שיחה:88-211 אלגברה מופשטת קיץ תשעא: הבדלים בין גרסאות בדף
דורון פרלמן (שיחה | תרומות) אין תקציר עריכה |
|||
שורה 32: | שורה 32: | ||
האם מתקיים ש exp(G)= lcm({ O(g)|g in G }) zzz? זה לפחות מתקיים בחבורה Sn? תודה! | האם מתקיים ש exp(G)= lcm({ O(g)|g in G }) zzz? זה לפחות מתקיים בחבורה Sn? תודה! | ||
:הטענה | :הטענה נכונה. בכל חבורה סופית האקספוננט הוא ה-lcm של סדרי כל האיברים (בפרט ב-Sn). נסו להוכיח זאת. [[משתמש:דורון פרלמן|דורון פרלמן]] 08:42, 1 בספטמבר 2011 (IDT) | ||
::צריך להוכיח זאת לצורך התרגיל? תודה. | ::צריך להוכיח זאת לצורך התרגיל? תודה. | ||
:::לא, אתם יכולים פשוט להשתמש בזה. אני כן ממליץ (בלי קשר לתרגיל) לנסות להבין למה זה נכון. [[משתמש:דורון פרלמן|דורון פרלמן]] 13:26, 1 בספטמבר 2011 (IDT) | :::לא, אתם יכולים פשוט להשתמש בזה. אני כן ממליץ (בלי קשר לתרגיל) לנסות להבין למה זה נכון. [[משתמש:דורון פרלמן|דורון פרלמן]] 13:26, 1 בספטמבר 2011 (IDT) |
גרסה מ־04:55, 2 בספטמבר 2011
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
ארכיון
שאלות
תרגיל 4 שאלה 3
1) הכוונה היא בנקודת שבת "של g" [math]\displaystyle{ x| g*x=x }[/math] או בנקודת שבת "של G" (איקסים כך שלכל g בG מתקיים g*x=x)?
2)סימטריות של הריבוע = סיבובים? תודה
- 1) לא נתונה g ספציפית, לכן הכוונה לנקודת שבת "של החבורה" (ליתר דיוק, של הפעולה), כלומר איבר x ב-X שנשאר במקום ע"י כל איברי g ב-G.
- 2) סיבובים ושיקופים. דורון פרלמן 08:16, 30 באוגוסט 2011 (IDT)
- תודה
שאלה
ב Sn, טיפוסי המחזורים הבאים: (--)(---) ו- (---)(--) נחשבים טיפוסים שונים, או זהים? תודה!
- זהים: כי מחזורים זרים מתחלפים. דורון פרלמן 10:39, 30 באוגוסט 2011 (IDT)
- תודה!
תרגיל 4 - שאלת בונוס 2
בשאלת הבונוס השניה בתרגיל 4, מה זה בדיוק [G,G] ו-[G,A]?
תודה מראש!;)
- אלו חבורות הקומוטטורים. אם G היא חבורה ו-A,B תת-חבורות שלה, אז [math]\displaystyle{ \ [A,B] }[/math] היא תת-החבורה של G הנוצרת על-ידי כל הקומוטטורים [math]\displaystyle{ \ [a,b] = aba^{-1}b^{-1} }[/math] עבור [math]\displaystyle{ \ a\in A, b\in B }[/math]. שימו לב שבאופן כללי, לא כל איבר של [math]\displaystyle{ \ [A,B] }[/math] הוא קומוטטור. עוזי ו. 13:36, 30 באוגוסט 2011 (IDT)
בקשר לשאלה 11
האם מתקיים ש exp(G)= lcm({ O(g)|g in G }) zzz? זה לפחות מתקיים בחבורה Sn? תודה!
- הטענה נכונה. בכל חבורה סופית האקספוננט הוא ה-lcm של סדרי כל האיברים (בפרט ב-Sn). נסו להוכיח זאת. דורון פרלמן 08:42, 1 בספטמבר 2011 (IDT)
- צריך להוכיח זאת לצורך התרגיל? תודה.
- לא, אתם יכולים פשוט להשתמש בזה. אני כן ממליץ (בלי קשר לתרגיל) לנסות להבין למה זה נכון. דורון פרלמן 13:26, 1 בספטמבר 2011 (IDT)
- תודה!
- לא, אתם יכולים פשוט להשתמש בזה. אני כן ממליץ (בלי קשר לתרגיל) לנסות להבין למה זה נכון. דורון פרלמן 13:26, 1 בספטמבר 2011 (IDT)
- צריך להוכיח זאת לצורך התרגיל? תודה.
כמה שאלות לגבי שאלה 6
1. הכוונה (ב-ב.) היא שצריך להוכיח שקיים אפימורפיזם מZ^m לG, נכון? 2. אני יכול לטעון שקבוצה מסוימת יוצרת את Z^m בלי להוכיח את זה? 3. זה טריויאלי להשתמש בעובדה שניתן להגדיר הומומורפיזם ע"י שליחת יוצר בקבוצה אחת ליוצר בקבוצה אחרת? (כשאני מגדיר כך פונקציה, אני לא מצליח להוכיח שהיא הומומורפיזם. זה נראה לי כאילו צריך להגדיר אותה להיות הומומורפיזם ואי אפשר להוכיח את זה). תודה!