $g z g^{-1} * n=g\left(z * g^{(-1)} n g\right) g^{-1}=g\left(g^{-1} n g * z\right) g^{-1}=n *\left(g z g^{-1}\right)-$ עת תשובה 9:

ב) גכון. נתון ב-

ג) לא נבון. ב- Z4 לאיברים 1,3 יש אותו סדר (שניהם יצצרים) אבל הם אינם צמודים (כי Z4 אבלית). ד) לא נכון. נשים לב שאם (. $|x|=3,|H|=2-1$ (? למה) $x=(345) \in N(H)$

