פיתרון לתרגיל מספר 8:

תשובה 1:

יהיו H,K < G חבורות סופיות. נגדיר העתקה

$$H \times K \to HK$$
 $(h, k) \mapsto hk$

Ahk=g כך שH imes K
ightarrow (h,k) זוגות אזי לכל $H \cap K$ קימים בדיוק $g \in HK$ אזי לכל

 $(ha,a^{-1}k)\in H imes K$, $a\in H\cap K$ אוי, לכל hk=g ארן, אוי, hk=g מקים $h_1k_1=g=hk$ מקים $h_1k_1=g=hk$ מקים $h_1k_1=g=hk$ מקים $h_1k_1=g=hk$ מכאן $h_1k_1=g=hk$ ווי, $h_1k_1=g=hk$ מכאן $h_1k_1=g=hk$ ווי, $h_1k_1=g=hk$ ווי, אוי

תשובה 2:

יהיו G קומוטטיבית וG/H ציקלית אינסופית. יהי Ha יוצר של Ha יוצר של G/H אם G/H יהיו G אם G יהיו G קומוטטיבית וG ביק על G/H ביקלית אינסופית. G=HK כך שG/H כך שG/H כך שG/H כך שG/H ולכן קים G/H בין אינסופית לכך שG/H בין אוז G/H=G/H היא ציקלית G/H=G/H אינסופית. לכן G/H בין מכאן, כיון שG/H קומוטטיבית, G/H היא מכפלה ישרה פנימית של G/H

תשובה 3:

תחי $(h,k)\in H\times K$ אבר p^3 אביקלית מסדר K ו p^2 ו מסדר K ציקלית מסדר K אם K מסדר K אוא מסדר K אם K און K און K אברים מסדר K

$$p(p^2-p)\cdot p^2+(p^2-p)\cdot p=(p^2-p)(p^2+p)=p^4-p^2$$

זהו גם מספר האברים מסדר p^2 בכל החבורות החלקיות של G שהן ציקליות מסדר p^2 בכל חבורה ציקלית מסדר p^2 יש p^2-p יש ע p^2-p אברים מסדר p^2 וחתוך של שתיים כאלו הוא חבורה חלקית מסדר p^2 אברים מסדר p^2 וחתוך של מסדר p^2-p חבורות חלקיות ציקליות מסדר p^2-p

משובה 4:

יהי p^n מספר ראשוני. אנו נוכיח באינדוקציה על p^n שאם q^n היא חבורה מסדר אינ נוכיח באינדוקציה על p^n

$$i=1,\ldots,n-1$$
 , $|G_i|=p^i$ ו $G_i riangleleft G_1 < G_2 < \ldots < G_{n-1} < G$ ש קט G_1,\ldots,G_{n-1}

 $|G_1|=p$ אזי $G_1=\langle a
angle$ נסמן p מסדר a אבר אבר ולכן יש לה ולכן ולכן ולכן $Z(G)
eq \{1\}$

כמרכן, כיון ש G/G_1 המנה G/G_1 לכל G לכל G ולכן G ולכן G נעבור לחבורת המנה $G_1 = G_1 x$, $G_1 < Z(G)$ שהיא $G_1/G_1,\ldots,G_{n-1}/G_1$ אזי מהנחת האינדוקציה נובע שקימות ל G/G_1 חבורות חלקיות G/G_1 אזי מהנחת האינדוקציה נובע G/G_1 ו $G_1/G_1 = p^{i-1}$ ו מכאן G_1,G_2,\ldots,G_{n-1} הן מקימות $G_1/G_1 = p^i$ ו $G_i/G_1 < G_i/G_1 < G_{i+1}/G_1$ הן $G_i/G_1 = p^i$ ו $G_i \triangleleft G$, $G_i < G_{i+1}$

H riangleleft G אז L riangleleft G/K אם בנוסף $H = \{a \in G \mid Ka \in L\} < G$

תשובה 5:

N(H)

א) קל ונובע מההגדרה.

ב) ברור ש- H מוכל במנרמל שלו. צ"ל שלכל (AH=Ha) מתקיים: aH=Ha אבל זה נכון על פי הגדרת המנרמל. ג) אם H תח"נ של K אז לכל kH=Hk : k∈K ולכן K מוכל ב- K .N(H) היא חבורה בפני עצמה, ולכן היא ת"ח של

ד) (1) ההוכחה ש-H היא ת"ח קלה. מכיוון שהיא לא משפיעה על 2,4,6 ניתן להסתכל עליה כעל חבורות התמורות של 3,3,5 ניתן להסתכל עליה כעל חבורות התמורות של 1,3,5} ולכן היא איזומורפית ל-33. היא לא נורמלית ב-56: התמורה

אך התמורה הצמודה לה: (1 2 4) אינה שייכת ל-H (זכרו שת"ח היא נורמלית בחבורת התמורות אם היא מכילה את כל התמורות בעלות אותו מבנה).

