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Part I

Introduction
Tropical algebraic geometry is a field of mathematics that has been growing during the last
10 years (ref. [15],[4],[14],[18],[20],[21]). Its main purpose is to generalize the process of
translating complicated geometric problems into solvable combinatorial problems. This idea
is achieved by matching regular geometric objects with piece-wise linear ones.

Let us define the main algebraic structure of tropical geometry, the max-plus algebra
over a totally ordered group (such as (R,+), (Q,+)) with the following operations:

a⊕ b = max(a, b)

a� b = a+ b

In the following sections we will present a short survey of the field (mainly from an al-
gebraic point of view), and present an algebraic extension to the max-plus algebra called
Exploded Layered Tropical algebra (ELT algebra for short). ELT algebra is the main alge-
braic structure we will use throughout this thesis.

1 Tropical Polynomials And Their Roots

We wish to study algebraic geometry over the max-plus algebra. In order to do so, we
should look at roots of polynomials. However, the usual definition of roots is useless since
zero (−∞) does not play its classical role in this algebra. For instance, let us look at the
max-plus polynomial p(λ) = λ2 ⊕ 4λ⊕ 5. The equation p(a) = −∞ is false for every a.

Figure 1: The graph of p(λ) = λ2 ⊕ 4λ⊕ 5

λ

(1,5)

(4,8)
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Looking at the graph of the polynomial p(λ) (figure 1), we can see that it is comprised
of three line segments that meets at the points 1 and 4. One can also notice that p can be
factored as

p = (λ⊕ 1)� (λ⊕ 4).

We would expect these points to be the roots of p. In order to define these roots algebraically,
Zur Izhakian has introduced supertropical geometry ([7]).

We investigate these possible roots and see that they come about when two monomi-
als are equal. Indeed, these are the points where the graph of the polynomial changes its
slope. Therefore Izhakian has built a structure that defines the sum of two equal elements as
a “ghost” element. Izhakian treats these ghosts as zeros since we want to view them as roots.

Further research led Izhakian and Rowen ([9]) to the idea of a graded algebra. Not only
do we “remember” the sum as a “ghost”, we also keep a layer element that gives us more
information. For example, assuming a natural or a tangible element is of layer one, then
the sum of three tangible elements is of layer three. In the broad perspective we will see
the graded algebra as a lesser degeneration of the classical geometry than the supertropical
algebra, which is lesser than tropical geometry.

In this thesis we introduce an extension of a non-archimedean valuation, from the field
of Puiseux series into an exploded layered tropical algebra (or ELT algebra for short), where
the coefficient of the leading monomial determine the layers. Given this new structure we
further refine the definition of a root to be a point where the layer of the evaluation of the
polynomial is zero. This structure is similar to Parker’s “exploded” semiring and holomor-
phic curves ([16]). Parker uses exploded manifolds to define and compute Gromov-Witten
invariants.

While this definition does not coincide with the ”ghost” definition above, it does coin-
cide with the classical tropical definition (i.e., a root is a point of equality between two or
more evaluations of monomials). Furthermore, we will see that this definition produces clear
formalizations and interesting results for polynomials, algebraic varieties and linear algebra.

Example 1.1. The roots of the polynomial f(λ) = [a]0λ2 + [1]2 in ELT algebra over the

complex field are
[ ±i√

a
]
1.

Indeed,

f(
[ ±i√

a
]
1) = [a]0

(
[ ±i√

a
]
1
)2

+ [1]2 = [a]0
(
[−1

a
]2
)

+ [1]2 = [−1]2 + [1]2 = [0]2.

2 Linear Algebra

Tropical linear algebra, also known as Max-Plus linear algebra, has been studied for more
than 50 years (ref. [2]). While tropical geometry deals with geometric combinatorial prob-
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lems, topical linear algebra deals with algebraic non-linear combinatorial problems (for in-
stance, the assignment problem [13]). Tropical linear algebra may also be used as a mean to
study the tropical algebraic geometry (for instance, the tropical resultant). Notable work in
this field can be found at [2],[3],[10],[11] and [19].

In tropical linear algebra, a set of vectors is linearly dependent if for some non-trivial
linear combination the maximal entry at each column is obtained at least twice. For instance,
the vectors

w1 = (1, 2, 0), w2 = (0, 3, 2), w3 = (0, 0, 0)

are linearly dependent. Indeed,

(1� w1)⊕ (w2)⊕ (2� w3) = (2, 3, 1)⊕ (0, 3, 2)⊕ (2, 2, 2) = (2, 3, 2).

In ELT linear algebra, a set of vectors is linearly dependent if for some non-trivial linear
combination, all of the layers equal zero. For instance, the vectors

v1 = ([1]1, [1]2, [1]0), v2 = ([1]0, [1]3, [1]2), v1 = ([−1]0, [1]0, [1]0)

are linearly dependent. Indeed,

[1]1v1 + [−1]0v2 + [1]2v3 = ([0]2, [0]3, [0]2).

We notice that while u1 = (1, 1), u2 = (1, 1) are clearly linearly dependent in tropical
algebra, the two vectors

u′1 = ([1]1, [−1]1), u′2 = ([−1]1, [1]1)

are independent. Geometrically the span of these two vectors is equal a span of one vector.
However, the layers of these two spans differs. Naturally we would like to know what is the
maximal size of an independent set.

One of the challenging results presented in this thesis is that the size of a maximal in-
dependent set is exactly n. Furthermore, the maximal number of linearly independent rows
of a matrix (called row rank) is always equal to the maximal number of independent columns.

The addition of layers also enables us to extend the usual tropical permanent with the
ELT determinant, having the layer multiplied by the sign. For example consider the matrix
with rows v1, v2, v3

A =

 [1]1 [1]2 [1]0
[1]0 [1]3 [1]2
[−1]0 [1]0 [1]0

 .

Using a rather natural definition, we obtain the determinant

|A| = [1]0
(
[1]1 · [1]3 · [1]0

)
+ [1]0

(
[1]2 · [1]2 · [−1]0

)
= [0]4.

Since the layer of the determinant is zero, the rows of the matrix are linearly dependent, as
we have seen before.
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3 Main Results

In this thesis we present a few main results:

1. Complete characterization of univariate polynomials factorization

2. A geometric counterexample to unique factorization of polynomials in two variables.

3. Unique factorization for primary polynomials in any number of variables.

4. Formalize the natural definitions of linear dependence and determinant, and prove that
a matrix is singular if and only if its rows are linearly dependent.

5. Prove that the row rank and the column rank of a matrix are equal.

6. Formalize and prove an exploded-layered version of Payne’s generalization [17] of
Kapranov’s theorem (for the hypersurface case).

7. Prove that the Sylvester matrix of two polynomials is singular if and only if they have
a common tropical root. In this proof we use exploded layered tropical linear algebra
and Kapranov’s theorem.

4 Tropical Geometry

Tropical geometry was described in the introduction as a general theory that enables one to
translate complicated geometric problems into a solvable combinatorial one. Since this is a
broad definition, there is more than one way to approach tropical geometry.

4.1 Amoebas

Amoebas ([5]) are the geometrical objects defined as images of varieties by the function
F : (C∗)n → Rn given by

F (z1, z2, ..., zn) = (logt |z1|, logt |z2|, ..., logt |zn|).

These amoebas have different asymptotic limits in different directions, and the idea is to take
the lines to which the amoebas converge. We achieve this goal by narrowing the amoeba to
have zero width.

Tropical curves are defined as the limit obtained as t tends to ∞. These tropical curves
are piecewise linear objects as we wished.

Example 4.1. [5] Consider the polynomial

f(x, y) = x+ y + 1 ∈ C[x, y].
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Figure 2: The amoeba F (Vf ∩ (C∗)2)

The variety of f is Vf := {(x, y) ∈ C2|f(x, y) = 0}. Figure 2 is a graph of an amoeba of
Vf .

The tentacles of the amoeba are created by points (logt(|x|), logt(|y|)) such that |x| or |y|
tends to 0 or ∞.
For example, the set of points (x, x − 1) ∈ Vf such that |x| → ∞ creates the north-east
tentacle. If |x| → 0 the west tentacle is created (since |y| → 1), and x → −1 creates the
south tentacles.

When taking the limit t→∞ we obtain the tropical curve (Figure 3).

Figure 3: The limit of amoebas is the tropical line
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We can see that the max-plus behavior arises from the definition of the tropical curves
as the limit of the log action on regular curves. For any t, and two points ta, tb ∈ Vf we
obtain two points in the amoeba a, b. The point tatb = ta+b is sent to the point a+ b in the
amoeba, thus a� b := a+ b.

Now we consider logt(t
a + tb) when t tends to ∞. If a ≥ b then

logt(t
a + tb) = logt(t

a(1 + tb−a)) = a+ logt(1 + tb−a),

since b− a ≤ 0 then logt(t
a + tb)→ a as t tends to ∞. Thus a⊕ b := max{a, b}.

4.2 Non-Archimedean amoebas

4.2.1 Non-Archimedean valuations

First we recall the definition of a (non-Archimedean) valuation. Let K be a field, then the
function v : K → R ∪ {∞} is called a valuation if the following properties hold:

1. v(x) =∞ ⇐⇒ x = 0.

2. ∀x, y ∈ K : v(xy) = v(x) + v(y).

3. v(x+ y) ≥ min{v(x), v(y)}.

Let v be a valuation over a field K with char(K) 6= 2, we recall the following basic
properties: Since v(1) = v(1 · 1) = v(1) + v(1) then

v(1) = 0.

Next, 0 = v(1) = v((−1) · (−1)) = v(−1) + v(−1) so v(−1) = 0 and for all x ∈ K

v(−x) = v((−1) · x) = v(x).

For all x ∈ K, since 0 = v(1) = v(xx−1) = v(x) + v(x−1) then

v(x−1) = −v(x).

We saw that v(±1) = 0. Assume v(x) = 0 for some x.
If v(x) < 0 then

v(1 + x) ≥ min{v(1), v(x)} = min{0, v(x)} = v(x).

Also,
0 > v(x) = v(1 + x− 1) ≥ min{v(1 + x), v(−1)} = min{v(1 + x), 0}

therefore v(x) ≥ v(1 + x). Together we obtain that

v(x) < 0⇒ v(1 + x) = v(x).

8



Now, for all x, y ∈ K if v(x) 6= v(y) then v(x)− v(y) 6= 0 and so v(xy−1) 6= 0. Thus for
all x, y ∈ K such that v(x) 6= v(y), either v(x−1y) < 0 or v(y−1x) < 0.

Assume that v(x−1y) < 0. Then

v(x+y) = v(x(1+x−1y)) = v(x)+v(1+x−1y) = v(x)+v(x−1y) = v(x)−v(x)+v(y) = v(y).

Thus if v(x) 6= v(y) then v(x+ y) = v(x) or v(x+ y) = v(y). In other words,

v(x+ y) > min{v(x), v(y)} ⇒ v(x) = v(y).

That is the reason that the equality between the valuation of two elements is central in
our theory.

4.2.2 Puiseux series

Consider the field of Puiseux series K(t) = {
∑

j∈I ajt
j}, I ⊂ R a totally ordered set. There

is a valuation:
v : K(t)→ R ∪ {∞}

given by

v
(∑
j∈I

ajt
j
)

= min(I).

Now using this valuation, we can define the non-Archimedean amoeba (cf. [6]) of a hy-
persurface of K(t)n as the image of the function F : K(t)n → Rn, given by F (x1, ...xn) =
(−v(x1), ...,−v(x2)).

Let X be the hypersurface in K(t)n obtained by the polynomial
∑
aJf

J where aJ ∈
K(t),J = (i1, ..., in) and fJ = xi11 ···xinn . Kapranov’s theorem states that the non-Archimedean
amoeba of X coincides with the corner-roots of the tropical polynomial

∑
−v(aJ)λI .

This approach to tropical geometry (ref. [4],[1]) is closely related to our work as it is
algebraic rather than analytic.

5 Exploded Layered Tropical Algebra

In this section we define the algebraic structure we use throughout this thesis, which is inher-
ited from the work of Parker ([16]) and Izhakian and Rowen ([8],[9],[10],[11]). The purpose
of this tropical algebraic structure is to formalize some of the results of tropical geome-
try, prove classical theorems that could not even be formulated in tropical geometry, and
hopefully solve open classical problems. This field of mathematics is a new and exciting area.
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Definition 5.1. Let L be a set closed under addition and multiplication and F a totally
ordered group (such as (R,+) or (Q,+)). An ELT algebra is the set {[`]λ|λ ∈ F, ` ∈ L}
together with the semi-ring structure:

1. [`1]λ+ [`2]λ = [`1+L`2]λ,

2. If λ1 > λ2 then [`1]λ1 + [`2]λ2 = [`1]λ1,

3. [`1]λ1 · [`2]λ2 = [`1·L`2](λ1 +F λ2).

Let R be an ELT algebra. We write s : R → L for the function which extracts the
coefficient:

s([`]λ) = `,

and t : R→ F for the function which extracts the tangible value:

t([`]λ) = λ.

We extend the total order on F to a partial order on R in the natural way:

[`1]λ1 ≥ [`2]λ2 ⇐⇒ λ1 ≥F λ2.

Example 5.2. Zur Izhakian’s supertropical geometry (ref. [7]) is equivalent to an ELT
algebra with L = {1, 2} such that

1 + 1 = 2, 1 + 2 = 2, 2 + 2 = 2

and
1 · 1 = 1, 1 · 2 = 2, 2 · 2 = 2.

The supertropical ”ghost” element 1ν is equivalent to [2]1 in the ELT notation, and the
tangible element 1 to [1]1.

Therefore, in this thesis we will refer to this specific ELT algebra as a supertropical alge-
bra.

Example 5.3. The classical max-plus algebra is equivalent to the trivial ELT algebra with
L = {1}. We call this case tropical algebra.
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5.1 Non-Archimedean amoebas

Let R be an ELT algebra over the reals with layers from an algebraically closed field L = F
of characteristic 0, and let K be the field of Puiseux series with coefficients in F and powers
in R or Q. We define an ELT tropicalization function from K∗ to R in the following way.
Assume x ∈ K∗ is a series with leading monomial ctα, then we define

ELTrop(x) := [c](−α).

Let f ∈ K[x1, ..., xn] be a polynomial, and write f =
∑
aIx

I . Then

ELTrop[f ] :=
∑

ELTrop(aI)λ
I ∈ R[λ1, ..., λn].

Definition 5.4. If f ∈ K[x1, ..., xn] is a polynomial, then its ELT variety is the following
set of ELT roots

V (f) := {a ∈ Rn : s
(
ELTrop[f ](a)

)
= 0F}.

In these terms, Kapranov’s theorem states that the non-Archimedean amoeba V (f) co-
incides with the pointwise ELT tropicalization of the classical variety of f .

5.2 The element −∞
The element −∞ is essential for some of the results we obtain in this thesis, therefore we
may add it in the following way.

Define R := R ∪ {−∞} such that for all a ∈ R:

a+ (−∞) = (−∞) + a = a,

a · (−∞) = (−∞) · a = (−∞).

We also define
s(−∞) := 0F,

and
ELTrop(0K) = −∞.

Part II

Factorization and basic properties of
polynomials

6 Introduction

In this part, we focus on the problem of factorization of polynomials and the necessary
requirements from the layer structure L. The factorization of tropical polynomials is im-
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portant for a number of reasons: first, the factors of a certain polynomial help us split the
variety of the polynomial into smaller varieties; second, the way polynomials factor affects
the algebraic structure of the polynomials ring and its ideals. This is important since we aim
to create an extensive algebraic base. Also, Gathmann (ref. [5]) explained the importance of
factorization of tropical polynomials and its connection to ordinary polynomial factorization.

