88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 2: הבדלים בין גרסאות בדף
(יצירת דף עם התוכן "=יחסים= הגדרה: '''המכפלה הקרטזית''' של שתי קבוצות A וB הינה אוסף כל ה'''זוגות הסדורים''' - <math>A\times B...") |
(←יחסים) |
||
שורה 5: | שורה 5: | ||
דוגמא: <math>A=\{1,2,3\}</math> ו<math>B=\{a,b\}</math> אזי מתקיים <math>A\times B =\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}</math> | דוגמא: <math>A=\{1,2,3\}</math> ו<math>B=\{a,b\}</math> אזי מתקיים <math>A\times B =\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}</math> | ||
ניתן להגדיר זוגות סדורים באמצעות הגדרת הקבוצות בלבד, כפי שנראה בתרגיל הבא: | |||
===תרגיל=== | |||
הוכח/הפרך: | |||
1. <math>[(a=c)\and(b=d)]\iff \{\{a\},b\}=\{\{c\},d\}</math> | |||
2. <math>[(a=c)\and(b=d)]\iff \{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}</math> | |||
====פתרון==== | |||
1. הפרכה ע"י הדוגמא הנגדית <math>a=2,b=\{3\},c=3,d=\{2\}</math> | |||
2. | |||
הוכחה: הכיוון משמאל לימין הוא ברור. מימין לשמאל, נניח והקבוצות שוות אזי <math>\{a\}=\{c\}</math> או ש <math>\{a\}=\{c,d\}</math>. | |||
במקרה הראשון, נובע a=c ובמקרה השני נובע a=c=d, כך או כך a=c. כעת, <math>\{a,b\}=\{c,b\}=\{c\}</math> או <math>\{c,b\}=\{c,d\}</math> ונובע משניהם ש b=d. | |||
לכן, ניתן להגדיר זוג סדור על ידי קבוצות בלבד (באופן דומה לכך שכל המתמטיקה פחות או יותר נבנת על קבוצות בלבד). |
גרסה מ־18:46, 25 ביולי 2011
יחסים
הגדרה: המכפלה הקרטזית של שתי קבוצות A וB הינה אוסף כל הזוגות הסדורים - [math]\displaystyle{ A\times B = \{(a,b)|a\in A \and b\in B\} }[/math]. ההבדל בין זוג סדור לבין קבוצה המכילה זוג איברים היא שהאיברים יכולים להיות שווים בזוג סדור, והסדר שלהם מהותי. כלומר שני האיברים הבאים שונים [math]\displaystyle{ (1,2),(2,1) }[/math] והאיבר הבא הינו זוג חוקי [math]\displaystyle{ (1,1) }[/math].
ניתן להכליל את ההגדרה לעיל לn-יה סדורה - כלומר n איברים מסודרים.
דוגמא: [math]\displaystyle{ A=\{1,2,3\} }[/math] ו[math]\displaystyle{ B=\{a,b\} }[/math] אזי מתקיים [math]\displaystyle{ A\times B =\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\} }[/math]
ניתן להגדיר זוגות סדורים באמצעות הגדרת הקבוצות בלבד, כפי שנראה בתרגיל הבא:
תרגיל
הוכח/הפרך:
1. [math]\displaystyle{ [(a=c)\and(b=d)]\iff \{\{a\},b\}=\{\{c\},d\} }[/math]
2. [math]\displaystyle{ [(a=c)\and(b=d)]\iff \{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\} }[/math]
פתרון
1. הפרכה ע"י הדוגמא הנגדית [math]\displaystyle{ a=2,b=\{3\},c=3,d=\{2\} }[/math]
2.
הוכחה: הכיוון משמאל לימין הוא ברור. מימין לשמאל, נניח והקבוצות שוות אזי [math]\displaystyle{ \{a\}=\{c\} }[/math] או ש [math]\displaystyle{ \{a\}=\{c,d\} }[/math].
במקרה הראשון, נובע a=c ובמקרה השני נובע a=c=d, כך או כך a=c. כעת, [math]\displaystyle{ \{a,b\}=\{c,b\}=\{c\} }[/math] או [math]\displaystyle{ \{c,b\}=\{c,d\} }[/math] ונובע משניהם ש b=d.
לכן, ניתן להגדיר זוג סדור על ידי קבוצות בלבד (באופן דומה לכך שכל המתמטיקה פחות או יותר נבנת על קבוצות בלבד).