N(H) עצמה (ע"פ סעיף ב)). האיזומורפית ל- S_3 היא אחת ב- N(H)

נסתכל על $M=\{e\}$ איזומורפית ל S_3 : מכיוון שכל $M=\{e\}$ אוי $M=\{\sigma\in S_6:\sigma(1)=1,\,\sigma(3)=3,\,\sigma(5)=5\}$ מכיוון שכל M=H ולכן M מוכל במנרמל של M=H ולכל מורה ב-M אוז לכל M=H ולכן M מוכל במנרמל של M=H

:6 תשובה

$$(x,y)$$
 נהיא כמובן מסדר ((x,y) נהיא ((x,y) ((x,y) נהיא ((x,y) ((x,y)

 $|Z(G)| \neq 1$ נשים לב שG היא חבורה לא אבלית מסדר 53 וניתן להוכיח שG/Z(G) = 5 הוא ציקלי) נקבל שG/Z(G) אבלית כי מרחב המנה G/Z(G) הוא ציקלי)

$$z=egin{pmatrix} 1 & 0 & \mathbb{Z}_5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
יוצרת מסדר 5 והיא מסדר 5 והיא יוצרת את תת את תת החבורה, היא מסדר 5 והיא יוצרת המרכז $z=egin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ המטריצה

רואים בקלות שכ"א מהאיברים פורש את הכניסה המתאימה לו המטריצה ו-

$$k1, k2, k3 \in \mathbb{Z}_5$$
 כאשר $z^{k1}x^{k2}y^{k3} = \begin{pmatrix} 1 & k3 & k1 \\ 0 & 1 & k2 \\ 0 & 0 & 1 \end{pmatrix}$

:7 תשובה

 $K=\{1, au\sigma\},H=\{1, au\sigma,\sigma^2, au\sigma^3\}$ א מקיימות ש $K=\{1, au\sigma\},H=\{1, au\sigma,\sigma^2, au\sigma^3\}$ א $\tau(au\sigma)\tau^{-1}=\tau^2\sigma\tau=\sigma\tau\notin K$ שכן D_4 שכן D_4 אינה נורמלית ב D_4 אינה נורמלית ב D_4 אינה נורמלית ב

<u>תשובה 8:</u>

עריך $n\in N$ ולכן ת"ח של $n\in N$ יהי $gzg-1\in Z(N)$. צ"ל $z\in Z(N)$ צ"ל $z\in Z(N)$ כלשהו, צריך $z\in Z(N)$. $gzg^{-1}*n=n*gzg^{-1}$ להוכיח ש- $gzg^{-1}=N*gzg^{-1}$. $gzg^{-1}\in gNg^{-1}=N$ נשים לב ש-

$$gzg^{-1}*n = g(z*g^{(-1)}ng)g^{-1} = g(g^{-1}ng*z)g^{-1} = n*(gzg^{-1}) - מתה - (gzg^{-1})$$

תשובה 9:

איזומרפית ל-22 (כי זו חבורה G/A ו- Z4 איזומרפית ל-B=Z(D4), $A=<\sigma>$, G=D4 איזומרפית ל- $Z2\times Z2$ איזומרפית ל- $Z2\times Z2$ איזומרפית ל- $Z2\times Z2$ איזומרפית ל- $Z2\times Z2$ איזומרפית ל- $Z2\times Z2$

. או yn=1 או (gyg-1)n=gyng-1=1 או xn=1 ההפך. רעיון ההוכחה הוא שאם x=1 ההוכחה הוא שאם x=1

ג) לא נכון. ב- Z4 לאיברים Z4 יש אותו סדר (שניהם יוצרים) אבל הם אינם צמודים (כי Z4 אבלית).

אז אז א בהכרה $X\in H=<(1\ 2)$ כ- $X\in H$ ב- $X\in H$ בהכרה אז לא בהכרה $X\in H$ ב- $X\in H$

ה) מסדר D6 יש איבר מסדר C6 ואילו ב D6 יש איבר מסדר C6 ושלושה מסדר C6 יש איבר מסדר C6 (סיבוב).