We will show that in this structure most polynomials in one indeterminate factor uniquely.
We will also show that polynomials in several variables, in which all monomials have the
same tangible value at some point (called primary polynomials), factor uniquely.

Example 6.1. For example, consider the variety of three geometric lines which intersect at
(0,0).

f = (x+ y)(x+ 0)(y + 0) = (x+ y + 0)(xy + x+ y).

This variety may factor into the three geometric lines, or a tropical line and a tropical
quadratic factor. The distinction between these two cases is encapsulated in the layer of the
intersection point. We will see that since this is a primary polynomial it factors uniquely in
our expanded structure.

7 Basic Definitions

We wish to define polynomials over the ELT algebra with F = R. One must note that
unlike polynomials over classical algebra, two ELT polynomials may be equal everywhere
yet contain different monomials.

Example 7.1. Consider the two ELT polynomials

f(x) = x2 + [1]2,

and,
g(x) = x2 + x+ [1]2.

For each x ∈ R such that x > 1, the monomial x2 dominates the other monomial since
x2 > x, 2. Thus, in this case, f(x) = g(x) = x2.

If t(x) = 1 then f(x) = x2 + [1]2. In the polynomial g, the monomials x2, [1]2 dominates
the monomial x and so g(x) = f(x) as well.

The last case is x < 1 in which similarly f(x) = g(x) = [1]2.

Therefore f and g are equal at every point of R even though they contain different mono-
mials.
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For this reason we define ELT polynomials as functions.

Definition 7.2. An ELT polynomial p is a function p : Rn → R of the form

p(λ1, ..., λn) =
∑
I∈G

aIλ
I ,

where G ⊆ Nn is a finite set and for all I ∈ G the coefficient aI is in R.

We denote the set of all such polynomials as R[λ1, ..., λn].

Definition 7.3. Let f be a polynomial of the form f =
∑n

i=1 hi, where hi are monomials.
Write fh =

∑
hi 6=h hi. Then:

1. A monomial h is called inessential at a point a if fh(a) = f(a). If h is inessential
at every point, then h is called inessential.

2. A monomial h is called essential at a point a if it is not inessential at a (needed for
layer zero) and f(a) = h(a). If such a point exists, then h is called essential.

3. A monomial h is called quasi-essential at a point a if it is neither essential nor
inessential at a. If h is neither essential nor inessential, then it is called quasi-
essential.

Example 7.4. Consider f = λ2 + [1]1λ + [1]2. Then λ2 is essential at each tangible point
with value greater than 1. At 1 all of the monomials are quasi-essential, and for tangibles
lesser than 1 the fixed monomial 2 is essential.

Definition 7.5. The monomial of a univariate polynomial f with the highest power of λ is
called the leading monomial. The monomial with the lowest power is called the tail mono-
mial. Any other monomial is called a middle monomial.

Definition 7.6. A corner root of an ELT polynomial is a point at which at least two mono-
mials dominate. i.e., (c1, ..., cn) ∈ Rn is a corner root of p(λ1, ..., λn) =

∑
I∈G aIλ

I if the set
{I ∈ G|t(aIcI) = t(p(c1, ..., cn))} is of order 2 at least.

In other words, a point a is a corner root of a polynomial f =
∑n

i=1 hi if hk is quasi-
essential at a for some 1 ≤ k ≤ n.

Lemma 7.7. A polynomial f in one variable has only finitely many corner roots.

Proof. By definition, a corner root is a point where two monomials h1, h2 have the same
tangible value. There are only finitely many different possible pairs of monomials, each
contributing at most one root.

13



Definition 7.8. Let f and g be two polynomials in several variables. We say that f and g
are root equivalent if

s
(
f(c)

)
= s
(
g(c)

)
,

for every corner root c.

Definition 7.9. Let f be a multivariate polynomial. If all of the monomials of f have the
same tangible value at the point a, then f is called primary in a.

Lemma 7.10. Let f be primary in a. Then f is of the form f = c
∑

[bI ]0aIλ
I where

I = (i1, ..., in) ∈ (N∪{0})n, a = (a1, ..., an), aI = a−i11 ···a−inn , bI ∈ L, bI 6= 0, λI = λi11 ···λinn ,
and c is tangible.

Proof. First we let c be the tangible value of f(a). Let dλI be any monomial of f . Then it is
quasi-essential or essential at a. Thus the tangible value of dai11 · · · ainn must be c. Therefore,
d = [bI ]0a−i11 · · · a−inn c where bI is the layer of d. bI 6= 0 since otherwise the monomial could
not be quasi-essential.

Definition 7.11. The essential part of a general polynomial f =
∑

i∈I hi at a point a is the
polynomial

fa =
∑
k∈K

hk

such that k ∈ K ⊆ I if and only if hk is not inessential at a.

It is fairly clear that the essential part at a is always primary at a.

8 The Expanded Structure

We wish to obtain a basic algebraic result - unique factorization - for polynomials over the
ELT structure. In their paper (ref. [8]), Izhakian and Rowen showed that unique factor-
ization fails in their original supertropical structure even when considering polynomials as
functions.

As we explained in the introduction, we try to expand the structure of L. First we con-
sider L = N with the usual operations. Considering R[λ], the polynomials in one variable
over this structure, we wish to know if there is unique factorization. A rather simple coun-
terexample arises which we will explore.

We would hope generally that a polynomial would factor according to the variety of its
roots; for each of the connected parts there would be one factor (not necessarily irreducible).
In the one variable case, each such part is a single point.
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Now we are ready to study the following polynomial over the supertropical algebra:

f = λ2 + [2]1λ+ [1]0.

In this example, the roots are λ = 1 and λ = −1. We expect that the above polynomial
will factor into (λ+ [2]1)([2]1λ+ 0), since these are the roots with the correct layers. We are
rather close but not exactly there, as we get

(λ+[2]1)([2]1λ+0) = [2]1λ2+0λ+[2]1[2]1λ+[2]1 = [2]1λ2+[2]1λ+[2]1 = [2]1(λ2+[2]1λ+0) = [2]1f.

The polynomial f is irreducible and also (λ + [2]1) and ([2]1λ + 0) are irreducible, which
contradicts unique factorization of g = [2]1f = (λ+ [2]1)([2]1λ+ 0).

However, these factorizations are not inherently different. The main problem is the lack
of an inverse for the layer. If we add fractional positive layers, i.e. take L = Q+, the unique
factorization of the polynomial will be

[1/2](−1)(λ+ [2]1)([2]1λ+ 0) = (λ+ [2]1)(λ+ [1/2](−1)).

9 Positive Rational Layers

For this section we fix L = Q+.

9.1 Monomial equality

We will show that polynomials which are equal as functions must consist of the same mono-
mials (other than the inessential ones). Moreover, we will see that given enough points of
equality, two polynomials are equal everywhere.

Lemma 9.1. Let k > l ∈ N and a, b ∈ R. The polynomial f = aλk + bλl has a corner root
x ∈ R. For any substitution λ < x, the second monomial is essential and for any substitution
λ > x, the first monomial is essential.

Proof. A tangible point x is a corner root if t(axk) = t(bxl), and therefore t(xk−l) = t(ba−1).
Given our assumptions, such a corner root exists. If y > x then t(yk−l) > t(xk−l) = t(ba−1)
and therefore ayk > byl; similarly if y < x then ayk < byl. We see that the corner root is like
a scale; on one side one monomial is essential and on the other side the second monomial is
essential. This is the piecewise linear behavior of supertropical algebras.

Corollary 9.2. Given a polynomial in one variable

f = ar1λ
r1 + ...+ arnλ

rn

such that r1 > r2 > ... > rn, n > 2 and ari 6= −∞, then f has a finite set of corner roots

xk > xk−1 > ... > x1, k > 0.
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The monomials ar1λ
r1 + ar2λ

r2 + ...+ ariλ
ri are quasi-essential at xk for some i > 0. The

monomial ar1λ
r1 is essential at λ > xk, the monomial ariλ

ri is essential at xk > λ > xk−1,
and the monomials between them are inessential at λ 6= xk.

The monomials ariλ
ri + ... + arjλ

rj are quasi-essential at xk−1 for some j > i. The
rightmost monomial is essential at xk−1 > λ > xk−2, and the monomial between it and the
leftmost monomial are inessential at λ 6= xk−1.

This continues until the rightmost monomial is arnλ
rn which is essential at λ < x1.

Lemma 9.3. If f =
∑
hk is a multivariate polynomial with a non-empty set of corner roots,

then for all i, hi is quasi-essential on at least one corner root of f .

Proof. Recall that hi is not inessential. Therefore, let c be a point so that hi is essential or
quasi-essential at c. If c is a corner root we are done, so we assume that it is not.

The monomial hi is in several variables and is not inessential at some point c = (c1, ..., cn).
Consider f as a polynomial of one variable by fixing all of the variables other than λj at c
(we specialize λr = cr). There is only a finite number of monomials, and so there is only a
finite number of corner roots between hi and any other monomial hn of f ; we denote them
as xk. First, assume that {xk} is not an empty set. Tangibles are from an ordered monoid.
Thus we can sort these corner roots along with the point c by size. Considering the fact
that hi is quasi-essential at c, we take the closest corner root in the array after which hi is
inessential to be xs. Since this corner root is the closest to c, hi and hs are quasi-essential
at xs, for otherwise there is another monomial hw bigger than hi but then xw is between c
and xs which is false. We obtained xs as a corner root on which hi is quasi-essential.

However, if the set of corner roots {xk} is empty we choose a variable other then j. If
the corner roots sets are empty for all variables, it follows that the polynomial has no corner
roots altogether, which is absurd. Indeed, if f has any corner root, it must have at least one
monomial which differs in at least one variable power from hi. Leaving this variable free we
obtain a non empty set of roots.

We will prove that given s(f([x]a)) for all x, one can know all of the monomials that are
quasi-essential at a. As a consequence, one can know all of the monomials of a polynomial f ,
due to the lemma above that assures us that each monomial is at least quasi-essential at
some corner root.

Lemma 9.4. Let f be a univariate polynomial, and let g be the polynomial which contains
all of the monomials of f which are not inessential at some given point a. Then g is of the
form g = ca

∑n
k=0

[bk]0λkan−k, where ca is tangible.

Proof. Clearly, all of the monomials of g have the same tangible value at a. Let n be the
degree of g, and define ca = t(g(a))a−n. Let h be a monomial of g of degree k. Then
caa

n = t(g(a)) = t(h(a)) = bak. Therefore t(b) = caa
n−k, as desired.
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Lemma 9.5. If f and g are two polynomials in one variable (with non-empty corner root
sets), then f and g are root-equivalent and are equal at one point ⇐⇒ f and g have the
same monomials ⇐⇒ f = g everywhere.

Proof. Fix a tangible corner root a and look at the sum of all non-inessential monomials
at a;

ca

n∑
k=0

[bk]0λkan−k.

Next we look at the root at layer i: f([i]a) = ca
∑n

k=0
[bk·ik]an. Now its layer

s(f([i]a)) = s(ca

n∑
k=0

[bk·ik]an) =
n∑
k=0

bki
k

(we include the layer of ca into the bk’s, and therefore s(ca) = 1). This equation holds for
all i ∈ N. A similar argument for g yields s(g([i]a)) =

∑
dki

k, with ea as the constant. Our
goal is to show that bk = dk and that ca=ea. This will prove that f and g have the same
monomials, and the rest of the proof is trivial.

Next let us prove that bk = dk. We take a number m ∈ N so that mbk and mck are in N
for all k (this is the lcm of all of the denominators). Now take i to be maxk(mbk,mdk) + 1.∑
mbki

k is written to the base i, but this form is unique. Recalling f([i]a) = g([i]a), we use
the same argument for g to obtain mbk = mdk and finally bk = dk.

We will now show that given the constant ca of a root a, all of the other constants are
known. Let {ai}ri=1 be the sorted set of roots of f (and g). Fix a root ai and assume
cai is known. Between two consecutive roots ak and ak+1, there is one essential monomial
(otherwise there would be another root between them). Clearly, this essential monomial is
quasi-essential at the roots also. Therefore there is a monomial of the form cai

[bk]0λkan−ki

and also of the form cai+1
[bk]0λkan−ki+1 . We conclude that caia

n−k
i = cai+1

an−ki+1 and therefore we
can calculate cai+1

from cai , ai and ai+1. This argument works in the other direction as well,
and thus all of {cai}

r
i=1 are known.

Finally, since f and g are equal at some point, they have equal constants ca = ea for
some a. The rest of the constants are equal since they are calculated from this constant and
the other roots (which are equal for f and g). We obtained the desired result: if f and g are
root-equivalent and are equal at some point, then they have exactly the same monomials,
and therefore are equal everywhere. If they are equal everywhere, then clearly they are equal
at some point and root-equivalent.

We will now prove this monomial equality for several variables using an induction whose
base is the above lemma. In several variables, the corner roots are much more complex and
interesting as we will see later in this thesis. First we prove a simple lemma which helps us
show that any point of equality between two root-equivalent polynomials means equality at
every point.
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Lemma 9.6. Let f =
∑
hi be a polynomial in n variables with a non-empty set of corner

roots, and let c = (c1, ..., cn) be any point. Then there is a variable λi, and a corner root a
such that a = (x1, ..., xi−1, ci, xi+1, ...xn).

Proof. Having a corner root set is equivalent to f having at least two monomials, as we have
seen when proving monomial equality. These two monomials must differ at the power of
at least one variable, call it λj. Now fix any λi = ci such that i 6= j. Clearly we obtain
a polynomial with n − 1 variables and at least two different monomials. Therefore, this
polynomial has a corner root (x1, ..., xi−1, xi+1, ..., xn) and a above is a corner root of f as
desired.

Theorem 9.7. Let f and g be two polynomials with non-empty corner root sets, then f and
g are root-equivalent and are equal at one point ⇐⇒ f and g have the same monomials
⇐⇒ f = g everywhere.

Proof. Assume that f and g are root-equivalent and there exists a point c such that f(c) =
g(c) = x. By the lemma above there is a variable, call it λn, and a corner root a such that
a = (x1, ..., xn−1, cn).

At any given corner root the layers behave like classical polynomials. For example con-
sider f(λ) = [2]λ + [1]0 then f([x]0) = [2x+1]0. Since f equals g at every layer of the corner
root, their essential monomials at the corner root must be equal up to multiplication by a
constant. In view of the point of equality they are exactly equal.

Similarly to the proof of the above lemma, by choosing different variables and direction
we prove that f and g must consist of exactly the same monomials, and the rest of the proof
follows.

Corollary 9.8. If f and g are two polynomials with non-empty corner root sets such that f
and g are root-equivalent, then there is some constant c such that f = cg.

9.2 Primary polynomials

Lemma 9.9. Let f be a polynomial in one variable. Then there is a factorization of f into
primary polynomials of its roots, and a power of λ.

Proof. Take the highest m ∈ N such that λm divides each monomial in f . After we factor
out λm, the constant monomial is essential. We call the new polynomial f1, and order the
root set {ai}mi=1 where a1 < a2 < ... < am. The essential part at a1 is primary in a1. Let j
be the highest power of λ in this primary polynomial, and let cj be the coefficient of λj. We
normalize by multiplying by c−1j , and call this primary polynomial g1.

Now take the essential part at a2. The highest power of λ of a monomial in g1 is the
smallest power here. Therefore by factoring out λj where j = deg(g1) of the essentials above,
we get a primary polynomial g2 in a2. Let us look at g1g2 as a polynomial. First, it has
the roots a1 and a2. Also, when a < a2, g2(a) = bn. Therefore, g1g2 and f1 have the same
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layers at images of all layers of a1. When a > a1, the essential monomial of g1 at a is λj and
therefore f(a2) = g2(a2)g1(a2). Thus g1g2 has the same layers as f1 for a2 as well.

