מכינה למתמטיקה קיץ תשעב/תרגילים/4

מתוך Math-Wiki

תרגילים - שיוויונים

  • [math]\displaystyle{ 1^3+2^3+...+n^3=(1+2+...+n)^2 }[/math]


  • [math]\displaystyle{ (n+1)^2+(n+2)^2+...+(2n)^2=\frac{n(2n+1)(7n+1)}{6} }[/math]


  • [math]\displaystyle{ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n} }[/math]


  • [math]\displaystyle{ \frac{1}{3!}+\frac{5}{4!}+\frac{11}{5!}+...+\frac{n^2+n-1}{(n+2)!}=\frac{1}{2}-\frac{n+1}{(n+2)!} }[/math]


  • [math]\displaystyle{ 1-4+7-10+...+(-1)^{n+1}(3n-2)=\frac{1}{4}\Big((-1)^{n+1}(6n-1)-1\Big) }[/math]


  • [math]\displaystyle{ \frac{1^2}{1\cdot 3}+\frac{2^2}{3\cdot 5}+...+\frac{n^2}{(2n-1)(2n+1)}=\frac{n(n+1)}{2(2n+1)} }[/math]


  • [math]\displaystyle{ \Big(1-\frac{1}{(n+1)^2}\Big)\Big(1-\frac{1}{(n+2)^2}\Big)\cdots \Big(1-\frac{1}{(2n)^2}\Big)=\frac{2n+1}{2n+2} }[/math]


תרגילים - אי שיוויונים

  • [math]\displaystyle{ \frac{1}{1\cdot 6}+\frac{1}{6\cdot 11} +...+\frac{1}{(5n-4)(5n+1)}\lt \frac{2n}{5n+1} }[/math]


  • [math]\displaystyle{ \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\lt \frac{n-1}{n} }[/math]


  • [math]\displaystyle{ 1^2+2^2+...+n^2\lt \frac{(n+1)^3}{3} }[/math]


  • [math]\displaystyle{ \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\gt \frac{13}{24} }[/math]


  • [math]\displaystyle{ \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}\gt 1 }[/math]