```
function a=Ex7q2(x,y)
S=@(a)sum((y-a(1)*exp(a(2)*x)).^2);
a=fminsearch(S,[0,0]);
end
```

.this function inputs two variables x and y and outputs one variable $a \%$
lets look at the function S : (we know its a function because it has the syntax \% f=@(input) output;) the function S accepts the variable 'a' from the "mother function" Ex7q2 and outputs the mathematical expression : sum($(y-$ $a(1) * \exp (a(2) * x)) . \wedge 2)$
:lets look at this expression in detail\% multiply each coordinate of the vector x with the scalar $a(2)$ (the second \% .coordinate of vector a) ------- a(2)*x .exponent every coordinate of the vector ----- exp(a(2)*x)\% . (multiply each element of $\exp (a(2) * x)$ by the scalar $a(1)----\quad a(1) * \exp (a(2) * x) \%$ subtract from the vector y the vector $\left.a(1)^{*} \exp \left(a(2)^{*} x\right)\right)-----\quad y-\%$. $a(1) * \exp (a(2) * x)$
each element of the vector $y-a(1)^{*} \exp \left(a(2)^{*} x\right)$ increase by power of $2----(y-\%$ $a(1) * \exp (a(2) * x)) . \wedge 2$
sum all the elements of the vector from the previous stage to get a scalar. this \% .scalar is the output of the function S
now lets look at fminsearch: for the function S (this is a function from space \% . $\mathrm{R}^{\wedge} 2->\mathrm{R} \wedge 1$) find its minimum value when your initial guess of the minimum is [0,0] the output 'a' of fminsearch is the element of space R^2 (a vector of length 2) \% .that gives the minimum of function S