We normalize g2g1 and continue to get g3 as before. g3(a) for a < a3 is exactly the
constant we normalized g2g1 with, and therefore g3g2g1 has the same layers on a1, a2 and
a3. We continue this process and obtain that f1 = gngn−1...g1 due to Theorem 9.7, and thus
f = λmgngn−1...g1, as desired.

Example 9.10. We will now factor a polynomial into primary polynomials. Consider

f = 4λ5 + 5λ4 + 6λ3 + 6λ2.

First we factor λ2 and are left with

f1 = 4λ3 + 5λ2 + 6λ+ 6.

The root set here is {a1 = 0, a2 = 1}. The essential monomials in a1 are 6λ + 6. We
normalize by −6 and obtain g1 = λ+ 0. The essential monomials in a2 are 4λ3 + 5λ2 + 6λ.
We factor by λj = λ1 and obtain g2 = 4λ2 + 5λ+ 6. g1(a)g2(a) = g1(a) · 6 = 6a+ 6 = f1(a)
for a < a2 = 1, specifically f1(a1) = g1(a1)g2(a1). When a > a1 then g1(a) = a; therefore
g1(a)g2(a) = a·g2(a) = f1(a), specifically f1(a2) = g1(a2)g2(a2). In this case, the factorization
process ends here, and

f = λ2g1g2 = λ2(λ+ 0)(4λ2 + 5λ+ 6).

9.3 Unique factorization

Theorem 9.11. Let f be a univariate polynomial. Then f factors uniquely into polynomials
which are primary at the corner roots, possibly including λm for some m ∈ N (up to multi-
plication by constants).

Proof. By the above lemma we know that such a factorization exists. Suppose that there
are two different factorizations of f , called h1 and h2. Take the smallest corner root a. Let
g be a primary polynomial in a root bigger than a. Then c := g(a) is the constant of g.
Now g([i]a) = c for all i, since a is smaller than the corner root of g. Thus, both h1 and h2
have the same layers at the primary in a up to a constant (since the other primaries yield
constants in a). Thus the primaries in a of both h1 and h2 are equal up to multiplication by
a constant. We factor out the primaries in a, and continue this process to see that all the
primaries are equal up to a multiplication by constants.

Now the natural question is whether or not a primary polynomial factors uniquely into
irreducibles. Define Pa to be the set of polynomials of the form f =

∑n
k=0

[bk]0λkan−k, and
the function ψ : Pa → Q+[λ] defined by ψ(f) =

∑n
k=0 s(bk)x

k. Q+ is the set of positive
rational numbers.
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Lemma 9.12. Let f and g be primary polynomials in a. Then ψ(f + g) = ψ(f) + ψ(g)
and ψ(fg) = ψ(f)ψ(g). Moreover, ψ is an isomorphism up to multiplication by a tangible
constant in Pa.

Proof. Let f be of the form f =
∑n

i=0 aiλ
i and g =

∑m
j=0 ajλ

j. Assume n ≥ m; then

f + g =
m∑
k=0

(ak + bk)λ
k +

n∑
k=m+1

(ak)λ
k.

Therefore,

ψ(f + g) =
m∑
k=0

(s(ak + bk))x
k +

n∑
k=m+1

(ak)λ
k =

m∑
k=0

(s(ak) + s(bk))x
k +

n∑
k=m+1

(s(ak))λ
k =

=
n∑
k=0

s(ak)x
k +

m∑
k=0

s(bk)x
k = ψ(f) + ψ(g).

Now for multiplication,

fg =

i=n,j=m∑
i,j=1

(ai + bj)λ
i+j.

ψ(fg) =

i=n,j=m∑
i,j=1

(s(ai + bj))x
i+j =

i=n,j=m∑
i,j=1

(s(ai) + s(bj))x
i+j = ψ(f)ψ(g).

Next, ψ is clearly onto, and in order to prove it is also an isomorphism we must verify it
is injective. Assume ψ(f) = ψ(g),

∑n
k=0 s(bk)x

k =
∑n

k=0 s(ak)x
k. We see that ∀k, s(ak) =

s(bk). Since both f and g are primary in a, the tangible values of ak, bk are fixed up to a
multiplication by a tangible constant c, and so we get f = cg.

Corollary 9.13. We have unique factorization for primary polynomials iff there is unique
factorization in Q+[λ].

Unfortunately, unique factorization fails in polynomials over the positive rational numbers
(or even the positive real numbers). Take the following example:

x6+2x5+3x4+2x3+3x2+2x+2 = (x4+x2+1)(x2+2x+2) = (x2+x+1)(x4+x3+x2+2).

In order to verify that these polynomials are irreducible, we will look at the complete fac-
torization over R:

x6 + 2x5 + 3x4 + 2x3 + 3x2 + 2x+ 2 = (x2 + x+ 1)(x2 − x+ 1)(x2 + 2x+ 2).

One can easily see that the above factorizations are obtained by combining the left pair
of polynomials [(x2 + x + 1)(x2 − x + 1)] or the right one [(x2 − x + 1)(x2 + 2x + 2)]. It
is immediate that primary polynomials do not factor uniquely in this structure. (I thank
Professor Uzi Vishne for his elegant counterexample.)
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10 Full Rational Layer

We have seen that unique factorization fails for primary polynomials, due to the lack of
negative layers. Unlike positive layers, negative layers first arise in light of the factorization
problem. We will see that this expansion will be interesting in itself, and will solve our
factorization problem.

From now on, we fix L = Q.

10.1 Layer zero elements

One should introduce a new layer – zero, which changes the rules. Consider the primary
polynomial λ2 + 2λ + 4; here 2λ is quasi-essential. However, if we change the polynomial
slightly into λ2 + [0]2λ + 4, we turn the middle monomial into an inessential one. This is
true since this monomial does not change the size of the polynomial at any point, but it also
does not change the layer because it contributes zero. These layer zero monomials will be
the only exception to unique factorization in one variable.

For example, let us look at the following polynomial:

f = [0]0(λ2 + 1λ+ 0).

f is equal to [0]0(λ + [y]1)(λ + [x](−1)) for any x, y ∈ Q. Unfortunately, this is not the
only type of counterexample to unique factorization. However, the only counterexamples to
unique factorization involve layer zero monomials which do not factor polynomials without
zero layer monomials, as we will see in the next subsections.

10.2 Monomial equality

First we must obtain the same monomial equality result that we have seen only for positive
layers. We wish to prove that if two polynomials are equal as functions, they have the same
essential and quasi-essential monomials.

We notice that root-equivalence is weaker than monomial equivalence in this structure.
Consider the polynomials f = 2λ4 + [0]3λ3 + 0, g = λ4 + [0]2λ2 + 0. Both f and g have corner
roots 1 and −1. Also ∀i, f([i](−1)) = g([i](−1)) = 0 and s(f([i]1)) = s(g([i]1)) = i4. Therefore
f and g are root-equivalent, but clearly not equal. We need to capture the monomials with
layer zero coefficients which are lost on corner roots because they are inessential there. We
capture these monomials by looking at the slopes of the polynomial as well.

Lemma 10.1. Let p1 and p2 be two primary polynomials in a. Assume that ∀` ∈ Q, s(p1([`]a)) =
s(p2(

[`]a)), and assume that p1 and p2 have no monomials with layer zero coefficients. Then
p1=cp2 for some constant c.
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Proof. Assume that deg(p1) ≥ deg(p2). Now choose a polynomial p with high layer coef-
ficients so that p1 + p and cp2 + p are both primary polynomials in a with positive layer
coefficients (c is a constant). Also we choose p so that it does not have any monomials
in which both p1 and cp2 are missing. Due to our results in the positive layer section, we
know that p1 + p = cp2 + p. Now since p1 and p2 do not have layer zero monomials, we
can remove p from the equations by adding [−1]0p: p1 + p + [−1]0p is p1 with the addition
of layer zero monomials; assume h is such a monomial. Since p1 does not have monomials
of layer zero h cannot be a monomial of p1, and therefore it must be a monomial of p.
cp2 + p+ [−1]0p = p1 + p+ [−1]0p so h must not be a monomial of either p1 nor p2 implying
h is in p which is absurd. We conclude that p1 + p+ [−1]0p has no layer zero monomials and
is equal to p1, and cp2 + p+ [−1]0p = cp2 so p1 = cp2.

Lemma 10.2. Let x, y be two tangibles, and r, t ∈ R. Then there is no more than one
monomial aλk such that axk = r and ayk = t.

Proof. This is a case of two linear equations in two variables. a = (x−1)kr since axk = r and
therefore (x−1)kryk = t. Due to our assumptions, there is only one k such that (x−1y)k =
r−1t. Then a = r(x−1)k.

Since the layer zero is not our main interest and it turns out to be a counterexample
to unique factorization, we will prove an easier theorem for monomial equality. Instead of
building an exact description of the minimal amount of data we need in order to reconstruct
the polynomial, we assume that we have all the data.

Theorem 10.3. For any two polynomials f and g, f and g have the same monomials if and
only if f = g everywhere.

Proof. Assume f = g everywhere. We already know that each monomial with layer different
from zero must be quasi-essential at some point. As we have seen, this monomial has to be
in the polynomial (both in f and g).

Assume that h is a monomial with layer zero. Then h must be essential at some point
a = (a1, ...an). As we have seen, when all variables are specialized to a except for λi, then
h is a monomial in one variable which is essential at least between x < ai < y for some
x, y. Due to our assumptions there are at least two points x′, y′ such that x < x′ < y′ < y
and the monomial is essential at x′ and y′. Thus h(x′) = f(x′) and h(y′) = f(y′), and as a
consequence of the above lemma, h is known. Therefore we know the exponent of λi. We can
calculate the exponent of all the variables this way, and then the coefficient is given because
we know h(a) = f(a).

In conclusion, any monomial of f or g is uniquely determined by the polynomial as a
function, as desired. The other direction is trivial.
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10.3 Regular polynomials

We will describe the multiplication process of polynomials, since it differs from classic mul-
tiplication and is essential to our paper. Even though multiplication is distributive, some
monomials of the product are inessential and therefore deleted, since we view polynomial as
functions. The multiplication is well defined due to theorem 10.3.

Example 10.4. Consider the two polynomials f = (−2)λ2 +λ+ 1, g = (−5)λ3 + (−1)λ+ 0.
Both f and g have corner roots 1 and 2. Thus f · g =

= ((−2)λ2)((−5)λ3 − 1λ) + λ((−5)λ3 + (−1)λ+ 0) + 1((−1)λ+ 0) =

= (−7)λ5 + (−5)λ4 + (−3)λ3 + (−1)λ2 + [2]0λ+ 1.

Whereas (−7)λ5 is essential at λ > 2, (−7)λ5 +(−5)λ4 +(−3)λ3 +(−1)λ2 are quasi-essential
at λ = 2, (−1)λ2 is essential at 1 < λ < 2, (−1)λ2 + [2]0λ + 1 are quasi-essential at λ = 1,
and 1 is essential at λ < 1.

Definition 10.5. A polynomial f =
∑

[`I ]aIλ
I ∈ R[λ1, ..., λn] is called regular if `I 6= 0 for

all I.

We wish to prove that regular polynomials have unique factorization. In order to give
this result more meaning, we would also like to prove that the product of two regular poly-
nomials is also regular.

Lemma 10.6. Let g and h be polynomials. A monomial of f = gh is essential at a ⇐⇒
it is a product of an essential monomial of g at a and an essential monomial of h at a.

Proof. A monomial of f is the sum of products of monomials from g and monomials from h.
For example, g = λ+ 0, h = λ+ [2]0, f = gh = λ2 + λ(3) + [2]0. The middle monomial λ(3) is
the sum of λ · [2]0 + 0 · λ.

Assume that u is an essential monomial of f at point a, then u = g1h1 + ... + gkhk. If
for any i gi of hi are inessential then u is inessential, thus at a for all of the monomials gi, hi
are quasi-essential. Therefore gihj is also quasi-essential at a for every 1 ≤ i, j ≤ k. Assume
k > 1, the monomials g1h1 and g1h2 must have different powers of the variables otherwise h1
and h2 have the same powers which is absurd. We obtained two different monomials which are
quasi-essential at a which contradicts the assumption that u is essential at a, and thus k = 1.

As a consequence of the contradiction, any essential monomial of f is a product of an
essential monomial of g and an essential monomial of h as desired.

In the other direction, assume u is a monomial of f which is the product of monomials of
g and h which are essential at a, u = g1h1. Clearly u is essential at a as any other product
of two monomials gihj is inessential at a due to gi, hj or both.
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Corollary 10.7. Let f = gh be a factorization of a polynomial f . Then f is regular ⇐⇒
g and h are regular.

Proof. Any monomial of layer zero which is not essential at a certain point must be inessen-
tial at that point. Thus in order for a polynomial to be regular, all of its essential monomials
must be of layer different from zero.

A product of monomials fi = gjhk is an essential monomial of f at a ⇐⇒ gj and hk are
essential at a due to the corollary above. The layer of fi is the product of the layers of gj
and hk, Thus the layer of fi is zero ⇐⇒ the layer of either gj or hk is zero.

Therefore f is regular ⇐⇒ all monomials of f are of layer other than zero ⇐⇒ all of
the monomials of g and h are with layer different than zero ⇐⇒ g and h are regular.

10.4 Factorization

Definition 10.8. Given an essential monomial h of a polynomial f , the largest corner root
of f at which h is quasi-essential is called the big root of h and the smallest corner root is
called the small root of h. Note that h may have one corner root which is both the big root
and small root of h.

Example 10.9. Consider polynomial

f = λ2 + λ+ [1/4]0.

The only corner root of f is[−1/2]0. Thus it is both the big root and small root of every
monomial.

Lemma 10.10. Let f be a polynomial with a constant term, and let h be an essential mono-
mial of f so that s(h) 6= 0, and the big root and small root of h are distinct. Then f factors
uniquely, up to multiplication by a constant into f = g1g2, so that g1 contains all of the
corner roots greater or equal to the big root of h, and g2 contains all of the corner roots less
than or equal to its small root. Also any irreducible factor of f divides either g1 or g2.

Proof. Let f =
∑n

i=1 ciλ
i and h = ckλ

k for some k. Define g2 =
∑k

i=1 ciλ
i, and g1 =

c−1k
∑n

i=k ciλ
i−k (here we use the fact that s(h) 6= 0). Multiplication is very easy since

the corner roots of g1 are bigger than those of g2. When a point has value smaller or
equal to the small root of h, then in g1 the essential monomial is 0. Therefore 0 · g2
are essential and quasi-essential monomials of g1g2. When a point has value greater than
the small root of h, the only essential monomial of g2 is ckλ

k. Multiplying by g1 we get
ckλ

kg1 = ckλ
kc−1k

∑n
i=k ciλ

i−k =
∑n

i=k ciλ
i. Together we get g1g2 = f .
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Now, assume that there is another factorization f = u1u2 with the same properties.
Since f has a constant term, then so must u1 and u2. The constant of u1 multiplied by u2
must equal monomials of f which are essential and quasi-essential at the corner roots of u2
and g2, as before. So g2 = cu2 for some constant c. By a similar argument, dλku1 are the
remaining monomials of f for some constant d, and so the factorization f = g1g2 is unique
up to multiplication by constants.

Let f = J1J2...Jl be a factorization of f into irreducible factors. We will show that each
Ji has corner roots which are all larger than the big root of h or all smaller than the small
one. Otherwise, there is a factor J = Ji that has a corner root bigger than the big root of
h and a corner root smaller than the small root of h. The polynomial J is irreducible, and
so from the first part of the theorem we have already proved, the essential monomials which
are not at the edges must have layer zero coefficient (or J would factor further). Therefore
between the big and small roots of h, the essential monomial of J is of layer zero, and so the
essential monomial at this point of f is of layer zero which is absurd.

