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Any Ec.m:.n_ argument of this general type can be proved invalid
by describing a possible non-empty universe for which its equiva-
lent truth-functional argument is proved invalid by the method
of assigning truth values.

: EXERCISES
1. Prove that each of the following arguments is invalid:

1. All _um._._nw.:mw are feminine. Annette is not a ballerina. T herelore
Annette i3 not feminine.

2, ....:. animals arc visible. All unicorns are animals. Therefore some
unicorns are visible.

3. Some liberals are Republicans. Some Republicans are isolationists,
Therefore some isalationists are liberals.

4. All men and only men are rational. Some men are selfish. All men
arc animals. Some animals are not rational, Therefore there is at
least one animal which is not selfish.

5. Lions mE.u tigers are carnivorous mammals. Some lions are danger-
o:..,h. All tigers have stripes. Some tigers are ferocious. No lions have
stripcs. Some mammals are neither feracious nor dangerous. There-
fare some carnivores are neither lions nor tigers,

IL Prove the validity or the invalidity of each of the following
arguments:

1. Nao farmer ia sophisticated. Adams is sophisticated. Therefore
Adams it not a farmer.

2. ﬁqc foreman is stupid. Brown is not a foreman, Therefore Brown
is stupid.

3 >= judges are lawyers. Some lawyers are shysters. There{ore some
judges are shysters.

4, ”r.,_ou._n Jailers are liberals. All liberals are shrewd. Therefore some
jailers are shrewd.

5. All men who have ambition and intelligence are successful. Some
ambitious men are not successful. Some intelligent men are not
successful, Therefore some men have neither ambition nor intelli-
mnnu-nﬁ.

6. All mattresses are either soft ar uncomfortable. No soft mattress is
uncomfortable. Some mattresses are uncomfortable. Therefore
some mattressey are not soft.
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7. Offices and houses are uncomfortable and disagreeable if they are
cither stuffy or chilly. Therefore any office will be uncomfortable
if it is sruffy.

B. All men and women will be healthy and vigorous if they exercise
and do not dissipate. Therefore any man will be healthy il he
exercises.

9. No applicant will be either hired or considered who is either un-
trained or incxperienced. Some applicants are inexperienced
beginners. All applicants who are women will be disappointed
except thase who are hired. Every applicant is a woman. Some
women will be hired. Therefore some applicants will nat be
disappointed.

10. No candidate will be cither elected or appointed wha i3 either a
liberal or a radical. Some candidates are wealthy liberals. Alt
candidates who are politicians will be disappointed except those

who are elected. Every candidate i3 a politician. Some politicians |

will be elected. Therefore some candidates will be disappointad.

I¥. MULTIPLY GENERAL PROPQSITIONS

Thus far we have limited our attention to singular propositions
and to general propositions which contain only a single quanti-
fier. A general propasition which contains exactly one gquantifier
is said to be singly general. We turn next to multiply gencral
propesitions, which contain two or more quantifiers, In our
usage of the term, any compound statement whose components
are general propositions i3 to be counted as a multiply general
proposition. For example, the conditional ‘If all dogs are car-
nivorous then some animals are carmivorous’, symbolized as
‘XI[Dx 2 Cx] O (I} [Ax-CxT', is a multiply general proposition.
Other multiply general propositions are more complex and re-
quire a more complicated notation. To develop the new notation
we must turn again to the notion of a propositional function.

All prepasitional functions considered up to now have had as
substitution instances either singular propositions or truth-func-
tional compounds of singular propasitions having the same sub-
ject terms. But if we now consider a compound statement whose
components arc singular propositions having different subject
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92 Propositional Functions and Quartifiers

Similarly the proposition “There are some H's’ may be alter-
natively symbolized as ‘(Fu)H', ‘Gu)Hy, . . ., ‘(I)Hy’, or
*(3z)Hz'. The difference between “(x) Fx* and “(y)Fy" (as between
‘(Ax)Gx’ and ‘(I)Gy’) is purely notational, and cither may be
written in place of the other wherever it occurs. Of course where
we have a propositional function containing free occurrences of
two or more different variables, such as ‘Fx-Gy’, the two prapasi-
tional functions which result from quantifying it differently as

