
Exercise #2 - Admin System

Moti Geva

May 9, 2011

1 Introduction

You are required to write a program that should be of assistance to a system
administrator in case of a system load. The program is composed of a few input
modules, a manager module and a few execution modules. The communication
between the manager and the other modules is carried out using a queue in
shared memory and signals.

2 General Design

Following is a module description of the modules in the system. Each module
should be implemented as a different process which should be executed from
a different executable, i.e. it is self contained application and not just code
branch in the parent process’s code. Communication between processes should
be done using shared memory and signals as will be described later. Unless
specifically described otherwise, you must refrain from creating additional pro-
cesses, as creating additional processes may load the already loaded system.
Your application should exit normally upon receiving SIGTERM.

1



Figure 1: Basic design. stdin and sockets are input modules, and signals,

files and processes are execution modules. The manager module is responsi-
ble for reading and directing information between the various modules. Arrows
are communication channels which are implemented using a queue in shared
memory and signals.

The general use case is as follows:

1. A command arrives through an input module.

2. The input modules passes the command to the manager module’s input
queue.

3. The manager module reads the command and direct it to it’s destination
execution module.

4. The execution module reads the command from its input queue and exe-
cutes it.

5. When the execution is over, the execution module sends its result to the
manager module.

6. The manager module directs the result back to the originating input mod-
ule

7. The input module sends the information through its output channel

At any point, the manager may cancel the execution of the current com-
mand at any execution module by sending it a SIGINT signal. Additionally, the
manager module may cancel jobs while still on queue, i.e. delete pending jobs
on the queue. A command cancellation occurs based on a cancel command
which originates from the command’s source input module.

2.1 Input Modules

You should implement two input modules:

2



stdin reads input from the stdin, and sends it to the manager module. The
output channel for this module is stdout, i.e. output should be printed
to stdout.

sockets reads input from a TCP or UDP socket, and sends it to the manager
module. The output channel for this module is the originating connection
(TCP) or to the source IP and port (UDP).

The input module supports two commands: execute and cancel.

The execute command syntax is: target execute command

where target is the target execution module and command is the command
to passed to the target module. Any malformed should result with a
malformed command on the output channel. Commands will be described
in details in each execution module. For example,

signals send SIGNAL PID

will send the command (string) "send SIGNAL PID" to the "signals"

module (see Section 2.2.1). For each command the input module will
issue a command ID – CID – which is used to identify the command in
the future. The CID is returned immediately over the output channel
in the following syntax: Queued CID: cid where cid is the command ID
issued for the current command.

The cancel command syntax is: cancel cid

where cid is a valid command ID. Issuing a cancel command will cause
the removal of the command from any pending queue or terminate in it
in case it is currently executed, i.e. cause the manager module to issue a
SIGINT signal to the executing module. Upon cancellation confirmation,
the following message should be sent over the output channel:

Canceled CID: cid

where cid is the canceled command’s ID. If cid is unknown the following
message should be sent over the output channel:

Unknown CID: cid

When a command is done the input module should get an indication on
which command was completed and send it on the output channel in the form
of:

Done CID: cid, where cid is the done command’s ID.

2.1.1 Stdin Input Module

Stdin simply reads a single line from stdin and passes all output it receives
from the manager to stdout.

2.1.2 Sockets Input Module

A socket input module listens for communication on either a TCP or UDP
port. As the stdin input module it reads a single line from the socket and
passes it on to the manager module. Each UDP datagram (packet), contains a

3



single commands, however, recall that TCP is a stream protocol hence it may
contain more or less bytes than a single line. On TCP the output channel is the
originating connection, whereas on UDP the answer should be sent back to the
originating source IP and port.

The sockets module should support massages arriving from numerous sources,
possibly in parallel. In addition, multiple sockets modules may be executed in
parallel, while listening on different ports.

2.2 Execution Modules

You should implement three execution modules:

signals which sends signals to processes.

files which makes file operations.

processes which executes new processes.

Each execution module has a pending job queue from which it pulls out jobs.
Jobs are executed serially, i.e one job at a time. When a job is done, the
execution module informs the manger module, which in turn informs the input
module.

2.2.1 The Signals Module

The signals modules supports only one command which is the send command
which has the following syntax:

send SIGNAL PID
where SIGNAL is a valid signal number (1 through 32) and PID is the process’s
PID to which the signal is sent. For example, send 9 4321 should send signal
number 9 (SIGKILL) to process with PID 4321.

2.2.2 The Processes Module

The processes module simply executes new applications with the command in
bash. You can use any way to execute the command, including bash -c (see
man page). Note that you should be able to terminate the running process
should SIGINT arrive at your process. stdout and stderr can be discarded,
i.e. redirected to /dev/null.

Note that this is the only module which is allowed to create new processes.

2.2.3 The Files Module

The files support the following commands:

cp copies a source file to destination file

mv moves (without copying) a source file to destination file

rm remove (delete) a file from the file system

ls lists the content of the current working directory (one file per line).

cd changes the current working directory

4



3 Bonus

A bonus will be given to the following tasks

1. Implementing ls -l in the files module

2. Implementing find file which searches for file recursively within a direc-
tory and its subdirectories in the files module.

3. Redirecting all input and output through input modules back to their
sources (instead of simply discarding them).

4 Implementation Related Issues

1. You are free to use whatever queuing implementation you choose, and add
additional queues in your implementation.

2. You may use any mechanism we have learned in class – or others – as you
may find fit.

3. You can design any protocol between modules you want and send whatever
messages you find fit.

4. You can receive whatever inputs you’d like in each modules argv, however
you must supply an executable (compiled or script) named exer2 which
receives the input modules configuration which may consist of one or
more of the following:

• std stands for executing stdin input module

• tcp port stands for a tcp input module listening on port port

• udp port stands for a udp input module listening on port port

5. You must provide a makefile to build your solution

5 Example

$ ./a.out std

signals send 15 4321

Queued CID: 1

Done CID: 1

processes ps > ps.out

Queued CID: 2

Done CID: 2

files cp ps.out /tmp/ps.tmp

Queued CID: 3

Done CID: 3

processes long_executing_process

Queued CID: 4

processes long_executing_process

Queued CID: 5

cancel 5

5



Canceled CID: 5

cancel 6

Unknown CID: 6

Done CID: 4

6


