משתמש:אור שחף/133 - הרצאה/22.2.11

מתוך Math-Wiki

את משפט 2 לא סיימנו בשיעור הקודם ולכן השלמנו זאת ב־22.2.11. חלק זה מופיע בסיכום השיעור הקודם ולא בדף הנוכחי.

האינטגרל לפי דרבו (המשך)[עריכה]

משפט 3[עריכה]

תהי f מוגדרת וחסומה ב-[math]\displaystyle{ [a,b] }[/math]. אזי [math]\displaystyle{ \underline\int_a^b f(x)\mathrm dx=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math] וכן [math]\displaystyle{ \overline{\int}_a^b f(x)\mathrm dx=\lim_{\lambda(P)\to0}\overline S(f,P) }[/math].

הוכחה[עריכה]

הטענה הראשונה אומרת שלכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שאם [math]\displaystyle{ |\lambda(P)|=\lambda(P)\lt \delta }[/math] אזי [math]\displaystyle{ \left|\overline S(f,P)-\overline{\int}_a^b f(x)\mathrm dx\right|\lt \varepsilon }[/math]. ברור מהגדרת האינטגרל העליון כי [math]\displaystyle{ 0\le\overline S(f,P)-\overline{\int}_a^b f(x)\mathrm dx }[/math]. כעת יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math] נתון. לפי הגדרת האינפימום קיימת חלוקה מסויימת Q של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ 0\le\overline S(f,Q)-\overline{\int}_a^b f(x)\mathrm dx\lt \frac\varepsilon2 }[/math] ונניח של-Q יש r נקודות חלוקה. כעת נניח ש-P חלוקה כלשהי של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \lambda(P)\lt \frac\varepsilon{2r\Omega} }[/math], ונגדיר [math]\displaystyle{ R=P\cup Q }[/math]. כיוון ש-R עידון של Q, [math]\displaystyle{ \overline{\int}_a^b f(x)\mathrm dx\le\overline S(f,R)\le\overline S(f,Q) }[/math] ונובע ש-[math]\displaystyle{ 0\le\overline S(f,R)-\overline{\int}_a^b f(x)\mathrm dx\le\overline S(f,Q)-\overline{\int}_a^b f(x)\mathrm dx\lt \frac\varepsilon2 }[/math]. אבל R התקבלה מ-P ע"י הוספה של לכל היותר r נקודות, לכן ע"פ משפט 2 ידוע ש-[math]\displaystyle{ \overline S(f,P)-\overline S(f,R)\le r\lambda(P)\Omega\lt r\Omega\frac\varepsilon{2r\Omega}=\frac\varepsilon2 }[/math]. לכן נוכל להסיק

[math]\displaystyle{ 0\le\overline S(f,P)-\overline{\int}_a^b f(x)\mathrm dx=\overline S(f,P)-\overline S(f,R)+\overline S(f,R)-\overline{\int}_a^b f(x)\mathrm dx\lt \frac\varepsilon2+\frac\varepsilon2=\varepsilon }[/math].

ההוכחה לאינטגרל התחתון דומה. [math]\displaystyle{ \blacksquare }[/math]

משפט 4[עריכה]

תהי f כנ"ל. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] אם"ם [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math] ואם כן [math]\displaystyle{ \int\limits_a^b f(x)\mathrm dx=\lim_{\lambda(P)\to0}\overline S(f,P)=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math].

הוכחה[עריכה]

תחילה נניח ש-f אינטגרבילית, ז"א [math]\displaystyle{ \overline{\int}_a^b f(x)\mathrm dx=\underline\int_a^b f(x)\mathrm dx }[/math]. לכן, ממשפט 3, [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)=\overline{\int}_a^b f(x)\mathrm dx=\underline\int_a^b f(x)\mathrm dx=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math]. ע"פ אריתמטיקה של גבולות [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math] וכן [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)=\int_a^b f(x)\mathrm dx=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math].

עכשיו נניח ש-[math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math] ונוכיח את ההיפך. ממשפט 3 [math]\displaystyle{ 0=\lim_{\lambda(P)\to0}\overline S(f,P)-\lim_{\lambda(P)\to0}\underline S(f,P)=\overline{\int}_a^b f(x)\mathrm dx-\underline\int_a^b f(x)\mathrm dx }[/math] ולכן f אינטגרבילית. [math]\displaystyle{ \blacksquare }[/math]

משפט 5[עריכה]

תהי f כנ"ל. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] אם"ם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיימת חלוקה P של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math].

הוכחה[עריכה]

אם נתון ש-f אינטגרבילית אז ממשפט 4 [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math]. לכן עבור [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל P המקיימת [math]\displaystyle{ \lambda(P)\lt \delta }[/math] מתקיים [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math].