10.5 Primary polynomials

We have expanded the layer structure further in order to solve the problem of unique fac-
torization of primary polynomials. Next we will verify that this property indeed holds.

Recall that the function ψ : Pa → Q[x], where Pa is the semiring of primary polynomials
in a and

ψ(f) =
n∑
k=0

s(bk)x
k

for f =
∑n

k=0 bkλ
k. We will use ψ here to prove unique factorization for primary polynomials.

In the case of positive layers, ψ is an isomorphism. In this structure, we have for ex-
ample ψ([0]λ + 0) = 1 = ψ([0]λ2 + 0), so ψ is not an isomorphism. Fortunately, it is still a
homomorphism, since this part of the proof is not affected by the existence of layer zero.

Lemma 10.11. Let f and g be primary univariate polynomials without monomials of layer
zero. Then ψ(f) = ψ(g) ⇐⇒ f = cg for some tangible constant c .

Proof. The proof is similar to the positive layer case. Knowing that f and g has no layer
zero monomials leaves only one choice up to a tangible constant for ψ−1(ψ(f)).

It is important to note that primary polynomials cannot have layer zero monomials other
than the leading monomial and the constant. The reason is that a quasi-essential monomial
with layer zero is an inessential monomial and therefore is not part of the polynomial.

Theorem 10.12. Let f be a primary univariate polynomial (with L = Q). Then f factors
uniquely into irreducible factors (up to multiplication by a constant).
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Proof. Assume that f is a regular primary polynomial, and that it factors in two different
ways f = g1 · · · gn = h1 · · ·hm. Since f is regular, so are g1, ..., gn, h1, ..., hm. As a conse-
quence of the lemma, these factorizations are the same up to a multiplication by a constant.

Now we take f with a leading monomial of layer zero. f must be of the form f = [0]λn+g
for g with deg(f) > deg(g) and g with lead monomial of layer different than zero. First we
will show that f factors into

([0]λ+ a)n−deg(g)(−a)n−deg(g)g = ([0]λn−deg(g) + an−deg(g))(−a)n−deg(g)g = [0]λn + g = f.

Note that g has a leading monomial coefficient of size an−deg(g), and note that we strike out
any middle monomial with layer zero.

Take a factorization f = g1 · · · gk. At least one factor must have a layer zero lead-
ing monomial. We rearrange and rename the factors to obtain f = gh, where g has leading
monomial of layer zero and h does not. The polynomial f factors further to ([0]λ+a)l(−a)luh
where u has no leading monomial of layer zero, and neither does uh. Since the sum of the
lowest degree monomials of f equals to uh and also to g we have uh = g, and l = n−deg(g).
Thus any factorization of f is a sub-factorization of ([0]λ+ a))n−deg(g).

A similar argument applies to f with layer zero constant. f = gλk + [0]adeg(g)+k where g
has a constant term adeg(g)−k. We factor f ; f = g(λ + [0]a)k. Like the leading monomial of
layer zero argument, f factors uniquely into gλk + [0]adeg(g)+k.

In conclusion, a general primary polynomial f factors into f = ([0]λ + a)m(λ + [0]a)kg
where g has no layer zero monomials, and not a layer zero constant. It is easy to see that the
middle monomials of this product are amλkg, therefore g, k and m are determined uniquely
according to the middle monomials of f . We already know that such g factors uniquely, and
so every primary polynomial f factors uniquely into irreducible factors.

10.6 Main result

We are now ready to prove our main theorem.

Theorem 10.13. Any regular polynomial f factors uniquely into irreducible factors.

Proof. From previous sections we know that f factors uniquely into primary polynomials
around each essential monomial with layer different from zero. Thus a regular polynomial f
factors uniquely into primary polynomials at each of its corner roots. Moreover, we proved
that primary polynomials factor uniquely into irreducible factors. Thus f factors uniquely
into irreducible factors.

10.7 Non-regular polynomial factorization

Next we will discuss non-regular polynomials. We will first describe the basic irreducible
factors, then examine some counterexamples to unique factorization, and thereafter we will
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sum up the factorization process for a general polynomial.

10.7.1 Basic irreducible factors

Unlike the case of positive layers, here we have an irreducible polynomial that is not pri-
mary. Fortunately, this is the only form of an irreducible polynomial other than the primary
polynomials

λm + [0]0bλk + c. (1)

We list three properties of this form:

1. c must be of layer different from zero, or this polynomial will be reducible.

2. Not all polynomials of this form are irreducible.

3. We choose this polynomial not to be primary; thus it has two corner roots.

Lemma 10.14. Non primary polynomials of the form

λm + [0]bλ+ c

and
λk+1 + [0]bλk + c,

are irreducible.

Proof. Since a polynomial of this form has two corner roots, there are three types of poly-
nomials that can factor it: Primaries in the first corner root, primaries in the second corner
root, and polynomials with both of these roots. We will try all of these options to determine
when these polynomials are irreducible.

First, we will try to multiply two primary polynomials, one for each corner root. Since
the leading monomial and the constant do not have layer zero, the leading monomial and
constant of their factors also must not be of layer zero. Therefore any such primaries are
regular (since quasi-essential monomials of ghost layer zero are deleted). Clearly, this prod-
uct cannot yield a polynomial of the form 1 (since the product is regular as well).

Next, we try to multiply a primary polynomial in the small root, with a polynomial
having two corner roots. It is easier to look first at the essential monomials only, so we will
assume g and h have no monomials which are never essential. Define g = r+w, h = t+u+v
where r, w, t, u, v are monomials. Then gh = tr + ur + uw + rv + vw where uw and rv are
never essential. In order for the result to be of the desired form, s(uw) must be zero, and
s(r), s(w), s(t), s(v) must not be zero; therefore s(u) = 0. We remain with the monomial rv
which is never essential, and therefore we have failed to achieve the desired form.

We get a similar result by multiplying a primary in the big root together with a polyno-
mial with both corner roots. g = r+w, h = t+u+v, gh = tr+tw+ru+uw+vw with tw and
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ru never essential. We must have s(uw) = 0, s(w) 6= 0 ⇒ s(u) = 0, and s(r), s(t), s(v) 6= 0.
We again get a polynomial with a monomial which is never essential.

Now we multiply two polynomials both having two corner roots. g = r + y + t, h =
u + v + w, gh = ru + rv + uy + yv + bw + tv + tw with the essentials ru, yv, tw. We do
not want any monomials which are never essential, so we have s(rv), s(uy), s(yw), s(tv) = 0.
Clearly s(r), s(u) 6= 0, and so s(y), s(v) = 0. Finally we obtain gh = ru + yv + tw. This
is the only way a polynomial of the above form will factor, and when this factorization is
impossible then the polynomial is irreducible.

Since our g and h each have three monomials, then y and v must have degree at least 1
in λ. Thus f = gh = ru+ yv + tw must have deg(yv) ≥ 2, and any polynomial of the form

λm + [0]bλ+ c

which is not primary is irreducible. Moreover, since deg(r) > deg(y) and deg(u) > deg(v),
then deg(ru) ≥ deg(yv) + 2. Thus the second type of irreducible non-regular polynomials is

λk+1 + [0]bλk + c.

We will later see that these are the only examples of irreducible polynomials which are
not primary.

10.7.2 Counterexamples

We provide a few counterexamples to unique factorization for non-regular polynomials. We
will start with the trivial case, and finish with more complex cases.

We have already seen that a product of irreducible non-regular polynomials is a product
of pairs of matching monomials. Changing the layers of matching monomials, we can produce
different factorizations:

(λ2 + [0]1λ+ [1/3]0)(λ2 + [0]1λ+ [3]0) = (λ4 + [0]2λ2 + 0) = (λ2 + [0]1λ+ 0)2.

Next, we notice that layer zero coefficients eliminate quasi-essential monomials. We will
build an example with different quasi-essential monomials which disappear. We will multiply
an irreducible polynomial, with a primary polynomial at a corner root which is between the
big and small root of the irreducible one. We will first study the general case, and then bring
a concrete example.

Take g = a+ [0]b+c with big root a1 and small root a2, and take h = d+e+f primary at
a3 so that a1 > a3 > a2. Think of e as any number of quasi-essential monomials (including
none). Then f = gh = ad + [0]0(bd + be + bf) + cf where be is quasi-essential of layer zero
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and so is inessential.

A concrete example: g = (λ2 + [0]1λ + 0) with corner roots −1, 1, and a primary at
0: h = λ2 + λ + 0. Then f = gh = λ4 + [0]1λ3 + [0]01λ + 0. The monomial 1λ2 would be
quasi-essential at 0, but the layer zero makes it inessential. If instead h = λ2+0, the product
f = gh remains the same.

We have seen how to factor a non-regular polynomial with two corner roots. We will now
give an example of different ways to factor the same polynomial.

Example 10.15. Take f = (−2)λ6 + [0]λ4 + 0 with corner roots 1 and 0. Then

f = ((−1)λ3 + [0]λ2 + 0)2

but also
f = ((−1)λ2 + [0]λ+ 0)((−1)λ4 + [0]λ3 + 0).

So far we have seen various examples of non-unique factorizations of polynomials with
the same corner roots. Now we will show an example of factorization into polynomials with
different corner roots.

Example 10.16.
f = 1λ8 + [0]4λ5 + [0]4λ4 + 0.

This polynomial has corner roots {−1, 0, 1}. We factor it into two factors, the first with
corner roots {−1, 1} and the second with corner roots either {−1, 0} or {0, 1}.

f = (λ6 + [0]3λ3 + 0)(1λ2 + [0]1λ+ 0)

f = (2λ6 + [0]4λ4 + 0)((−1)λ2 + [0]λ+ 0).

These polynomial are not all irreducible, but they factor into polynomials having the same
corner roots, which differ in the two cases.

10.8 Irreducible polynomials

We have introduced the basic irreducible polynomial, but we have yet to prove that it is the
only non-regular irreducible polynomial. We will answer this question now.

Theorem 10.17. The only irreducible non-primary polynomials are the basic irreducible
polynomials.

Proof. As we have seen before, any polynomial with a middle essential monomial with layer
different from zero is reducible. Therefore we are only interested in polynomials which are
not primary, having middle essential monomials of layer zero.
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We start with the case of a polynomial with more than one corner root (since it is not
primary) with quasi-essential monomials of layer different from zero at some corner root a.
The polynomial is of the form f = anλ

n+ ...+ [0]akλ
k+amλ

m+ ...+a0, where [0]0akλ
k+amλ

m

have the same tangible value at a. We claim that

f = (amλ
m + ...+ a0)a

−1
m (anλ

n−m + ...+ [0]akλ
k−m + am).

It is easy to see that the corner roots of the left polynomial are the corner roots of f which
are less than or equal to a, and the right polynomial has all of the corner roots of f which
are larger or equal to a. When λ > a, the essential part is

(amλ
m)a−1m (anλ

n−m + ...+ [0]akλ
k−m) = anλ

n + ...+ [0]akλ
k.

When λ ≤ a the essential part is

(amλ
m + ...+ a0)a

−1
m (am) = amλ

m + ...+ a0.

(Note that the quasi-essential monomials at a multiplied by layer zero are inessential.) Thus
we have proved that f factors into the above polynomials.

We are left with the case of polynomials with three or more corner roots and only essential
monomials:

f = g + b1λ
m1 + b2λ

m2 + b3λ
m3 + b4,

where g = λm1+1g′ for some polynomial g′. Let an > an−1 > ... > a1 be the corner roots of
f , n ≥ 3. We claim that

f = (b−12 b3λ
m3−m2(g + b1λ

m1) + b3λ
m3 + b4)(b2b

−1
3 λm2−m3 + 0).

The corner root of the second polynomial is a2. Indeed, if t(b2x
m2) = t(b3x

m3) then
t(b2b

−1
3 xm2−m3) = 0. It is easy to verify that the corner roots of the right polynomial are

an, an−1, ..., a3, a1. The only non-trivial case is of a3:

b−12 b3λ
m3−m2b1λ

m1 + b3λ
m3 = b3λ

m3(b−12 b1λ
m1−m2 + 0).

Therefore the product indeed equals f .
Note that this holds for polynomials with leading monomial and/or constant of layer

zero.

10.9 Summary of the factorization process

In this section we describe the factorization process for a general polynomial, and then give
an example.

The first step is partitioning the polynomial around its essential middle monomials of
layer different from zero. Afterwards, we factor the polynomial until we get to an irreducible
factor, or to a primary polynomial. We factor the primary polynomials so they do not have
layer zero leading monomials or constants. Finally, we factor the regular primary part in the
same way polynomials factor over Q.
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10.9.1 Example

Consider the polynomial:

f = [0](−10)λ10 + (−4)λ8 + (−1)λ7 + [0]3λ5 + 5λ3 + [−1]5.

First we see that λ = 0 is the smallest corner root since it is the solution of the equation
5λ3 + [−1]5. 5λ3 is the essential monomial with two distinct big and small roots, and thus f
factors into

f = ([0](−15)λ7 + (−9)λ5 + (−6)λ4 + [0](−2)λ2 + 0)(5λ3 + [−1]5) =

= (−10)([0]λ7 + 6λ5 + 9λ4 + [0]13λ2 + 15)(λ3 + [−1]0).

Now the smallest corner root of [0]λ7 + 6λ5 + 9λ4 + [0]13λ2 + 15 is λ = 1. The next
essential monomial is [0]13λ2, which has layer zero and therefore we will factor it later to
basic irreducible factors. The next corner root is λ = 2, and the essential monomial is 9λ4.
Therefore f factors further into

f = (−10)([−1](−9)λ3 + (−3)λ+ 0)(9λ4 + [0]13λ2 + 15)(λ3 + [−1]0) =

= (−10)([0]λ3 + 6λ+ 9)(λ4 + [0]4λ2 + 6)(λ3 + [−1]0).

We obtained three factors – primary at 3, the basic irreducible factor at 2 and 1, and a
primary at 0. We further factor each of these polynomials:

[0]λ3 + 6λ+ 9 = ([0]λ+ 3)2(λ+ 3)

λ4 + [0]4λ2 + 6 = (λ2 + [0]2λ+ 3)2

λ3 + [−1]0 = (λ+ [−1]0)(λ2 + λ+ 0).

Thus:
f = (−10)([0]λ+ 3)2(λ+ 3)(λ2 + [0]2λ+ 3)2(λ+ [−1]0)(λ2 + λ+ 0).

11 Several Variables

11.1 Unique factorization of primary polynomials

Since changing the layer of the primary point a does not change its being a primary point,
we will assume from now on that the primary point is tangible.

Theorem 11.1. Let f be a regular primary polynomial at a. Then f factors uniquely into
irreducible factors.

31



Proof. The key to this proof is to build a homomorphism between primary polynomials at
a given point and polynomials over Q. First we need to verify that a primary polynomial
factors into primary polynomials. Let g and h be polynomials so that f = gh. Assume g
has a monomial u which is inessential at a, and let v be any monomial of h. Then uv is
inessential at a. However, u must not be inessential so us must be at least quasi-essential for
some s in h. Thus us is a monomial of f which is not quasi-essential at a, which contradicts
the definition of a primary polynomial.

We define Pa to be the set of regular polynomials f which are primary in a and for
which the tangible value of f(a) is 0. The latter means that the constant c in the form
f = c

∑
[bI ]0aIλ

I is 0. We will show that Pa is closed under multiplication, and also under
factorization.