OFxGy] and  ()[FeGyl

are very different indeed, and their difference is more than
merely notational. The substitution instances of the first are

{x)[Fx-Ga), (x){FxGb), (x)[Fx-Cel], .

while the substitution instances of the second are

I Fe Gy, ()F-Gy), (IFeGyl, -

If it so happens that every individual has the property F but
only some individuals have the property G, then some substitu-
tion instances of the first will be true propositions, while all sub-
stitution instances of the second will be false, a considerable
difference indeed! This example should serve to indicate the
need for speaking not of “the universal (or existential) quantifica-
tion of a propositional function” but rather of “the universal
(or existential) quantification of a propositional function with
respect do the pariable ‘x’ * or “the universal (or existential) quanti-
fication of a propositional function with respect to the variable 'y’ ”
and so on.

It should be clear that since ‘(x)[#x 2 Gx]' and ‘(y)[Fy D GT
are altermative translations of the proposition ‘Everything which
is an F is also a 7, the universal quantification of ‘#x 2 G¥’
with respect to “x’ has the same meaning and is logically equiva-
lent to the universal quantification with respect to ‘y* of the
propaositional function which results from replacing all free oc-
currences of ‘¥’ in ‘Fx O Gx’ by “y—for the result of that replace-
ment is *Fy D Gy’. In the carly stages of our work it will be
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desirable to have at most one quantification with respect tg a
given variable in a single proposition. This is not strictly neces-
sary, but it is helpful in preventing confusion. Thus the first
multiply general proposition considered, ‘If all dogs are car-
nivorous then some animals are carnivorous’, is more con-
veniently symbolized as ‘(x})[Dx D Cx] O (I)[AyCy]’ than as
“(x)[Dx O Cx] O @Qx)[AxCx], although neither is incerrect.

It has been remarked that no proposition can contain a free
occurrence of any variable. Hence in symbolizing any proposi-
tion we must take care that every occurrence of every variable
used lies within the scope of a quantifier with respect to that
variable. Some examples will help to make the matter clear.
The proposition

If something is wrong with the house then everyone
in the house complains.

is properly symbolized as a conditional whose antecedent and
consequent contain different quantifiers:

(3x)[x is wrong with the house] DO ()[{» is a person
in the house) D (y complains) .

Here the scope of the initial quantifier does not extend past the
main implication sign. But if we turn now to another proposi-
tion which bears a superficial resemblance to the first:

If something is wrong then it should be rectified.

it would be incorrect to symbolize it as
(3x)[x is wrong] D (x should be rectified).

For since the scope of the initial quantifier ends at the implica-
tion sign, the occurrence of ‘x’ in the consequent cannof refer
back to the initial quantifier because it does not lie within its
scope. We have here a free occurrence of a variable, which
means that the proposed symbolization is not a proposition and
therefore not an adequate translation of the given statement.
The error is not to be corrected by simply extending the scope
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terms, such as ‘Fa-G$’, we can regard it as a substitution instance
either of the propositional function ‘Fx'Gb or of the propositional
function 'FaGx’. Some propositional functions, we see, may
contain singular propositions as parts. And if we consider a
compound statement of which one constituent is a genecral
proposition and the other constituent is a singular proposition,
such as “If all dogs are camiverous then Rover is carnivorous’,
symbolized as *(x)[Dx 2 Cx] D Cr’, we can regard it a3 a sub-
stitution instance of the propositional function ‘(x)[Dx 2 Cx]
2 Cx’. Thus we see that some propositional functions may con-
tain general propositions as parts.

