אלגברה לינארית 1/מבחנים/פתרון מבחן דמה תשעא: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 21: שורה 21:


==סעיף ב==
==סעיף ב==
נגדיר <math>V_1=\{w|Tw=w\},V_2=\{w|Tw=-w\}</math>. נובע בקלות מסעיף א כי <math>v_1+v_2=V</math>. אם נוכיח כי החיתוך בינהם הוא אפס, נקבל בקלות ממשפט המימדים כי <math>v_1\oplus v_2=V</math>. אז איחוד הבסיסים בינהם יהווה בסיס העונה על דרישות התרגיל.
נגדיר <math>V_1=\{w|Tw=w\},V_2=\{w|Tw=-w\}</math>. נובע בקלות מסעיף א כי <math>V_1+V_2=V</math>. אם נוכיח כי החיתוך בינהם הוא אפס, נקבל בקלות ממשפט המימדים כי <math>V_1\oplus V_2=V</math>. אז איחוד הבסיסים בינהם יהווה בסיס העונה על דרישות התרגיל.


אבל אם וקטור w נמצא באיחוד הוא מקיים w=-w ולכן w=0. משל.
אבל אם וקטור w נמצא באיחוד הוא מקיים w=-w ולכן w=0. משל.

גרסה מ־13:38, 18 בספטמבר 2011

שאלה 1

משפט ההגדרה

שאלה 2

התרגיל בסוף מערך תרגול 7

שאלה 3

סעיף א

נניח כי v ניתן להצגה בצורה הנ"ל, וכך נחשב את w1,w2. לאחר שנחשב אותם, נוכיח שהם אכן מקיימים את התכונות הדרושות.

[math]\displaystyle{ v=w_1+w_2 }[/math], נפעיל את T על שני האגפים לקבל

[math]\displaystyle{ Tv=Tw_1+Tw_2=w_1-w_2 }[/math]

אם כן קיבלנו 2 משוואות בשני נעלמים, ואנו מחלצים מתוכן:

[math]\displaystyle{ w_1=\frac{v+Tv}{2},w_2=w_1=\frac{v-Tv}{2} }[/math]


אם כן, לכל [math]\displaystyle{ v\in V }[/math] נגדיר [math]\displaystyle{ w_1=\frac{v+Tv}{2},w_2=w_1=\frac{v-Tv}{2} }[/math]. קל לוודא שאכן מתקיים

[math]\displaystyle{ v=w_1+w_2,Tw_1=w_1,Tw_2=-w_2 }[/math]

סעיף ב

נגדיר [math]\displaystyle{ V_1=\{w|Tw=w\},V_2=\{w|Tw=-w\} }[/math]. נובע בקלות מסעיף א כי [math]\displaystyle{ V_1+V_2=V }[/math]. אם נוכיח כי החיתוך בינהם הוא אפס, נקבל בקלות ממשפט המימדים כי [math]\displaystyle{ V_1\oplus V_2=V }[/math]. אז איחוד הבסיסים בינהם יהווה בסיס העונה על דרישות התרגיל.

אבל אם וקטור w נמצא באיחוד הוא מקיים w=-w ולכן w=0. משל.

שאלה 4

סעיף א

הפרכה:

[math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 0\end{pmatrix} }[/math]

סעיף ב

נניח כי [math]\displaystyle{ AA^t=0 }[/math]. נובע בקלות מהתרגיל שפתרנו במערך תרגול 2 כי A=0. כעת, נניח כי [math]\displaystyle{ BAA^t=0 }[/math] נכפול במשוחלפת של B ונקבל [math]\displaystyle{ 0=BAA^tB^t=BA(BA)^t }[/math] ואז שוב BA=0

סעיף ג

הוכחה:

נובע ממשפט המימדים כי [math]\displaystyle{ dimV_1+dimV_2\geq 2n+1 }[/math] לכן בלי הגבלת הכלליות ניתן להניח כי [math]\displaystyle{ dimV_1\geq n+1 }[/math]. באופן דומה [math]\displaystyle{ dimV_1\geq n+1 }[/math] ומכיוון ש [math]\displaystyle{ V_1+U_1\subseteq V }[/math] מתקיים לפי משפט המימדים כי [math]\displaystyle{ dim (V_1\cap U_1)\gt 0 }[/math].

מכיוון שהסכום מכיל את כל החיתוכים האפשריים, זוג אחד מבינהם חייב להיות חיתוך לא אפס, ולכן הסכום אינו אפס.