Assume g, h ∈ Pa. Clearly, any monomial u of f = gh is the sum of products u =
g1h1 + ... + gkhk where gi are monomials of g, and hi are monomials of h. Since g and h
are primary in a and their tangible value is 0, the tangible value of u(a) is also 0. Due to
Corollary 10.7, f is regular. Thus f is primary in a and the tangible value of f(a) is 0, and
in other words f ∈ Pa.

Assume f ∈ Pa, and assume f factor into f = gh. Due to Corollary 10.7, g and h are
regular. Assume g has a monomial u which is inessential at a. u must not be completely
inessential, so u must be at least quasi-essential for some point b. Let s be a monomial
which is not inessential in h at b. Thus us is a monomial of f which is not inessential at b.
However, since u in inessential at a then us is inessential at a; thus us is a monomial of f
which is not quasi-essential at a, and that is absurd. Therefore both g and h are primary
at a. The tangible value of f(a) is 0, so the product of the tangible values of g(a)h(a) must
be 0 as well. Assume that the tangible value of g(a) is c; then f = gh = c−1cgh = c−1gch.
The tangible value of c−1g(a) is clearly 0, and since the tangible value of f is 0 then so is
the tangible value of ch(a). Thus c−1g, ch ∈ Pa.

Define ψ : Pa → Q[x1, ..., xn], by sending f =
∑

[bI ]0aIλ
I to ψ(f) =

∑
bIx

I .

We wish to prove that ψ(fg) = ψ(f)ψ(g). For all f, g ∈ Pa we know we can write the poly-
nomials in the form f =

∑
[bI ]0aIλ

I and g =
∑

[dI ]0aIλ
I . We also know that the product fg

is also in Pa, and thus fg =
∑

[eI ]0aIλ
I . Define eI to be the sum of products of the form bJdK

such that J+K = I. If eI = 0 then we already proved that the monomial [0]0aIλ
I is inessen-

tial and should be deleted. ψ(fg) =
∑
eIx

I . Now, ψ(f)ψ(g) = (
∑
bIx

I)(
∑
dIx

I) =
∑
eIx

I ,
as desired.

Having seen that ψ is an homomorphism, we now prove it is an isomorphism. Clearly ψ
is onto, and we will prove it is also injective. Assume ψ(f) = ψ(g) =

∑
bIx

I . Then f and g
both must equal

∑
[bI ]0aIλ

I . Note that this is mainly due to the fact that f and g are regular.

Since ψ is a multiplicative isomorphism, and since Q[x1, ..., xn] has unique factorization,
Pa has unique factorization as well. Now, let f be any primary polynomial at a. If c is
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the tangible value of f(a), then c−1f ∈ Pa; c−1f factors uniquely up to multiplication by a
constant and clearly so does f as desired.

Example 11.2. λ21 + λ1λ2 + λ22 is irreducible, like x2 + xy + y2. However,

λ21 + [2]λ1λ2 + λ22 = (λ1 + λ2)
2,

as x2 + 2xy + y2 = (x+ y)2.

11.2 Non-primary polynomials

Primary polynomials play an important role in our theory. Recall that the essential part at
a certain point is a primary polynomial. Thus, at any corner root, the essential part factors
uniquely as a polynomial. One might think this will lead to a proof of unique factorization
of general polynomials. However this idea fails, as we will now show.

Let us focus on polynomials in two variables. The corner root set consists of line seg-
ments, and the points where these segments intersect. As we have seen, the monomials which
are quasi-essential on the line segment are quasi-essential at the intersection.

Assume that the quasi-essential monomials at point a factor into h1h2, at point b the
quasi-essential monomials factor into g1g2 and at the line segment between a, b the quasi-
essential monomials factor into r1r2. Clearly, r1r2 are obtained by deleting inessential mono-
mials from h1h2 and g1g2. Considering r1 as a part of h1 and g1, one can reconstruct part
of the factors of the polynomial by identifying g1 with h1. However, consider the case that
r1 = r2. One may identify g1 with h2 and g2 with h1 or gi with hi, for i = 1, 2. As we will
see in the next example, this provides a counterexample to unique factorization.

Example 11.3.

f = f1f2 = (λ2 + λ1 + λ21 + (−1)λ31)(λ2 + 0 + λ21 + (−2)λ41)

g = g1g2 = (λ2 + λ1 + λ21 + (−2)λ41)(λ2 + 0 + λ21 + (−1)λ31).

We will prove that f1, f2, g1, g2 are irreducible and that f = g, and thus unique factor-
ization fails.

In the above notation, the points a, b are a = (0, 0), b = (1, 2). For both g and
f at a, the quasi-essential monomials are h1h2 = (λ2 + λ1 + λ21)(λ2 + 0 + λ21). At b,
g1g2 = (λ1 + λ21 + (−1)λ31)(0 + λ21 + (−2)λ41). At the line between a and b, the quasi-
essential monomials are r1r2 = (λ2 + λ21)

2. The reconstruction of the irreducible factors of
the polynomial can yield either f or g. Next we will prove that this is a good example (i.e.,
f = g).

Recall that two regular polynomials are identical if they are root-equivalent. Therefore,
it is enough to show that f = g on the corner roots of f and g in order to prove that
f = g everywhere. The corner root set of f1f2 is the union of the corner root set of f1 and
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f2. In the following figures, we can see the corner roots of f1, g1 (solid) and of f2, g2 (dashed).
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As we can see in the following table in detail, both f and g have the same quasi-essential
monomials at the corner roots set, as desired.

corner root set quasi-essential monomials
{λ1 = λ2 < 0} λ2 + λ1
{λ2 = 0, λ1 < 0} λ2(λ2 + 0)
{λ1 = λ2 = 0} (λ2 + λ1 + λ21)(λ2 + 0 + λ21)
{λ1 = 0, λ2 < 0} (λ1 + λ21)(0 + λ1)
{λ21 = λ2, 0 < λ1 < 1} (λ2 + λ21)(λ2 + λ21)
{λ1 = 1, λ2 = 2} (λ2 + λ21 + (−1)λ31)(λ2 + λ21 + (−2)λ41)
{λ1 = 1, λ2 < 2} (λ21 + (−1)λ31)(λ

2
1 + (−2)λ41)

{(−1)λ31 = λ2, 1 < λ1} (λ2 + (−1)λ31)((−2)λ41)
{(−2)λ41 = λ2, 1 < λ1} (λ2 + (−2)λ41)(λ2)

Next we will prove that f1, f2, g1, g2 are irreducible.

Lemma 11.4. Let f be a polynomial of the form f = λ2 + g(λ1) where g is a polynomial in
one variable, then f is irreducible.

Proof. Assume that f = f1f2. Since λ2 is a monomial of f , without loss of generality, f1
must have cλ2 as a monomial, and f2 must have c−1 as a monomial for some constant c.
Clearly f1 and f2 cannot have any monomials of the type xλn1λ

m
2 where m > 1, since f does

not have such monomials. Thus f1 = h1(λ1)λ2 + r1(λ1), f2 = h2(λ1)λ2 + r2(λ1).
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Fix λ1 = a. For any λ2 > ri(a)h−1i (a), there is a monomial of the form cλn1λ2 of fi which
is not inessential. Take λ2 > r1(a)h−11 (a) + r2(a)h−12 (a) to obtain a monomial of the form
cλn1λ

2
2 of f which is not inessential, in contradiction to the form of f .

Assume h has a monomial of the form cλn1 with n > 0, and assume that this monomial
is essential or quasi-essential at a point b. Take λ2 > g(b), to obtain an essential or quasi-
essential monomial of f of the form cλn1λ2, which is absurd. Thus f2 = c where c is a constant.

Therefore f = cf1 is the only factorization of f and thus f is irreducible, as desired.

To conclude, f1, f2, g1, g2 are irreducible due to the lemma above and so f1f2 and g1g2
are two different factorizations of the same polynomial f = g.

Part III

The tropical determinant and linear
dependence

12 Introduction

The determinant of a matrix is the signed sum of products of the form a1σ(1) · · · anσ(n) for
σ ∈ Sym(n), which we call tracks. Since in tropical algebra addition is actually the maxi-
mum, the sign of a permutation and matrix singularity are not naturally defined. We will
present an appropriate definition for the determinant and show that it is null (i.e., of layer
zero) if and only if its rows are tropically linearly dependent.

We are interested in tracks having the property that its elements dominate all entries of
their columns. We will use combinatorial methods to produce such tracks, and prove the
main theorem. In part, we use a version of the well known Hungarian algorithm (ref. [13]).

I would like to thank Prof. Uzi Vishne for his help in formalizing this part.

13 Critical Matrixes

Definition 13.1. An entry aij of a matrix A = (aij) ∈ Rn×n is called column-critical if it is
maximal within its column, i.e., if ∀k : aij ≥ akj.
A matrix A is called critical if there exists a permutation σ such that a1σ(1), ..., anσ(n) are
column-critical.
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In this section we present a version of the Hungarian algorithm which solves the assign-
ment problem (having n tasks and n workers and each task pays differently to the various
workers, how do you assign the tasks to the workers so that all tasks are done with minimal
cost?, ref. [13]). We use classical algebraic operations over the real numbers, and use the
result in the tropical section.

Theorem 13.2. For any matrix A there exists a matrix

B(a1, ..., an) =


a1
a2
...
an

(1 1 · · · 1
)

=


a1 a1 · · · a1
a2 a2 · · · a2
...

...
...

...
an an · · · an


such that A+B(a1, ..., an) is critical.

Proof. It is enough to achieve criticality of the main diagonal after a permutation of the
rows and columns.

We will use induction on the size of the matrix, considering that the case n = 1 is obvi-
ous. Therefore we assume that given an (n + 1) × (n + 1) matrix A, for any value of an+1

there exists a matrix B(a1, ..., an, an+1) such that the minor of D = A + B(a1, ..., an, an+1)
obtained by striking the last row and column, is critical. Moreover, by permuting the rows
and columns and choosing an+1 appropriately, we may assume that c11, ..., cnn are column-
critical and there is some column-critical element in the last row. We assume that the last
element on the diagonal is not critical, for otherwise we are done.

Given a column-critical element in the last row at column i, one can switch the ith row
with the n+ 1 row while keeping a column-critical element at the ith entry of the diagonal.
We will search for such a permutation of the rows that will place a column-critical element
at the last entry of the diagonal. If such a permutation does not exist, we will expand the
number of rows we can use by increasing the constants of B.

It is fairly obvious that each column has a column-critical entry. Define

C1 = {i : ci,n+1 is column-critical},

and define Ck to be the set of numbers i such that there is a column-critical entry cim with
m in Ck−1. We claim that Ck−1 ⊆ Ck. Indeed the cii are column-critical for all i < k. Thus
Cr−1 = Cr for some r. We define the critical set of D to be CS(D) := Cr ⊆ {1, 2, ..., n+ 1}

If n + 1 ∈ CS(D), then by the construction of the critical set we can permute the rows
to obtain only column-critical entries in the diagonal. Indeed, n+ 1 was added due to some
column-critical entry cn+1,m such that m ∈ CS(D). Thus we can switch rows n + 1 and
m keeping the mth entry of the diagonal column-critical. There is an entry cm,p such that
p ∈ CS(D). Since we started with rows which have a column-critical entry in the n + 1th
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column, this process will end with all entries of the diagonal being column-critical.

Assume n+1 /∈ CS(D) for every possible D. Pick D such that CS(D) has maximal size.
We will reorder the rows and columns of D so that the elements of CS(D) will be 1, 2, ..., k.
This is permitted since we permute rows and columns of numbers in CS(D) with previous
numbers which are not in CS(D), updating CS(D) accordingly. Now we have a matrix in
which none of the entries in the left-lower n + 1− k by k block are column-critical. If they
were, they would be contained in CS(D) since there is a column-critical entry above them
in the diagonal.

Define d to be the minimal difference between any entry of the block and the column-
critical entry in its column;

d = min{aii − ami|m > i, 1 ≤ i ≤ k}

Adding d to the last n−k constants B(a1, ..., ak, ak+1 +d, ..., an+1 +d) will add a column-
critical entry and enlarge CS(D), contradiction.

Indeed, A+B(a1, ..., ak, ak+1 + d, ..., an+1 + d) still has the first n entries of the diagonal
column-critical: since d is minimal and positive, it will not remove column-critical entries
in any of the first k columns. Thus, the column-critical entries of the diagonal remain critical.

14 Exploded-Layered Tropical Determinant

In this section we introduce some ELT linear algebra definitions, where R is an ELT algebra
over the reals.

Definition 14.1. For any two elements [`1]λ1,
[`2]λ2 we define the tangible distance to be

|λ1 −R λ2|.

Definition 14.2. The vectors v1, ..., vm ∈ Rn are called linearly dependent if there exist

a1, ..., am ∈ R∗

such that

s
( m∑
i=1

aivi

)
= (0F, ..., 0F).

Definition 14.3. Consider a matrix A = (aij) ∈ Rn×n. The ELT determinant of A is

|A| =
∑
σ∈Sn

[sign(σ)]0R · a1σ(1) · · · anσ(n).

We are now ready to present a key definition.
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Definition 14.4. Consider a matrix A = (aij) ∈ Rn×n. We define the critical layers matrix,
SA ∈ Fn×n, of A in the following way:

(SA)ij :=

{
s(aij) aij is column-critical

0F otherwise

The critical layers matrix enables us to use classical linear algebra, when possible.

We write R∗ = {x ∈ R|s(x) 6= 0}.

14.1 Statement of the main theorem

Theorem 14.5. Consider A ∈ Rn×n. Then the rows of A are linearly dependent, iff the

columns of A are linearly dependent, iff s
(
|A|
)

= 0F.

14.2 Proof of the main theorem

We prove several lemmas which together prove the theorem.

Lemma 14.6. If A ∈ Rn×n is a critical matrix such that |SA| = 0, then the rows of A are
dependent.

Proof. Since |SA| = 0, after some permutation of the rows we know that there exist nonzero
scalars such that

`1Row1(SA) + ...+ `kRowk(SA) = 0.

If k = n we are done since

s
(
[`1]0 ·Row1(A) + ...+ [`n]0 ·Rown(A)

)
= (0, ..., 0).

Assume k < n. Let C be the set of all columns with no column-critical element at any
of the rows 1, ..., k. If C = φ then

s
(
[`1]0 ·Row1(A) + ...+ [`k]0 ·Rowk(A)

)
= (0, ..., 0).

Tropically dividing (i.e. classically subtracting) rows k + 1, ..., n by some [1]y, it is easy to
see for large enough y that

s
(
[`1]0·Row1(A)+...+[`k]0·Rowk(A)+[1](−y)·Rowk+1(A)+...+[1](−y)·Rown(A)

)
= (0, ..., 0).

Indeed, the last rows are too small to contribute. Therefore the rows of A are linearly de-
pendent.
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Assume that C is not empty. Take the least tangible distance between column-critical
elements in the columns of C and elements in the same columns in rows 1, ..., k, and call
this tangible number d ∈ R. By choice of C we know that d > 0. We tropically divide rows
k + 1, ..., n by [1]d, and call the new matrix A1.

By our choice of d, in every column of C there exists a column-critical element in at least
one of the rows k+ 1, ..., n. Moreover there is no column critical element in these rows in the
columns which are not in C. Therefore in SB we have n− k rows with |C| columns, where
n−k ≥ |C| since A is critical. We can choose a linear combination that will annihilate the C
columns in the sum of the first k rows of A1. If that sum is already null it is enough to use
the above technique in order to lower rows k + 1, ..., n.

If we have scalars with value 0F in the above linear combination, we continue in the same
way until we obtain Ap with linearly dependent rows. Since there must be some scalar differ-
ent than 0F, this process terminate. The change of A does not change the linear dependence
of its rows, and therefore the rows of A are linearly dependent.