At this point two new technical terms may properly be intro-
duced. An occurrence of the variable *x* which does not occur
within, or lie within the scope of, a universal or existentizal quanti-
fier* “(x)’ or “(Ix)* will be called a free acourrenze of that variable.
On the other hand, an occurrence of the variable ‘x* which is
cither part of a quantifier or lies within the scope of a quantifier
“()’ or ‘(3x)’ will be called a bound occurrence of that variable.
Thus in the expression ‘(x)[Dx D Cx] D Cx’ the first occurrence
of the variable ‘x’ is par! of a quantifier and is therefore considered
to be bound. The second and third occurrences are bound occur-
rences also. But the fourth occurrence is a free occurrence. Thus
we see that propositional functions may contain both free and
bound occurrences of variables. On the other hand, all occur-
rences of variables in propositions must be bound, since every
proposition must be either true or false. A propesitional function
must contain at least one frec occurrence of a variable, but no
proposition can contain any free occurrences of any variable.

The proposition ‘Fa-(75’ can also be regarded as a substitution
instance of ‘Fx"Gy’, where the latter is a propositional function
containing keo different sariabies. Up to now we have explicitly
admitted only one individual variable, the letter ‘x*. However,
in our previous use of the letter ‘Y’ to denote any arbitrarily selected

* As explained on page 71.

t An alterpative, low common nomenclature refers to free variables as “real’
variables, and to bound variables at ‘apparent’ variables.
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individual, we were in effect using it as a variable without ad-
mitting the fact. And in introducing the letter ‘w’ by EI to
denote some particular individual having a specified property,
without really knowing which individual it denoted, we were in
effect using ‘=’ as a variable also. We now proceed to acknowl-
edge candidly what was implicit in our former usage. m.oE.o
propositional functions may contain two or more different indi-
vidual variables. It will be convenient to have a larger supply
of individual variables available, so we readjust cur nctational
conventions to include the letters ‘v, 2, ‘w’, ‘=*, %', and ‘z’ as
individual variables. Propositional functions now include such
expressions as ‘F’, ‘Fuv Gw', ‘(FxGy) O HZ, "Fxv (GyHx)’,

and the like.

It should be observed that in replacing variables by con-
stants to obtain propositions from propositional functions, the
same constant must replace every free occurrence of the same
variable. Thus substitution instances of the propositional func-
tion ‘Fx v (Gy-Hx)* are

Fa v {Gb-Ha), Fa v (Ge-Ha), Fa v {Gd'-Ha), .
Fb v (Ga-Hb), Fb v (Ge-Fb), Fb v (Gd-HY), . . .
Fe v (Ga-He), Fe v (Gh-He), Fe v (Gd-Ho), .

...........................

but nof such propositions as ‘Fa v (Gé-He)'. On the other rm_.ma“
the same constant can replace free occurrences of different varia-
bles, provided, of course, that if it replaces any free occurrence
of a variable it must replace all free occurrences of that varia-
ble. Thus additional substitution instances of the proposi-
tional function ‘Fx v (Gy'Hx)’ are ‘“Fa v (GaHa)’, ‘Fb v (Gb-H5)’,
‘Fev (GeHey, . .. o
Having admitted the letters ‘o’ ‘o', ‘0, °y’, and *2’ as __”.n:Sn_-
ual variables in addition to *z’, we now adjust cur notation for
upiversal and existential quantification to conform to our ex-
panded stock of variables. The proposition ‘All F’s are (78’ may
be alternatively symbolized as ‘@}[Fu O Gu}, ‘(0)[Fv O Gu}',
“w)[Fw D Gul, *(=)[Fx D GxT, ‘NFy 2 Gyf, or “(2)[Fz D Gz
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of the initial quantifier through rebracketing, moreover, for
the symbeolic expression

{3x) [(x is wrong) D (x should be rectified))

although a proposition, does not have the same meaning as the
original proposition in English. Instead, it says merely that
there is at least one thing which should be rectified if it is wrong,
but the sense of the English sentence is clearly that if enything is
wrong then it should be rectified. Hence a correct mwa—uo—ﬁm:cn
is neither of the preceding, but rather

{(#)[{x is wrong) O (x should be rectified)].

The situation is more complicated, but no different in prin-
ciple, when one quantifier occurs within the scope af ansther guanti-
fier. Here the same warning against dangling or ungquantified
variables must be sounded. The proposition

If something is missing then if nobody calls the police
someone will be unhappy.

is properly symbolized as

(35) [ is issing] > 1()[(y is a person) D ~(y calls
the police)] O (Az)[(z is a person)'(z will be
unhappy)}.

