LEBESGUE INTEGRAL

1. Compute

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \frac{\sin ^{2} n x}{\left(1+x^{2}\right)^{n}} d x
$$

Hint: use the Dominated Convergence theorem.
2. Compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x
$$

Hint: you can use that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$, and that $e^{x / n}=1+\frac{x}{n}+\frac{1}{2}\left(\frac{x}{n}\right)^{2}+\cdots \geq 1+\frac{x}{n}$.
3. Let $0 \leq f(x) \leq 1$ be a measurable function on $[b,+\infty)$ and m is the Lebesgue measure on \mathbb{R}.
(a) Prove that

$$
\lim _{\alpha \rightarrow 1+} \int_{[b,+\infty)} f^{\alpha}(x) d m=\int_{[b,+\infty)} f(x) d m,
$$

where the meaning of $\alpha \rightarrow 1+$ is that α decreases to 1 ; the limit is from the right.
(b)* (bonus question). Show that a similar statement for $\alpha \rightarrow 1$ - is false, in general. Example:

$$
f(x)=\frac{1}{x \ln ^{2}(x)}, \quad x \in[2,+\infty)
$$

4. Let (X, μ) be a measure space, and let $f \in L^{p}(X),\|f\|_{p}=1$. For $t>0$ consider the set

$$
A=\{x \in X:|f(x)|>t\} .
$$

Show that

$$
\mu(A) \leq \frac{1}{t^{p}} .
$$