Lemma 14.7. If A is a critical matrix such that s
(
|A|
)

= 0F, then the rows of A are linearly

dependent.

Proof. Since A is critical, the ELT determinant of A is the sum of tracks which contain only
column-critical elements. Indeed such a track exists and dominates any other track.

Also the sum of the rows of A is the sum of the column-critical elements in each column.
Therefore |SA| = s

(
|A|
)

= 0, and we are done by the previous lemma.

Lemma 14.8. If A is a matrix such that s
(
|A|
)

= 0, then the rows of A are dependent.

Proof. By theorem 13.2, there exists constants a1, ..., an such that ∀i : s(ai) = 1F and the
matrix B obtained by multiplying each row i of A by ai is critical.

It it easy to see that s
(
|B|
)

= 0 and so its rows are linearly dependent. Therefore the

rows of A are also linearly dependent.

Lemma 14.9. Let B = {v1, ..., vn} be a linearly dependent set of vectors. If every strict
subset of B is linearly independent, then the matrix A with rows B is critical.

Proof. Consider the matrix A with rows v1, ..., vn, and assume A is not critical. Also assume
that

s
(
v1 + ...+ vn

)
= 0.

By permuting the rows and columns we may assume that A satisfies the following conditions:
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• The first k elements of the diagonal are column-critical.

• The last n− k element of the diagonal are not column-critical.

• There is no such permutation of the matrix for larger k.

We assume k < n, for otherwise A is critical. Next we build a set S in the following way:

1. Adjoin to S the indices of rows with column-critical elements at columns k + 1, ..., n

2. Adjoin to S any index of a row with a column-critical element at a column with an
index already in S

3. Repeat step 2 until no new index is added.

We notice that S ⊆ {1, ..., k}, for otherwise there exists a permutation that increases k.

For any set I of indices, we denote the set of rows with indices in I by RI . We denote
by CI the set of columns with indices in I.

Any element in a row from k + 1, ..., n and in a column from k + 1, ..., n could not be
column-critical since k is maximal. Also by our choice any row from k+ 1, ..., n cannot have
a column-critical element in a column with an index in S.

Now we denote the number of indices in S by r = |S|. If r = k then the last rows do not
have any column-critical elements and so rows 1, ..., k are linearly dependent. Therefore we
may assume that r < k.

We claim that [
s
(∑
j∈S

vj
)]

i
= 0

for all i ∈ S ∪ {k + 1, ..., n}. Indeed there are no column-critical elements in these columns
in any of the rows in RS, where S = {1, 2, ..., k} − S.

We will show that there exists scalars ai ∈ R such that

s
(∑
j∈S

vj +
∑
i∈S

aivi

)
= (0, 0, ..., 0).

Then R{1,2,...,k} is a linearly dependent proper subset of {v1, ..., vn}, contradiction.

Let d be the least tangible distance between column-critical elements of columns in CS
with the next maximal element in the same column in rows in RS. We then tropically divide
the rows in RS by [1]d. We now have at least one column in CS with a column-critical element
in a row from RS and in a row from RS. Denote the matrix after this change by D.
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In SD there must exist scalars such that

a
∑
i∈S

Ri(D) +
∑
j∈S

ajRj(D) = 0.

Assume that aj = 0 for all j ∈ S. Then for each column p with a column-critical element
in
∑

i∈S vi it is true that

s
(∑
i∈S

vi

)
p

= 0.

In that case we can add the indices of the columns with column-critical elements in∑
i∈S vi to S, and continue the process.

Otherwise, for all j ∈ S such that aj 6= 0 add j to S and continue the process. Indeed
the element in the j column of the j row is column-critical.

Since S strictly increases, we obtain our result after a finite number of steps.

Lemma 14.10. Assume that A is a critical matrix such that s
(∑

Ri(A)
)

= 0. Then

s
(
|A|
)

= 0.

Proof. Since A is critical, |A| is the sum of tracks containing only column-critical elements,

and therefore s
(
|A|
)

= |SA|. Moreover,

(0F, ..., 0F) = s
(∑

Ri(A)
)

=
∑

Ri(SA),

and therefore |SA| = 0F.

Lemma 14.11. If A ∈ Rn×n is a matrix with linearly dependent rows, then s
(
|A|
)

= 0F.

Proof. If A is critical, then we are done by the previous lemma. Otherwise, we may assume
by lemma 14.9 and a permutation of the rows that the first n − 1 rows of A are linearly
dependent.

By induction on the size of the matrix, we obtain

s
(
|A|
)

= s
( n∑
i=1

[(−1)n+i]0 · ani|Ani|
)

=
∑
j∈MA

(−1)n+js
(
anj

)
· s
(
|Anj|

)
= 0,

where MA is the set of cofactors anj|Anj| with maximal tangible value.

Together we have proved for any matrix A ∈ Rn×n that the rows of A are linearly de-

pendent if and only if s
(
|A|
)

= 0F. Since |A| = |At|, the analogous statement about the

columns follows.
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14.3 Adjoining the element −∞
In R we define linear dependence a bit differently and prove an analogous theorem.

Definition 14.12. The vectors v1, ..., vm ∈ R
n

are called linearly dependent if there exist

a1, ..., am ∈ R
∗

such that

s
( m∑
i=1

aivi

)
= (0F, ..., 0F),

with some ai 6= −∞.

Example 14.13. The rows of the matrix(
[1]1 −∞
−∞ [0]1

)
are dependent. Indeed,

(−∞) · ([1]1,−∞) + (−∞, [0]1) = (−∞, [0]1),

and s
(
−∞, [0]1

)
= (0, 0).

Lemma 14.14. If A ∈ Rn×n
is a critical matrix such that |SA| = 0F, then the rows of A are

dependent.

Proof. We repeat the proof of 14.6 with a minor change. In the case the minimal distance
d ∈ R is −∞ we may choose the next minimal distance. If no such minimal distance exists,
then we already have a linear combination with layer zero.

Lemma 14.15. Let A ∈ Rn×n
be a matrix. Either |A| = −∞ or there exist scalars ai ∈ R∗

such that the matrix with rows aiRi(A) is critical.
Moreover, if |A| = −∞ then there exist a number r < n and n− r rows with r + 1 columns
having only −∞ elements.

Proof. Assume |A| 6= −∞. Assume that B is a matrix obtained by permutation and mul-
tiplication by scalars ai ∈ R∗ of the rows of A. Also assume that the bii are critical and
different from −∞ for 1 ≤ i ≤ k, such that k is maximal with respect to a choice of such a
matrix B.

If k = n then B is critical and we are done. Therefore we assume that k < n.

Next we build the set S as in the previous proof:
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1. Adjoin to S the indices of rows with column-critical elements (different than −∞) at
columns k + 1, ..., n.

2. Adjoin to S any index of a row with a column-critical element (different than −∞) at
a column with an index already in S.

3. Repeat step 2 until no new index is added.

We notice that S ⊆ {1, ..., k}, for otherwise there exist a permutation that enlarge k.

We assume that B is such that S is maximal possible.

If i 6∈ S and j ∈ S or (j > k) then bij = −∞. Otherwise we can multiply the rows with
index which is not in S by a scalar, and enlarge S.

Write |S| = r. We obtained n− r rows with r+n−k ≥ r+ 1 columns of −∞. Therefore
any track of the determinant must contain a choice of n− r columns out of the n− r rows,
one of which must be −∞. Therefore |B| = −∞ in contradiction.

Lemma 14.16. Let A ∈ Rn×n
be a matrix. If |A| = −∞ then the rows of A are linearly

dependent.

Proof. Due to lemma 14.15 there are n− r rows for which there is a submatrix having r+ 1
columns containing only −∞ elements. Therefore we wish to prove that m = n − r rows
with m − 1 = n − r − 1 columns are necessarily linearly dependent. It is trivial that two
rows with one column different than −∞ are linearly dependent. we will use an induction
on the number of rows.

Take the first m − 1 rows with the m − 1 columns that do not necessarily contain only
−∞ element. Multiply this submatrix with scalars to obtain a critical (m − 1) × (m − 1)
matrix. If this is not possible then we have m− 1− r′ rows with m− 1− r′+ 1 −∞ columns
and we are done by induction.

We only need to prove that if A is a critical matrix then for any vector v, the rows of A
together with v are linearly dependent. Add v as the last row to A and add last column with
−∞ elements, and call the obtained matrix B. B remain critical and |SB| = 0 therefore its
rows are linearly dependent.

Lemma 14.17. If A ∈ Rn×n
is a matrix such that |A| 6= −∞ and s

(
|A|
)

= 0F, then the

rows of A are linearly dependent.

Proof. Consider B a critical matrix with rows aiRi(A), with ai ∈ R∗. Is is true that

s
(
|B|
)

= 0F.
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Since B is critical, s
(
|B|
)

= |SB| = 0F and therefore the rows of B are linearly dependent.

Thus the rows of A are linearly dependent.

Lemma 14.18. Let v1, ..., vn ∈ R
n

be linearly dependent. Then s
(
|A|
)

= 0F for the matrix

A with rows v1, ..., vn.

Proof. If |A| = −∞ the result is trivial. Also, if any strict subset of {v1, ..., vn} is linearly
dependent we are done by induction (similarly to the case with out −∞).

Therefore there exist scalars ai ∈ R∗ such that s
(
w1 + ... + wn

)
= (0F, ..., 0F) with

wi := aivi. Consider B to be the matrix with rows wi.

Since |B| 6= −∞, there is at least one maximal track that does not contain −∞. Replac-
ing any −∞ element in B with a small enough scalar from R we obtain a matrix B′ ∈ Rn×n

such that |B| = |B′| and s
(∑

Ri(B
′)
)

= (0F, ..., 0F).

Therefore 0F = s
(
|B′|

)
= s
(
|B|
)

, and s
(
|A|
)

= 0F.

In conclusion:

Theorem 14.19. If A ∈ R
n×n

is a matrix, then the rows of A are linearly dependent

⇐⇒ s
(
|A|
)

= 0F ⇐⇒ the columns of A are linearly dependent.

14.4 Calculation of the ELT determinant

Next we review the process of calculating a determinant, and its complexity.

1. Apply the algorithm above to the matrix A in order to obtain a critical matrix B, with
complexity o(n4). (Best implementation is o(n3) [23].)

2. If |A| = −∞ we are done.

3. The tangible value of |A| is t
(
c−11 · · · c−1n · |B|

)
, where ci’s are scalars multiplying the

rows of A in order to become rows of B.

4. Calculate the determinant of SB with complexity o(n3). This is the layer of |A|.

14.5 Rank of a matrix

In this section we generalize Theorem 14.19 and prove that the row rank of an ELT matrix
is equal to the rank of its columns.
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Definition 14.20. Let A ∈ (R
∗
)m×n be an ELT matrix. The maximal number of linearly

independent rows from A, is called the row rank of A.

Similarly, the column rank of A is the maximal number of linearly independent columns
of A.

Definition 14.21. Let A ∈ (R
∗
)m×n be an ELT matrix. The submatrix rank of A is the

maximal size of a square nonsingular submatrix of A. If no such matrix exists, then the rank
of A is defined to be zero.

Theorem 14.22. Let A ∈ (R
∗
)m×n be an ELT matrix. Then the row rank of A is equal to

the column rank of A and to the submatrix rank of A.

14.5.1 Proof of the rank theorem

Definition 14.23. We define the unit vectors ei ∈ R
n

for all 1 ≤ i ≤ n by

[ei]j =

{
−∞ i 6= j
[1]0R i = j

Lemma 14.24. Let A ∈ (R
∗
)m×n be an ELT matrix, with n > m. If all m×m submatrices

of A are singular, then the rows of A are linearly dependent.

Proof. Assume the rows of A, vi = Ri(A), are linearly independent. Add unit vectors to the
set {v1, ..., vm} such that it remains independent. If we obtain a set with n row vectors, the
matrix with these rows must be non-singular, in contradiction to the assumption that all
submatrices of A are singular.

Therefore we may assume that A ∈ (R
∗
)m×n is a matrix such that n > m, and for all

1 ≤ i ≤ n the set {v1, ..., vm, ei} is linearly dependent. Since the rows of A are independent,
for all 1 ≤ i ≤ n there exist scalars αij ∈ R

∗
such that

s
(
αi1v1 + ...+ αimvm + ei

)
= (0F, ..., 0F)

For all 1 ≤ i ≤ n, define
ui = αi1v1 + ...+ αimvm.

Let xi = s
(

[ui]i

)
, then

s
(

[ui]j

)
=

{
0F i 6= j

xi i = j
.

If xi = 0F for some i then s
(

[ui]j

)
= 0F for every 1 ≤ j ≤ n, implying that v1, ..., vm are

linearly dependent. Therefore we may assume that xi 6= 0F, for all 1 ≤ i ≤ n.
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Let U be the matrix with rows u1, ..., un. By theorem 13.2 we may assume that U is
critical.

If U is non-singular, then there must be a dominant track all of whose entries have
nonzero layers. Therefore, we may assume that the diagonal of U is a dominant track.

Now, if

t
([
αijvj

]
i

)
= t
(

[ui]i

)
and

t
([
αkjvj

]
k

)
= t
(

[uk]k

)
then

t(αij) = t(αkj).

Indeed, otherwise
[U ]kk < [U ]ik,

which is absurd.

Put more simply, any vector vj may contribute to the dominant entries of U at only one
tangible value of its coefficient. Therefore, any vector vj may contribute no more than one
vector of layers, as following.

Next for all 1 ≤ j ≤ m we write

wj =

{
s
(

[vj]i

)
∃i : t

([
αijvj

]
i

)
= t
(

[ui]i

)
0F otherwise

,

with wj ∈ Fn.

Together,

Rowspan
(
SU

)
⊆ span{w1, ..., wm}.

Since Rowspan
(
SU

)
= Fn and n > m, we have a contradiction.

Therefore U must be singular. Therefore there exists scalars βi ∈ R
∗
, not all −∞ such

that
s
(
β1u1 + ...+ βnun

)
= (0F, ..., 0F).

For all 1 ≤ i ≤ n,
[βiui]i <

[
β1u1 + ...+ βnun

]
i
.

Therefore for all 1 ≤ i ≤ n one may choose [1]di from a range

0 < di < dist(
[
β1u1 + ...+ βnun

]
i
, [βiui]i),
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such that
s
(
d1β1u1 + ...+ dnβnun

)
= (0F, ..., 0F).

Furthermore, write

d1β1u1 + ...+ dnβnun = a1v1 + ...+ amvm.

Since there are infinitely many choices for each di, one may choose them so that aj ∈ R
∗

for
all 1 ≤ j ≤ m.

Therefore v1, ..., vm are linearly dependent.

Now we can conclude the proof of theorem 14.22. If a matrix A has row rank k it has k
independent rows and by the lemma it must have a k× k nonsingular submatrix. Since any
k + 1 rows are linearly dependent, it is clear that any (k + 1)× (k + 1) submatrix must be
singular. Therefore the submatrix rank of A is k, and is equal to the row rank of A.
Since the submatrix rank of A and At are equal, the column rank must be equal to the rank
as well.

15 The Characteristic Polynomial and Eigenvalues

Definition 15.1. We define the identity matrix In ∈ R
n×n

,

[In]ij =

{
[1]0 i = j

−∞ i 6= j
.

It is easy to prove that In · A = A for all A ∈ Rn×k
.

Definition 15.2. Let A ∈ Rn×n
be a matrix. The characteristic polynomial of A is defined

to be
fA(λ) := |A+ [−1]0 · λIn|.

Definition 15.3. Let A ∈ Rn×n
be a matrix. A vector v ∈ (R

∗
)n is called an eigenvector

of A with an eigenvalue x ∈ Rn if v 6= (−∞, ...,−∞) and

Av = xv.