But the following proposition, which is superficially analogous
to the preceding:

If something is missing then il nobody calls the
police it will not be recovered,

is nat to be symbolized as

(@x)[x s missing] D [{s)[(yis a person) 3 ~(y calls-
the police)] =3 ~{x will be recovered)}

for the last occurrence of the variable ‘x* is outside the scope of
the initial quantifier, being left dangling. It too cannot be cor-
rected simply by rebracketing, as
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(3=} {(x is miswing) D ((»)|(y s a person) D ~(y
calls the police)] D ~(x will be recovered)} }

for this expression fails equally to preserve the sense of the
English sentence, in the same way as in the previous example.
That sense is expressed by the formula

(=)}{(x is missing) D {{y)[(y is 2 person) D ~y
calls the police)] O ~{x will be recovered)}}

which is therefore a correct symbolization of the given proposi-
tion.
EXERCISES

Symbelize each of the following propositions, in each case using the
abbreviations which arc suggested:

1. If anything is missing someone will call the police. {Mx-x is missing,
Px-x in a person, Cx-x will call the police.)

2. If anything is missing the maid probably tock it. (Mx-x is missing,
Tx-x was probably taken by the maid.)

3. If any diamonds are large then some diamonds are expensive.
(Dx-x is a diamond, Lx-x is large, Ex-x i3 expensive.)

4. If any diamonds are large then, if all large diamonds are expeasive,
they are expensive. (Dx-x i8 a diamond, Ix-« is large, Ex-x is
expensive.)

5. If all students who arc present are either botany majors or zoology
maiors then dther some botany majors are present or some zoology
majorz arc present. (Sx-x is a student, Pr-x is present, By-x is a
botany major, Zx-x is a zoology major.)

6. If any student is present then cither no botany majors are present
or he in a botany major. (Sx-x is a student, Px-x is present, Bx-xisa
botany major.)

7. Ifall visitors are friendly and only relatives are visitors then if there
are any visitors some relatives are friendly. (Fx-x is a visitor, Fx-x is
friendly, Re-x is a relative.)

8. If there are any visitors and only relatives are visitors then they
must be relatives, (Fx-x is a vigitor, Rx-x is a relative.)

9. If all wives are ambitious and no husbands are successful then some
wives will be miserable. (Wx-x is a wile, Ax-x is ambitious, Hx-xr iz a
hushand, S¥-x is successful, Mx-x will be miserable.)
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missing then if at least one servant is honest it will be returned
(Jx-x i3 jewelry, Mx-x i3 missing, Sx-x i3 a servant, Hx-x is honest,
Ror-x will be returned.)

9. If there are any liberals then all philosophers are liberals, If there
are any humanitarians, then all liberals are humanitarians. So if
there are any humanitarians who are liberals then all philosephers
are humanitarians. (Lx-x is a liberal, Px-x is 2 philosapher, Hx-x
is a humanitarian.)

10. If something is lost then if everyone values his possessions it will be
missed. If anyone values his possessions, 30 does everyone. Therefore
if something is lost then if someone values his possessions then some-
thing will be missed. (Lx-x is lost, Px-x iz a person, Vr-x values his
possessions, Afx-x iz missed.)

¥YI. LOGICAL TRUTHS INVOLVING GUANTIFERS

In Chapter Two truth tables were used not only to establish
the palidity of certain arguments but also to certify the logical
truth of certain propositions (tautologies such as‘d v ~A4’). The
notion of a logically true proposition is therefore a familiar one.
As we have seen, not all valid arguments can be established
by the method of truth tables: some of them must be demon-
strated by means of our quantification rules. Similarly, not all
logically true propositions can be certificd by the method of
truth tables: some of them must be demonstraled by means of our
quantfication rules.

The method used in demonstrating the logical truth of
tautologies was set forth in Chapter Three. A demonstration of
the logical truth of the tautology ‘4 3 (A v B)’ can be set down
a5

1. 4
T_ 2. AvE 1, Add.
3.AD(AvB) 1-2, GP.

