December 18, 2019

LEBESGUE INTEGRAL

1. Compute

$$\lim_{n \to \infty} \int_{\mathbb{R}} \frac{\sin^2 nx}{(1+x^2)^n} \, dx$$

Hint: use the Dominated Convergence theorem.

2. Compute

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} \, dx.$$

Hint: you can use that $\lim_{n\to\infty} (1+\frac{x}{n})^n = e^x$, and that $e^{x/n} = 1 + \frac{x}{n} + \frac{1}{2}(\frac{x}{n})^2 + \cdots \ge 1 + \frac{x}{n}$.

3. Let $0 \le f(x) \le 1$ be a measurable function on $[b, +\infty)$ and *m* is the Lebesgue measure on \mathbb{R} .

(a) Prove that

$$\lim_{\alpha \to 1+} \int_{[b,+\infty)} f^{\alpha}(x) \, dm = \int_{[b,+\infty)} f(x) \, dm$$

where the meaning of $\alpha \to 1+$ is that α decreases to 1; the limit is from the right.

(b)* (bonus question). Show that a similar statement for $\alpha \to 1-$ is false, in general. Example:

$$f(x) = \frac{1}{x \ln^2(x)}, \quad x \in [2, +\infty).$$

4. Let (X, μ) be a measure space, and let $f \in L^p(X)$, $||f||_p = 1$. For t > 0 consider the set

$$A = \{ x \in X : |f(x)| > t \}.$$

Show that

$$\mu(A) \le \frac{1}{t^p}.$$