Theorem 15.4. Let A ∈ Rn×n
be a matrix with eigenvalue x. Then s

(
fA(x)

)
= 0F.

Proof. Choose v to be an eigenvector of the eigenvalue v, then Av = xv. Therefore

Av + [−1]0 · xv = [0]0 · xv.
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In other words,

s
(
Av + [−1]0 · xv

)
= (0F, ..., 0F).

Thus
s
(

(A+ [−1]0 · xIn)v
)

= (0F, ..., 0F).

By theorem 14.19 we conclude that s
(
|A+ [−1]0 · xIn|

)
= 0F, i.e., s

(
fA(x)

)
= 0F.

Note that the other direction is not necessarily true, i.e., there could be an ELT root of
the characteristic polynomial which is not an eigenvalue. Indeed, if one might try to prove
that direction he will encounter the following problem:

Av 6= Av + [−1]0 · xv + xv.

Example 15.5. Consider the matrix A ∈ R2×2,

A =

(
1 2
2 3

)
,

(all layers equal 1).

The characteristic polynomial is

fA(λ) = |A+ [−1]0 · λI2| =
∣∣∣∣1 + [−1]0 · λ 2

2 3 + [−1]0 · λ

∣∣∣∣ =

= (1 + [−1]0 · λ)(3 + [−1]0 · λ) + [−1]4 = λ2 + [−1]3 · λ+ [0]4.

If λ = [0]1, λ = [`]α with α < 1 or λ = [1]3 then s
(
fA(λ)

)
= 0.

The only eigenvalue of A is λ = [1]3,(
1 2
2 3

)(
0
1

)
=

(
3
4

)
= [1]3

(
1
0

)
.

One may also define an ELT eigenvalue and eigenvector in the following way.

Definition 15.6. Let A ∈ Rn×n
be a matrix. A vector v ∈ (R

∗
)n is called an eigenvector

of A with an eigenvalue x ∈ Rn if v 6= (−∞, ...,−∞) and

s
(
Av + [−1]0xv

)
= (0F, ..., 0F).

This definition is similar to the concept of ’ghost surpass’ by Izhakian, Knebusch and
Rowen ([12]).

Corollary 15.7. Let A ∈ Rn×n
be a matrix. Then x is an ELT eigenvalue of A if and only

if s
(
fA(x)

)
= 0F.
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16 Inner Products And Orthogonality

In this section we introduce a definition for an inner product and orthogonality. Although
we prove that an orthogonal set of vectors is linearly independent, if we add an orthogonal
vector to a linearly independent set, we may obtain a linearly dependent set.

16.1 Inner product

Definition 16.1. Let R be an ELT algebra over the reals with L = C. An ELT inner
product is a function

<,>: R
n ×Rn → R,

that satisfy the following three axioms for all vectors v, u, w ∈ Rn
and all scalars a, b ∈ R.

1. < av + bu, w >= a < v,w > +b < u,w >.

2. t
(
< v, u >

)
= t
(
< u, v >

)
, and s

(
< v, u >

)
= s
(
< u, v >

)
.

3. s
(
< v, v >

)
≥ 0 and if v ∈ R∗n then s

(
< v, v >

)
= 0 ⇐⇒ v = (−∞, ...,−∞).

For short notation we will write uv instead of < u, v > for the remainder of this section.

Example 16.2. For any two vectors v1, v2 ∈ R
n

v1 = ([z1]λ1, ...,
[zn]λn)

v2 = ([w1]α1, ...,
[wn]αn),

we define the standard inner product

v1v2 := [z1]λ1
[w1]α1 + ...+ [zn]λn

[wn]αn.

The first two axioms are trivial to prove, we will prove the third.

If v = (−∞, ...,−∞) then v2 = −∞ and thus s
(
v2
)

= 0C.

Otherwise write
v = ([z1]λ1, ...,

[zn]λn),

S = {i|λi = max
1≤j≤n

λj}.

Then
v2 =

∑
i∈S

[|zi|2]2λi,
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and
s
(
v2
)

=
∑
i∈S

|zi|2 ≥ 0R.

since v ∈ R∗n and v 6= (−∞, ...,−∞) then zi 6= 0C for all i ∈ S, thus s
(
v2
)
6= 0C.

Next we prove an ELT Cauchy-Schwartz lemma.

Lemma 16.3. For every two vectors v1, v2 ∈ R∗
n
,

(v1v2)
2 ≤ v21 · v22.

In other words, either
v21 ≥ v1v2,

or
v22 ≥ v1v2.

Proof. If
v1 = (−∞, ...,−∞)

then
v22 ≥ v1v2 = −∞,

therefore we assume that
v1 6= (−∞, ...,−∞).

For any scalar [z]0 ∈ R,

(v1 + [z]0v2)
2 = v21 + [z]0v2v1 + v1(

[z]0v2) + ([z]0v2)
2.

Now
t
(
[z]0v2v1 + v1(

[z]0v2)
)

= t(v1v2),

and
s
(
[z]0v2v1 + v1(

[z]0v2)
)

= 2Re
(
z · s(v1v2)

)
.

Since v1, v2 ∈ R∗
n

we may choose z such that both

v1 + [z]0v2 ∈ R∗
n
,

and
2Re

(
z · s(v1v2)

)
≤ 0R.
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Assume that v21 + v22 < v1v2, then

(v1 + [z]0v2)
2 = [z]0v2v1 + v1(

[z]0v2),

and
s
(

(v1 + [z]0v2)
2
)

= 2Re
(
z · s(v1v2)

)
≤ 0R.

Therefore
v1 + av2 = (−∞, ...,−∞),

which contradicts our assumption that v1 6= (−∞, ...,−∞).

Now we extend this lemma to several vectors.

Lemma 16.4. Let R be a max-plus algebra over the reals. If v1, ..., vk ∈ (R)n then there
exists some p for which

v2p ≥
∑

1≤j 6=p≤k

vjvp.

Proof. Assume
∀p : max

1≤i,j≤k
{vivj} > v2p,

and choose specific i 6= j such that ∀p : vivj > v2p. It follows that vivj > v2i . Thus by lemma
16.3 vivj ≤ v2j , which contradicts our assumption.

Therefore there exists some p for which

v2p ≥ max
1≤i,j≤k

{vivj},

and specifically

v2p ≥
∑

1≤j 6=p≤k

vjvp.

16.2 Orthogonality

Definition 16.5. Consider v1, v2 ∈ R
n
. We say v1, v2 are orthogonal and write v1 ⊥ v2 if

s
(
v1v2

)
= 0C.
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Theorem 16.6. If v1, ..., vk ∈ (R
∗
)n are vectors such that

∀i : vi 6= (−∞, ...,−∞)

and
∀i 6= j : vi ⊥ vj,

then v1, ..., vk are linearly independent.

Proof. Assume that v1, ..., vk are linearly dependent. Then there exists α1, ..., αk ∈ R∗ such
that

s
(
α1v1 + ...+ αkvk

)
= (0C, ..., 0C).

If ui = αivi, then by lemma 16.4 there exists p such that

u2p ≥
∑

1≤j 6=p≤k

ujup.

Multiplying by up we obtain

s
(
u1up + ...+ ukup

)
= s
(

(0C, ..., 0C)up

)
= 0C.

Therefore ∀i 6= p : s
(
uiup

)
= 0C and u2p dominates all other term. It follows that s

(
u2p

)
= 0C,

which is absurd.

Lemma 16.7. Let v1, ..., vk ∈ (R
∗
)n such that k < n, vi ⊥ vj for all i 6= j and vi 6=

(−∞, ...,−∞) for all i. Then there exists vk+1, ..., vn such that the set {v1, ..., vn} is orthog-
onal.

Proof. Assume V1, ..., Vk ∈ Kn are lifts of v1, ..., vk, i.e. ELTrop(Vi) = vi for all i. Then
there exists vectors Uk+1, ..., Un ∈ Kn such that Uj ⊥ Vi for all 1 ≤ i ≤ k and k+ 1 ≤ j, and
Uj ⊥ Up for all j 6= p

It is easy to see that if uj = ELTrop(Uj) then {v1, ..., vk, uk+1, ..., un} is an orthogonal set.

Example 16.8. In this example we consider the linearly independent set S = {v1, v2} which
is not orthogonal, and a vector v3 which is orthogonal to S. Unfortunately, the set {v1, v2, v3}
is linearly dependent.

v1 = ([1]2, [−1]2, [−1]1),

v2 = ([−1]2, [1]2, [−1]1),

v3 = ([1]1, [1]1, [2]1).
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These vectors are linearly dependent since

v1 + v2 + v3 = ([0]2, [0]2, [0]1).

However, it is easy to see that v1, v2 are linearly independent, and that v3 is orthogonal
to both v1 and v2.

v2v3 = v1v3 = [0]3.

Part IV

An exploded-layered version of
Payne’s generalization of Kapranov’s
theorem

17 Introduction

Kapranov’s theorem (ref. [4]) states that the tropicalization of a verity of a polynomial f is
equal to the tropical verity of the tropicalization of f . Since the inclusion

Trop(X) ⊆ V (Trop[f ])

is trivial, Kapranov’s theorem states, in other words, that for each element a ∈ V (Trop[f ])
there exists a lift x ∈ X such that Trop(x) = a.

Payne further claimed that not only does there exists a lift, but also there exists specific
lifts whose leading monomials are canceled by f . This regard to the coefficient is similar
to Parker’s exploded structure. The exploded approach contributes algebraic operations on
these coefficients.

In this part we formalize Payne’s generalization in terms of the ELT algebra, give a con-
structive algebraic proof for the hypersurface case which gives some hope for an algebraic
proof of the general case, and at the end present an elegant proof using an idea of Tabera [22].

I would like to thank Prof. Steve Shnider for his collaboration on this subject.

18 Main Theorem

Theorem 18.1. Consider a polynomial f ∈ K[x1, ..., xn] and a point a ∈ Rn, such that
a ∈ V (f) where V (f) is the ELT variety of f . Then there exists a lift x ∈ (K∗)n such that
ELTrop(x) = a and f(x) = 0.
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Corollary 18.2. Consider a polynomial f ∈ K[x1, ..., xn], and the variety of its roots

X(f) := {x ∈ (K∗)n : f(x) = 0}.

Then
V (f) = ELTrop(X(f)).

18.1 Proof of the case of one variable

Lemma 18.3. If f ∈ K[x] factors into

f(x) = (x− a1) · · · (x− an),

then
ELTrop[f ](λ) = (λ+ ELTrop(−a1)) · · · (λ+ ELTrop(−an)).

Example 18.4. Consider the polynomial

f(x) = (x− 1)(x+ 1) = x2 − 1.

Then
ELTrop[f ] = λ2 + [−1]0.

We get the factorization

(λ+ [1]0)(λ+ [−1]0) = λ2 + [0]0λ+ [−1]0 = λ2 + [−1]0,

since the middle monomial is inessential.

Example 18.5. Consider

f(x) = (x− a1)(x− a2)(x+ a3)(x+ a4) = (x− 1)(x− t)(x+ t)(x+ t2).

We will explore the coefficient of x2 in f :

t− t− t2 − t2 − t3 + t3.

We notice that cancellation of the leading monomials a1a2 + a1a3 = t− t occurs since a2, a3
has the same tangible value (t(ELTrop(a2)) = t(ELTrop(a3)) = −1).

Next we prove the lemma.

Proof. We wish to prove that ELTrop[f ] = g, where

g(λ) = (λ+ ELTrop(−a1)) · · · (λ+ ELTrop(−an)).

We notice that

f(x) =
n∑
k=0

[ ∑
i1k,...,ikk

(−ai1k) · · · (−aikk)
]
xn−k,
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g(λ) =
n∑
k=0

[ ∑
i1k,...,ikk

ELTrop(−ai1k) · · ·ELTrop(−aikk)
]
λn−k,

and
ELTrop[f ] =

∑
k∈J

[
ELTrop

( ∑
i1k,...,ikk

(−ai1k) · · · (−aikk)
)]
λn−k

where k ∈ J if and only if
∑

i1k,...,ikk
(−ai1k) · · · (−aikk) 6= 0.

In order to prove g = ELTrop[f ] we will prove that for each 0 ≤ k ≤ n either

1. k 6∈ J and
[∑

i1k,...,ikk
ELTrop(−ai1k) · · ·ELTrop(−aikk)

]
λn−k is inessential,

2. k ∈ J and
∑

i1k,...,ikk
ELTrop(−ai1k) · · ·ELTrop(−aikk) =

ELTrop
(∑

i1k,...,ikk
(−ai1k) · · · (−aikk)

)
,

3. k ∈ J ,
[∑

i1k,...,ikk
ELTrop(−ai1k) · · ·ELTrop(−aikk)

]
λn−k is inessential in g

and
[
ELTrop

(∑
i1k,...,ikk

(−ai1k) · · · (−aikk)
)]
λn−k is inessential in ELTrop[f ].

Assume that k 6∈ J , i.e.
∑

i1k,...,ikk
(−ai1k) · · · (−aikk) = 0.

In order to simplify the notation we will assume that the ai’s are ordered from the smallest
power of t in the leading monomial, to the largest

t(ELTrop(a1)) ≥ t(ELTrop(a2)) ≥ ... ≥ t(ELTrop(an))

Since cancellation occurs in the leading monomial, we conclude that

t(ELTrop(ak+1)) = t(ELTrop(ak)).

Assume that

t(ELTrop(aj)) = t(ELTrop(aj+1)) = ... = t(ELTrop(ak)),

and if j > 1 then
ELTrop(aj−1) > ELTrop(aj).

Write C = t
(
ELTrop(a1 · · · aj−1)

)
and d = t(ELTrop(aj)). We know that

t
[
ELTrop

( ∑
i1k,...,ikk

(−ai1k) · · · (−aikk)
)]

= Cdk−j+1,

since a1, ..., an are ordered.
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Thus

g(λ) = ...+ [b0]Cλn−j+1 + ...+ [0]Cdk−j+1λn−k + [bk+1]Cdk−j+2λn−k+1 + ...

Clearly all the monomials listed have the same tangible value at d, and therefore [0]Cdk−j+1xn−k

is inessential, yielding (1).

Next we assume that∑
i1k,...,ikk

ELTrop(−ai1k) · · ·ELTrop(−aikk) 6= ELTrop
( ∑
i1k,...,ikk

(−ai1k) · · · (−aikk)
)
.

Therefore cancellation occurs at the leading monomials, and[ ∑
i1k,...,ikk

ELTrop(−ai1k) · · ·ELTrop(−aikk)
]
λn−k

is inessential in g, yielding (3).

Finally, to prove (3), assume that

t(ELTrop(ak)) = ... = t(ELTrop(ak+m)).

The polynomial f contains the monomials [b0]Cλn−j+1 and [bk+m]Cλk+m−j+1 since there is no
cancellation at the leading monomials for these powers. Indeed ELTrop(aj−1) > ELTrop(aj)
and ELTrop(ak+m) > ELTrop(ak+m+1) (if k +m+ 1 ≤ n).

The monomial [bk]Bλn−k is indeed inessential in f since B < Cdk−j+1.

Corollary 18.6. Let f ∈ K[x] be a univariate polynomial. If a ∈ R∗ is such that

s
(
ELTrop[f ](a)

)
= 0,

then there exists a lift y ∈ K such that f(y) = 0 and ELTrop(y) = a.

18.2 Proof of the multivariate case

First we notice that is it enough to prove the theorem for the point a = ([1]0, ..., [1]0). Indeed,
suppose we are assuming the theorem is true for ([1]0, ..., [1]0), given any point

a = ([c1]λ1, ...,
[cn]λn),

the polynomial
g(x1, ..., xn) := f(c−11 tλ1x1, ..., c

−1
n tλnxn)

has a lift. The result follows.
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We use induction on the number of variables. Since K is algebraically closed, Lemma
18.3 holds and Corollary 18.6 proves the one variable case.