In demonstrating the logical truth ol propositions involving
quantifiers, we ghall have to appeal not only to the original list
of clementary valid argument forms and the strengthened prin-
ciple of Conditional Proof, but to our four quantification rules
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as well. Thus a demonstration of the logi i
s we gical truth of the proposi-
tion ‘(x}Fx O (I}Fx’ can be set down as propes

1. (x)Fx
_lm. Fy 1, UI
5. (An)Fx 2, EG

4. (&)Fx O Q) Fx 1-3, C.P.

(In discussing “logical truth’ we explicitly limit our consideration
lo non-empty universes, just as in discussing palidity.)

n.umﬂnw logically true propositions involving quantifiers re-
quire more complicated demonstrations. For example, the
wcmﬁm:w frue proposition “(x)Fx 2 ~(3x) ~Fx’ has the &:oi..
ing demonstration:

— 1. (x)Fx
2. ahv ~Fx
_l 3. ~& 2, E1
4. Ax) ~Fx D ~F  2-3, CP.
5 Fy O ~(x) ~Fr 4, Trans., D.N.

6. Fy 1, UI
| 7. ~(3e) ~Fx 5, 6, M.P.
8. ()Fxr D ~(Ix) ~Fx 1-7, C.P.

Similarly, the truth of ‘~(Jx) ~Fx

2 (x)Fx is d
the following. (x)Fx’ is demonstrated by

— 1. ~(dx) ~Fx
2. ~Fy
3. (dx) ~Fx
4. QAx) ~Fx v Fy
5. Fy
6
7
§
9.
10
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Qgg®
B2
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-

c~Fy T Fy
. Bv PR

. Py

{x) Fx
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Given the logical truths established by the two preceding
demonstrations, we can conjoin them to obtain the equivalence
‘(x)Fx = ~(Ix) ~Fx’, which was already noted as a logical
truth in Section I of the present chapter. Since our praof of this
equivalence did nat depend upon any peculiaritics of the praposi-
tional function ‘F¥’, the equivalence holds for any propositional
function. And since aur proof did not refer to any peculiarities
of the variable °¥’, the cquivalence holds not only for any proposi-
tional function but for any individual variable. The equivalence
form (v)®v = ~(Jv) ~Pv is thus seen to be logically true, and can
be added to the other logical equivalences in our list of cle-
mentary valid argument formus. It permits us validly to inter-
change (v)®v and ~{(Jv) ~Fv wherever they may occur. This
connection betwren the two quantifiers by way of negation will
now be adopted as an additienal rule of inference, and may be
used in constructing subsequent demonstrations. When it is so
used, the letters *“QN’ (for quartifier negation) should be written to

indicate which principle is being appcaled to. It should be
obvious that the forms

~(vjdv = (Ju) ~dv
(v) ~du = ~(Ju}Dv
~(y) ~Fu = (Ju)dv

arc all logically equivalent to each other and ta the form QN,
and are therefore logically true.

Some fairly obvious logical truths are simply stated and easily
proved with our present symbolic apparatus. A logically tue
equivalence, for any propositional functions ‘Fx' and ‘G%’, is

[(x)Fx-(x)Gx] = (x}(Fx-Gx)
which asserts that: everything has the property ¥ and everything

has the property & if and only if everything has the properties
F and G. The demonstrations of the two implications involved

Logical Truths Invalzing Quantifiers 113

1. (o) Fx-(2)Gx .

2. (x)Fx 1, Simp. qw M.VM_.“.« = 1, Ul

M. Wﬁh 1, Simp. 3. Fy 2, Simp.
m. Y 2, U1 4. Gy 2, Simp.
5 w LUl 5. (x)Fx 3, UG

. ByGy 4, 5, Conj. 6. (X)Gx 4, UG

7. () (FxGx) 6, UG 7. () Fx(x)Gx m_o Conj
8. [(x)Fx(x)Gx] D (=) (Fx-Gx) 8. () {FxGx) D Ekumuh.ﬁwvnuk%.