לצד השני, נניח שלכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיימת חלוקה P כך שמתקיים [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math]. כידוע, לכל חלוקה P מתקיים [math]\displaystyle{ \underline S(f,P)\le\underline\int_a^b f\le\overline{\int}_a^b f\le\overline S(f,P) }[/math]. לפי הנתון נקבל [math]\displaystyle{ 0\le\overline{\int}_a^b f-\underline\int_a^b f\lt \varepsilon }[/math]. זה נכון לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] ולכן [math]\displaystyle{ \overline{\int}_a^b f-\underline\int_a^b f=0 }[/math], כלומר f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. [math]\displaystyle{ \blacksquare }[/math]

משפט 6[עריכה]

תהי f רציפה ב-[math]\displaystyle{ [a,b] }[/math]. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].

הוכחה[עריכה]

יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math]. כיוון ש-f רציפה בקטע סגור [math]\displaystyle{ [a,b] }[/math] היא רציפה במ"ש, לכן קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שאם [math]\displaystyle{ x_1,x_2\in[a,b] }[/math] ו-[math]\displaystyle{ |x_1-x_2|\lt \delta }[/math] אז [math]\displaystyle{ |f(x_1)-f(x_2)|\lt \frac\varepsilon{b-a} }[/math]. כעת תהי P חלוקה כלשהי של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \lambda(P)\lt \delta }[/math]. לפיכך [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)=\sum_{k=1}^n(M_k-m_k)\Delta x_k }[/math] כאשר [math]\displaystyle{ M_k=\sup\{f(x):\ x_{k-1}\le x\le x_k\} }[/math] ו-[math]\displaystyle{ m_k=\inf\{f(x):\ x_{k-1}\le x\le x_k\} }[/math]. כיוון ש-f רציפה ושעפ"י המשפט השני של ויירשראס לכל f רציפה ב-[math]\displaystyle{ [a,b] }[/math] יש שם נקודות מינימום ומקסימום, לכל k קיימים [math]\displaystyle{ y_k,z_k\in[x_{k-1},x_k] }[/math] כך ש-[math]\displaystyle{ f(y_k)=M_k }[/math] ו-[math]\displaystyle{ f(z_k)=m_k }[/math]. כעת [math]\displaystyle{ |y_k-z_k|\le x_k-x_{k-1}=\Delta x_k\le\lambda(P)\lt \delta }[/math], לכן [math]\displaystyle{ M_k-m_k=|f(y_k)-f(z_k)|\lt \frac\varepsilon{b-a} }[/math] ולבסוף

[math]\displaystyle{ \begin{align}\overline S(f,P)-\underline S(f,P)&=\sum_{k=1}^n(M_k-m_k)\Delta x_k\\&\lt \sum_{k=1}^n\frac\varepsilon{b-a}\Delta x_k\\&=\frac\varepsilon{b-a}(x_1-\underbrace{x_0}_{=a}+x_2-x_1+\dots+\underbrace{x_n}_{=b}-x_{n-1})\\&=\frac\varepsilon{b-a}(b-a)\\&=\varepsilon\end{align} }[/math]

ונובע ממשפט 5 (או 4) ש-f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. [math]\displaystyle{ \blacksquare }[/math]

משפט 7[עריכה]

תהי f מוגדרת ומונוטונית בקטע [math]\displaystyle{ [a,b] }[/math]. אזי f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].

הוכחה[עריכה]

נוכיח לפונקציה עולה. לכל [math]\displaystyle{ x\in[a,b] }[/math] מתקיים [math]\displaystyle{ f(a)\le f(x)\le f(b) }[/math] ולכן f חסומה. כעת ניקח חלוקה [math]\displaystyle{ P=\{x_0,\dots,x_n\} }[/math] כלשהי של [math]\displaystyle{ [a,b] }[/math] המקיימת לכל k, [math]\displaystyle{ \Delta x_k=\frac{b-a}n }[/math] (ובפרט הם שווים) אזי [math]\displaystyle{ \overline S(f,P)-\underline S(f,P)=\sum_{k=1}^n(M_k-m_k)\Delta x_k=\sum_{k=1}^n\Big(f(x_k)-f(x_{k-1})\Big)\Delta x_k }[/math].

מכאן נובע כי

[math]\displaystyle{ \begin{align}\overline S(f,P)-\underline S(f,P)&=\frac{b-a}n\sum_{k=1}^n\Big(f(x_k)-f(x_{k-1})\Big)\\&=\frac{b-a}n\sum_{k=1}^n\Big(f(x_1)-\underbrace{f(x_0)}_{=f(a)}+f(x_2)-f(x_1)+\dots+\underbrace{f(x_n)}_{=f(b)}+f(x_{n-1})\Big)\\&=\frac{b-a}n\Big(f(b)-f(a)\Big)\end{align} }[/math]

נשאיף [math]\displaystyle{ n\to\infty }[/math] ואגף ימין שואף ל-0. מכאן ש-[math]\displaystyle{ \overline S(f,P)-\underline S(f,P) }[/math] קטן כרצוננו, וקיימנו את התנאי של משפט 5. לכן f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. [math]\displaystyle{ \blacksquare }[/math]