If we find a specialization x1 = y such that the tropicalization of the polynomial

g(x2, ..., xn) := f(y, x2, ..., xn)

in n− 1 variables has an ELT root then by induction we have a lift as needed. Furthermore,
if g ≡ 0 we have found a lift as well.

Example 18.7. Consider the polynomial f(x, y) = x(y − 1) + t. The point ([p]0, [1]0) is an
ELT root of ELTrop[f ] for each p.
We specialize y = 1 and obtain gy(x) = t. The polynomial ELTrop[gy] has no ELT roots
and therefore we need a better choice of y.

We define a partial order relation on K: ∀a, b ∈ K we say a ≺ b if the power series b
contains all of the monomials of a and −Trop(b − a) is bigger than every power of t in a.
In particular, if a ≺ b then the powers of t in monomials of a are bounded. We will use this
order to build a root or a specialization by finding the next monomial at each step.

Consider a series a ∈ K and a polynomial f ∈ K∗[x1, ..., xn]

f(x1, ..., xn) = f0(x2, ..., xn) + f1(x2, ..., xn)(x1 − a) + ...+ fn(x2, ..., xn)(x1 − a)n.

By change of the first variable, za = x1 − a, we obtain the polynomial

f.a := f0 + f1za + ...+ fnz
n
a ∈ K∗[za, x2, ..., xn]

with fi ∈ K[x2, ..., xn].

Definition 18.8. Consider a polynomial f ∈ K[x1, ..., xn]. A series a ∈ K∗ with leading
monomial 1 is called constructive if for every monomial ctα in a, the series b ≺ a consisting
of all monomials of a with powers smaller than α it is true that

s
(
ELTrop[f.b]([c](−α), [1]0, [1]0, ..., [1]0)

)
= 0k.

Lemma 18.9. If f, g, h ∈ K[x1, ..., xn] are polynomials such that f + g = h then either

ELTrop[h]([1]0, ..., [1]0) = ELTrop[f ]([1]0, ..., [1]0) + ELTrop[g]([1]0, ..., [1]0)

or

ELTrop[h]([1]0, ..., [1]0) < min{ELTrop[f ]([1]0, ..., [1]0), ELTrop[g]([1]0, ..., [1]0)}
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Proof. We write f =
∑
aIx

I , g =
∑
bIx

I and h =
∑
cIx

I , and notice that

ELTrop[f ]([1]0, ..., [1]0) =
∑

ELTrop(aI).

Next, for
m = min{t(aI), t(bJ)}

we define
Ma = {I|t(aI) = m},Mb = {I|t(bI) = m}.

Now, if ∑
I∈Ma

aIx
I +

∑
J∈Mb

bJx
J = 0

then

ELTrop[h]([1]0, ..., [1]0) < min{ELTrop[f ]([1]0, ..., [1]0), ELTrop[g]([1]0, ..., [1]0)}.

Otherwise

ELTrop[h]([1]0, ..., [1]0) = ELTrop[f ]([1]0, ..., [1]0) + ELTrop[g]([1]0, ..., [1]0),

since [`1]λ+ [`2]λ = [`1+`2]λ.

Lemma 18.10. Let f ∈ K[x1, ..., xn] be a polynomial such that

s
(
ELTrop[f ]([1]0, ..., [1]0)

)
= 0,

let a ∈ K be a series with leading monomial 1, and write

f = f0 + f1(x1 − a) + ...+ fn(x1 − a)n,

with fi ∈ K[x2, ..., xn]. Now, if

ELTrop[f0](
[1]0, ..., [1]0) ≥ ELTrop[f − f0]([1]0, ..., [1]0),

then for ga := f(a, x2, ..., xn) it is true that

s
(
ELTrop[ga](

[1]0, ..., [1]0)
)

= 0

Proof. First we look at f − f0 and notice that

ELTrop[f − f0] = ELTrop[x1 − a] · ELTrop[f1 + f2(x1 − a) + ...+ fn(x1 − a)n−1].

Since ELTrop[x1 − a] = λ1 − [1]0 then s
(
ELTrop[x1 − a]([1]0, ..., [1]0)

)
= 0 and therefore

s
(
ELTrop[f − f0]([1]0, ..., [1]0)

)
= 0.
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Now f0 = (−f) + (f − f0) thus together with the previous lemma we obtain

ELTrop[f0](
[1]0, ..., [1]0) = ELTrop[−f ]([1]0, ..., [1]0) + ELTrop[f − f0]([1]0, ..., [1]0),

and so
s
(
ELTrop[f0](

[1]0, ..., [1]0)
)

= 0.

Since f0 ∈ K[x2, ..., xn] it is true that ga = f0 and the result follows.

Lemma 18.11. Let a be a constructive element of f with a bounded set of powers. Write

f.a = f0 + f1za + ...+ fnz
n
a .

Assume f0 6= 0 and that

ELTrop[f0](
[1]0, ..., [1]0) < ELTrop[f.a− f0]([1]0, ..., [1]0),

then a is not maximal.

Proof. For any λ,
f(a+ ctλ) = f0 + ctλf1 + ...+ cntnλfn

We can choose λ to be a corner root with f0 dominating, and obtain a layer polynomial in
c with a constant from f0 and thus a non-trivial solution.

In order to contradict maximality we must prove that a ≺ a + ctλ, i.e. we must prove
that λ is larger or equal to the supremum of the powers of t in monomials of a, call it M .
Indeed, assume that λ is strictly smaller than M . Then there exists a series b such that
a = a′ + b and −Trop(b) > λ (i.e. the power of the leading monomial of b is larger than λ).

Next we present fi using gj and yield a contradiction.

f = f0 + f1(x− a) + ...+ fn(x− a)n = f0 + f1(x− a′ − b) + ...+ fn(x− a′ − b)n,

f = g0 + g1(x− a′) + ...+ gn(x− a′)n.
Is it true that:

gn = fn

gn−1 = fn−1 +

(
n

1

)
(−b)fn

gn−2 = fn−2 +

(
n− 1

1

)
(−b)fn−1 +

(
n

2

)
b2fn
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and so forth. Therefore:

fn = gn,

∀i : fj = gj +
n∑

i=j+1

aijb
i−jgi,

and bjfj = bjgj +
∑n

i=j+1 aijb
igi.

Assume k is such that

ELTrop[bkgk](
[1]0, ..., [1]0) ≥ ELTrop[f.a′]([1]0, ..., [1]0)

and for all i > k,

ELTrop[bkgk](
[1]0, ..., [1]0) > ELTrop[bigi](

[1]0, ..., [1]0).

Then
ELTrop[bkgk] = ELTrop[bkfk] < ELTrop[tkλfk].

Now
ELTrop[f0] ≤ ELTrop[bkgk] < ELTrop[tkλfk],

which contradicts the choice of λ such that f0 is dominating.

Lemma 18.12. Let a be a constructive element of f with an unbounded set of powers. Then

f(a, x2, ..., xn) ≡ 0

Proof. By scalar multiplication we may assume that the minimal power of t in any mono-
mial of f is not negative. Assume that f(a, x2, ..., xn) 6= 0, then there must be a monomial
dx2 · · ·xn in f . We will consider two series a′ + b = a such that the minimal power in b is
higher than any power in a′.

If the minimal power of b is large enough, the leading part of the monomial dx2 · · · xn
must be in f0 where

f.a′ = f0 + f1za′ + ...+ fkz
k
a′ .

Indeed, f.a′(b, x2, ..., xn) = f(a, x2, ..., xn). If b is large enough, any monomial fiz
i
a′(b, x2, ..., xn)

will be strictly larger than dx2, ..., xn.

However, if we choose b with minimal power larger than the minimal power of d,

ELTrop[f0](
[1]0, ..., [1]0)

will strictly dominate at ELTrop[b], which contradicts the assumption that a is constructive.

Due to Zorn’s lemma, there exist a maximal constructive element y. We specialize x1 = y
and obtain the result by induction.
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18.3 The element −∞
Corollary 18.13. Consider a polynomial f ∈ K[x1, ..., xn], and the variety of its roots

X(f) := {x ∈ Kn : f(x) = 0}.

Then
V (f) = ELTrop(X(f)).

Proof. Specialization of a variable to 0K is equivalent to deletion of all monomials containing
this variable. The same is true for −∞ in ELT algebra.

Therefore after deleting the relevant monomials in f and ELTrop[f ] we use theorem 18.1
on a polynomial with less variables to obtain the result.

19 Tabera’s Proof

Here we will present Tabera’s ([22]) proof of the hypersurface case of Payne’s theorem. We
will prove the multivariate case using an induction on the number of variables, and not re-
prove the one variable case.

Similar to the proof above, Tabera also seeks a specialization of a variable such that the
remaining polynomial will have a lift. The main difference between Tabera’s proof and the
proof above is that we constructed a specialization of the first variable, while Tabera finds
the best variable to specialize.

Consider a polynomial f ∈ K[x1, ..., xn] such that s
(
ELTrop[f ]([1]0, ..., [1]0)

)
= 0k. Write

f(x1, ..., xn) = tα
(
f0(x1, ..., xn) +

∑
β∈I

tβfβ(x1, ..., xn)
)
,

where β > 0 for all β ∈ I, and f0, fβ ∈ k[x1, ..., xn].

We have
ELTrop[f ] = [1](−α)ELTrop[f0],

and therefore s
(
ELTrop[f0](

[1]0, ..., [1]0)
)

= 0k. Moreover, f0(1, ..., 1) = 0.

Example 19.1. Consider the polynomial

f(x, y) = x− 2y + 1 + tx+ t2y.

In this case tα = t0, f0 = x− 2y + 1, f1 = x, f2 = 2y. Thus

ELTrop[f ] = [1]0ELTrop[f0] = [1]0λ1 + [−2]0λ2 + [1]0,

and f0(1, 1) = 0.
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Assume that a specialization xi = 1 yields

g := f(x1, ..., xi−1, 1, xi+1, ..., xn) = tα
(
g0 +

∑
β∈I

tβgβ

)
,

such that g0 6≡ 0. Then s
(
ELTrop[g]([1]0, ..., [1]0)

)
= 0k, and therefore g has a lift, and so

does f by induction.

If no such specialization exists then f0 must be of the form

f0 = (x1 − 1) · · · (xn − 1)h(x1, ..., xn).

We specialize x1 = 1 + tγ, to obtain

f0(1 + tγ, x2, ..., xn) = tγ(x2 − 1) · · · (xn − 1)h(1 + tγ, x2, ..., xn).

If we choose γ > 0 small enough we have

g(x2, ..., xn) := f(1 + tγ, x2, ..., xn) = tα
′
(
g0 +

∑
β∈I′

tβgβ

)
,

where
g0 = (x2 − 1) · · · (xn − 1)h′(x2, ..., xn).

Therefore g0(1, ..., 1) = 0 and

s
(
ELTrop[g]([1]0, ..., [1]0)

)
= 0k.

20 Applications To Linear Algebra

20.1 Resultant

In classical algebra the resultant of two univariate polynomials f, g ∈ K[x] is zero if and only
if they have a common root. Considering all polynomials f, g ∈ K[x] with fixed degrees, the
resultant is a polynomial in the coefficients of f and g.

Furthermore, it is well known that the resultant Res(f, g) is equal to the determinant of
the Sylvester matrix, where given

f = anx
n + ...+ a0

and
g = bmx

m + ...+ b0,

the Sylvester matrix Syl(f, g) ∈ R(m+n)×(m+n), is defined by
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Syl(f, g) :=



an an−1 · · · a0 0 0 · · · 0
0 an an−1 · · · a0 0 · · · 0
...

. . . . . . . . . . . . . . . · · · 0
0 · · · · · · 0 an an−1 · · · a0
bm bm−1 · · · b0 0 0 · · · 0
0 bm bm−1 · · · b0 0 · · · 0
...

. . . . . . . . . . . . . . . · · · 0
0 · · · · · · 0 bm bm−1 · · · b0


.

In this notation, |Syl(f, g)| = Res(f, g) ∈ K[an, ..., a0, bm, ..., b0].

Furthermore, the first m rows of Syl(f, g) each have at most n+ 1 entries different than
zero and the last n each have m + 1. Therefore we may Consider |Syl| to be a polynomial
in 2mn+m+ n variables, ai’s and bj’s.

20.1.1 ELT resultant

We will prove an analogous theorem for the ELT case. Assume R is an ELT algebra.

Theorem 20.1. Let f, g ∈ R[x] be two univariate polynomials. Then

s
(
|Syl(f, g)|

)
= 0

if and only if f, g have a common ELT root.

Proof. Consider |Syl| ∈ K[x1, ..., x2mn+m+n] and ELTrop[|Syl|] ∈ R[λ1, ..., λ2mn+m+n]. It is
easy to see that ELTrop[|Syl|] is the ELT polynomial of the ELT Sylvester matrix.

Consider two ELT univariate polynomials f, g ∈ R[x]. Then by theorem 18.1

s
(
|Syl(f, g)|

)
= 0

if and only if there are polynomials F,G ∈ K[x] such that |Syl(F,G)| = 0 and ELTrop[F ] =
f, ELTrop[G] = g.

If |Syl(F,G)| = 0 then there exists x ∈ R such that F (x) = G(x) = 0. We conclude that
ELTrop[x] is a common ELT root of f and g.

On the other hand, assume f, g have a common ELT root a ∈ R. Take an arbitrary lift
x ∈ K such that ELTrop(x) = a. Due to lemma 18.3, we may choose two polynomials F,G
such that F (x) = G(x) = 0 and ELTrop[F ] = f, ELTrop[G] = g. Therefore |Syl(F,G)| = 0

and s
(
|Syl(f, g)|

)
= 0.
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20.2 Cayley Hamilton theorem

Theorem 20.2. Let A ∈ Rn×n
be a matrix. Then

s
(
fA(A)

)
= 0kn×n

Proof. We may consider the entry in the i-th row and j-th column of fC(B) to be a polyno-
mial in 2n2 variables (the entries of C and B are the variables). The EL tropicalization of
this polynomial is the equivalent entry in fC(B) over the ELT algebra.

fC(B) = Bn ± (
∑

cii)B
n−1 ± (

∑
ci1i1 · · · cin−1in−1))B ± |C|I.

Indeed, since there are no cancelations,

ELTrop
[
fC(B)

]
= fC′(B

′),

where C ′, B′ are variables matrices in R
n×n

.

For any matrix A ∈ Kn×n it is true that
[
fA(A)

]
ij

= 0. Then by theorem 18.1

s
[
fA′(A

′)
]
ij

= 0k,

where A′ = ELTrop(A).

Since any ELT matrix has a lift, we conclude the theorem.

Example 20.3. Consider A =

(
a b
c d

)
, B =

(
x y
z w

)
.

fA(B) = (a− x)(d− x)− bc = x2 − (a+ d)x+ ad− bc = B2 − (a+ d)B + (ad− bc)I,

B2 =

(
x2 + yz xy + yw
zx+ wz zy + w2

)
.

Therefore,

fA(B) =

(
x2 + yz − (a+ d)x+ ad− bc xy + yw − (a+ d)y

zx+ wz − (a+ d)z zy + w2 − (a+ d)w + ad− bc

)
.

Now,

fA(A) =

(
a2 + bc− (a+ d)a+ ad− bc ab+ bd− (a+ d)b

ca+ dc− (a+ d)c cb+ d2 − (a+ d)d+ ad− bc

)
,

it is easy to see that every monomial cancels by a monomial of an equal tangible size.
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