.—..l.wv O..T. ._Iﬂ O..1

Another logical equi .
) quivalence involves the disjupcti i
tial quanufications: ] ion of existen-

[((Ax)Fx v (AxCs] = Q2 (Fe v Gx).~

[t states chat if either sorething has the property F or somethi

has the property G, then something has either the pro F o
the property G, and conversely. It may be aﬂzoﬁvﬁﬂ.ﬂ& -
follows: First we prove [(Ax)Fx v (IGx] D Ax(Fx v Gr): ”

1 (A)Fr v QAoes

2. (A0
Y Fy 2, I
4. Fyv Gy 3, Add
5. G(Fx v Go) 1 EG
6. (Ax)Fx O A2 (Fr v Cx) Ml.m C.P
—7. A6k T
8. Gr 7
9. Frv Gz m. _
10. Am.nvm.muk v Gx) @. “M.-Q
1. 396x D @) (Fx v G) 710, C.p

12, [(Ax)Fx D ERIE G (AnGr D (A (Fx v Gx)]

13. @0 (Frv G v @) (Fry AR
U @Fev gy m ,__,.mmnb.
15, {(@x)Fx v @AGx] D @AFxv e nr.z O.HW.

may be written side by side: Then we prove @) (Fx v Gx) D [A)Fe v (Ix)Gx):
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— 1. (A} Fx v Gx)
2. Fv Gy 1, EI
—3. Fy
4, (Ax)Fx 3, EG
5. (Ax)Fx v (Ax)Gx. 4, Add.
6. Fy D [(30)Fx v (x)Gx} 3-5, C.P.
—7. Gy
8. (Ax)Gx 7, BEG
9. (A Fx v 3x)Gx 8, PQ&.W
10. Gy O [@x)Fx v (Ax)Gx] 7-9, C.P,
1. {F D [@x)Fxv @x)Gx]}-16y D [AnFx v Eaum“w_c_ Con
12. [Gx)Fx v A)Gx] v [(3x)Fx v (Ix)Gx] 1, 2, C.D.
13, (@x)Fx v (Ax)6x o 12, Taut.
14, () (Frv Gx) D (Ax)Fr v 30)Gx] 1-13, C.P.

Another logical truth is in the form of a conditional rather

than an equivalence. Written as
[(x)Fx v (x)Gx] D (x)(Fx v Gx)

it asserts that if either everything is an F or aﬂa..ﬁr.mbm is a .Q“_
then everything is either an ¥ or a G. Its demonstration too in-
valves making several assumptions of limited scope, and can be
written as follows:
— 1. () Fx v (x)Cx

2. (x)F:
[, M ) 2, T
4, v Gy 3, Add,
8. (X)(Fx v Gx) 4, UG
6. (x)Fx D () (Fx v Gx) 2-5, G.P.
Eta v
2 Fyv Gy 8, Add.
10. (x)(Fx v Gx) w. ”M.A_..O .
11, ()Cx O () (Fx v Gx) -10, G.P.
12, MM..&M.« D X {(Fx v G (x)Gx D (x){(Fx v Gx)] 6, 11, Conj.
13. (x){Fx v Gx) v (x)(Fx v Gx) 12,1, CD.
14. (x){(Fx v Gx) 13, Taut.
15. [(x)Fx v (x)Gx] D (x){(Fx v Gx) 1-14, C.P.
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The converse of this conditional is not logically true, however. The
converse states that if everything is either For G then either every-
thing is F or everything is . That this converse is not always
truc can be seen by replacing ‘G° by ‘~F, for “(x)(Fxr v ~Fx)’ is
true for any predicate ‘F’, while there are few for which ‘(¥)Fx v

(x) ~Fx’ holds. Anciher logical truth which is conditional in
form 13

(A=) (Fx:Gx) D [(3x)#%(3x) Gx].

Its demonstration is perfectly straightforward, and can be left
as an exercise far the reader. That its converse is not true in
general can be seen by again replacing °G> by ‘“~F. For most
predicates ‘F° the proposition ‘(3%)Fr(Ix)~Fx is true {cg.
‘something is round and something is not round®), but for any
‘& the proposition ‘(3x)(Fx-~Fx)* is logically false.

