שינויים

קפיצה אל: ניווט, חיפוש
/* שיעור ראשון */
#'''קיום איבר הופכי לכפל-''' לכל איבר a קיים איבר שנסמנו <math>a^{-1}</math> כך שמתקיים <math>a\cdot a^{-1} = 1</math>. שיטה נפוצה לסימון פעולה זו הינה <math>a\cdot b^{-1}=\frac{a}{b}</math>
#'''דיסטריביוטיביות/פילוג-''' <math>\forall a,b,c\in\mathbb{F}: a\cdot (b+c)=a\cdot b +a\cdot c </math>. שימו לב שזו התכונה היחידה המקשרת בין הכפל לבין החיבור
 
===תרגיל===
יהי שדה <math>\mathbb{F}</math>. הוכח שניתן לגזור מתכונות השדה את הטענה הבאה: <math>\forall a\in\mathbb{F}:0\cdot a = 0</math>, כאשר 0 הינו הסימון לאיבר הנייטרלי החיבורי.
 
====פתרון====
ראשית נשים לב שלפי הנתונים ניתן להניח שתכונות השדה מתקיימות.
 
לפי תכונה (4) מתקיים ש <math>0+0=0</math>
 
לכן <math>\forall a\in\mathbb{F}:0\cdot a = (0+0)a</math>
 
לפי תכונה (7) מתקיים בנוסף ש<math>\forall a\in\mathbb{F}:0\cdot a = (0+0)\cdot a = 0\cdot a + 0\cdot a</math> (השתמשנו בעצם בתכונה (7) לאחר שהפעלנו עליה את תכונה (2))
 
לפי תכונה (5) לאיבר <math>0\cdot a \in\mathbb{F}</math> קיים איבר נגדי. נחבר אותו לשני צידי המשוואה לקבל <math>\forall a\in\mathbb{F}:0\cdot a + (-(0\cdot a)) = 0\cdot a + 0\cdot a + (-(0\cdot a))</math>