1 Prove that the Segre variety $\varphi(\mathbb{P}^n \times \mathbb{P}^m) \subset \mathbb{P}^N$ (where N = (n+1)(m+1)-1) is not contained in any linear subspace strictly smaller than the whole of \mathbb{P}^N .

- **2** Consider the two maps of varieties $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ given by $p_1(x, y) = x$ and $p_2(x, y) = y$. Prove that $p_1(X) = p_2(X) = \mathbb{P}^1$ for any closed irreducible subset $X \subset \mathbb{P}^1 \times \mathbb{P}^1$, unless X is of one of the following types: (a) a point $(x_0, y_0) \in \mathbb{P}^1 \times \mathbb{P}^1$; (b) a line $x_0 \times \mathbb{P}^1$ for $x_0 \in \mathbb{P}^1$ a fixed point; (c) a line $\mathbb{P}^1 \times y_0$.
- 3 Verify Theorem 1.10, Corollary 1.1 directly for the case $X = \mathbb{P}^n$.
- 4 Let $X = \mathbb{A}^2 \setminus x$ where x is a point. Prove that X is not isomorphic to an affine nor a projective variety (compare Exercise 3 of Section 4.5).
- 5 The same question as Exercise 4, for $X = \mathbb{P}^2 \setminus x$.
- **6** The same question as Exercise 4, for $X = \mathbb{P}^1 \times \mathbb{A}^1$.
- 7 Is the map $f: \mathbb{A}^1 \to X$ finite, where X is given by $y^2 = x^3$, and f by $f(t) = (t^2, t^3)$.
- **8** Let $X \subset \mathbb{A}^r$ be a hypersurface of \mathbb{A}^r and L a line of \mathbb{A}^r through the origin. Let φ_L be the map projecting X parallel to L to an (r-1)-dimensional subspace not containing L. Write S for the set of all lines L such that φ_L is not finite. Prove that S is an algebraic variety. [Hint: Prove that $S = \overline{X} \cap \mathbb{P}^{r-1}_{\infty}$.] Find S if r = 2 and X is given by xy = 1.
- **9** Prove that any intersection of affine open subsets is affine. [Hint: Use Example 1.20.]
- 10 Prove that forms of degree m = kl in n + 1 variables that are lth powers of forms correspond to the points of a closed subset of \mathbb{P}^N , where $N = \binom{n+m}{m} 1 = \nu_{n,m}$.
- 11 Let $f: X \to Y$ be a regular map of affine varieties. Prove that the inverse image of a principal affine open set is a principal affine open set.

Scanned by CamScanner