It has already been observed that propositional functions can
contain propositions as constituent parts. Examples of such
propositional functions are

FxGa, Gy v (2)Hz, (Ju)Gw D Kz, |

When such propasitional functions as these are quantified, to
obtain the propositions .

(D Fx-Gal, (I [Gy v (2)Hz], (2)[(F)Ge D Fz), .

we have propositions lying within the scopes of quandfiers, al-
though the quantifiers have no real affect on thase propositions.
When a quantifier with respect to a given variablc is prefixed
10 an cxpression its only effect is to bind previously free accur-
rences of that variable. In the expressions written above, the
propositions ‘Ga’, *(2)Hz", and *(Jw)Gw’, although lying within
the scopes of the quantifiers ‘=), “(IyY, and *(2)", respectively,
are not really affected by thein. Wherever we have an cxpression
containing a quantifier within whose scape a proposition lies,
the entire expression is logically equivalent ta another expressian
in which the scope of the quantifier does nat extend over the
proposition in question. An example or two will make this clear.
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In the following, let ‘g’ be any prapesition, and ‘Fx’ any Ec_uc”-
tional function containing at least one free occurrence .& the
variable ‘x’. Our first equivalence here is .u.nganu the ==W<nnﬁ“
quantification of ‘Fxp’ and the conjunction .om the universa
quantification of *Fx’ with ‘p’, which is more briefly expressed as

(x)(Fxp) = [(x)Fxp].

The demonstration of this equivalence can be writlen as

. 1. (x)Fxp
M M%Mm.a ? 1, UL 2. (x)Fx 1, Simp.
3 By 2, Simp. . By w. qmu.H
4, (x)Fx 3, UG 4. » m. ;._:m_uﬂ.-.m
5 p 2, Simp. | 5. Fyp -3 uﬁ .
6. (x)Fxp 4, 5, Conj. 6. (x)(Fxp) 5 U
7. (x){Fep) O ﬁﬁuvm,wm.ﬂ_ op 7. [(Fxp] D ?Xm.wzﬂ. o

Another logical equivalence holds ._uw?qon: the universal
quantification of ‘p 2 Fx' and the noqa_..:c:& m:.u.rn:ﬁ:ﬁ irbm.a
antecedent is ‘p’ and whose consequent is the :E._.nlm.y EME.E-
fication of ‘#x’. The first asserts that given any E&Sn.:.a x, p
implies that x has F, and iz equivalent to p 5%:.2 h.-Em given any
individual x, x has . Our symbolic expression of this equivalence is

() D Fx) = [p D (0F].

Tts demonstration is easily constructed:

L (x)(p D Fx) w D (x)Fx
1, UI Ny

M. M S 3. (x)Fx 1, 2, M.P.
1 Fy 2,3, M.P. 4, By 3, Ul

5. {x)Fx 4, UG 5. 0D F 24, C.P,
6. p D (®)Fx  3-5 C.P. 6. (e D Fx) 5 UG V

F.

7. () (p UPVUJW_ Am.ﬂ._.n_ 7. ?UE?WU@M,HW . M.

The same pattern of equivalence holds for the existential quanti-.

fication of ‘¢ © Fx’ and the conditional statement ‘¢ O (3x)Fx".
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The first asserts that there i5 at least one individual x such that 4
tmplies that x has F, and is equivalent to p implies that there is a1
least ome individual x such that x has F, which is asserted by the
second. Its demonstration is very easily constructed, and will
be left as an exercise.

However, the pattern of equivalence is different when v
OcCurs as consequent rather than antecedent. Although the
universal quantification of *Fx O £ implies ‘(x)Fx D p, it is
not implied by the latter. There is an equivalence, however,
between given any x, if x has I then P and if there is at least one x
such that x has F, then p, which is expressed symbolically as

®Fx D p) = ()Fx D plp

And although the existential quantification of ‘Fx D ¢’ s implied
by “(3x)Fx D p, it does not imply the latter. There is an equiva-
lence, however, between there is at least one x such that if x has F
then p and if given any x, x has F, then p, which is expressed sym-
bolically as

@HEx D p) = [(0)Fx D pl. ya
The first is deinonstrated as follows:

1. Amwn?,u DY) L @oFxDp
2. () Fx —2 Fy

ﬁ‘_.u. Fy 2, El _ 3. (InFx 2, EG
4. By Dp 1, uI 4 Fr D (IxF 2-3, C.P.
5. p 4,3, M.P.

|! 5. Dp 4, |, HS.
mv..ﬁmhvm.x 2p 2-5,CP. ._[ 6. (x)(Fx Ulhlu_| 5, UG
7. (DFE D D T (@Fx D gD

(@)Fx Dp} 1-6, C.P. (x}Fx D p) 1-6, C.P.

The present logical equivalence supplies an alternative method
of symbolizing one of the propositions discussed in Section IV:

If something is wrong with the house then everyone
in the house complains.

The translation given there abbreviates 1o

Gx) D B D )
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which, as we have just demonstrated, is logically equivalent to

([Wx D () (Fy D Oyl

We shall conclude our discussion of logically true propositions
involving quantifiers by turning our attention to four logically
true propositions which are neither equivalences nor condi-

tionals. They correspond, in a sense, to our four quantification
rules:

L. {(plx)Fx D Fy)

2. (MIFy D @) Fx
3 (IFEy D (Fx]
4. GIEDFx D B

The first of these corresponds to Ul saying, as it docs, that given
any individual y, if every individual has the property F, then y
does. Tts demonstration is almost trivially obvious, procecding:

1. (x)Fx .
2. Fz 1, Ul
3. (x)Fx D Fr 1-2, C.P.

4 MIFxr D F] 3, UG

The second corresponds to EG, asserting that if any given indi-
vidual y has the property F, then something has F. The third
and fourth, corresponding to UG and El, respectively, are not
30 immediately obvious, but nevertheless are logically true and
quite easily demonstrated. An intuitive explanation can be given
by reference to the ancient Athenian general and statesman
Aristides, often called ‘the just’. SBo outstanding was Aristides
for his rectitude that the Athenians had a saying that

If anyone 18 just, Aristides 15 just.

With respect to any property, there is always some individual y
such that if anything has that property, y has it. That is what is
asserted by the fourth proposition listed above, -which corre-
sponds to EI The matter can be put another way. If we turn
our attention not to the property of being just, but to its reverse,
the property of being corruptible, then the sense of the first
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Athenian saying is also expressible as

If Aristides is corruptible,

> then everyone is cor-
Tuplible.

Again generalizing, we may observe that with respect to ar
property there is always some individual ¥ such that if _um.w.
Hr.mn property, everything has it. That is what jg asserted _um the
third proposition listed above, which corresponds to Cﬁw I
demonstration proceeds: "
1. ~(x)Fx
2. (Ax) ~Fx 1,
3. ~Fz 2,
4 ~(X)Fx D ~Fr -
4,
5,

g

C.P.
Tamns.

G

,,%-UJ

5. Fz D (x)Fx
6. (W) F O (x)Fx]

H_&ccmv we shall not prave it until the end of Chapter Nine
UMQ Enmro_,am of proof so far assembled (techniques for ﬁZm.E_.m_,
ucton’, as they are sometimes called) permit the demon-

stration Cm. all logically true propositions constructed out of
Q.:&-_.snn.noum_ connectives and the quantification of indi-
vidual variables. It will also be proved that onfy propositions that
are logically true can be demonstrated by these techniques

)

EXERCISES
Construct demonstrations for the following:

1. (Ax)(FrGx) D [(3x) Fx-(3x) Gx

@ ((Fx D 65) > () UVE_E

3 ((A)Fx D (A0)G6x] (Ax)(Fx D Ca)
4. (Ax)(p D Fx) = [t 2 (3AnFx)

5. ()(Fep) = [(F)Feyp]
& @ (Fxvp) = [(x)F v g

7. (Ix}Fxvp) = [(3x)Fx v p)

8. (dx)(Fx 2Py = [(x)Fx 27

WA Fx D Fy)

@ OHEY D () £x)



