88-132 אינפי 1 סמסטר א' תשעב/מערך תרגול/פונקציות/גזירות: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 68: | שורה 68: | ||
==רציפות הנגזרת== | ==רציפות הנגזרת== | ||
שאלה, האם קיימת פונקציה הגזירה בקטע '''פתוח''' שנגזרתה אינה רציפה בקטע זה? | |||
נחקור לצורך מענה על השאלה את הפונקציה הבאה: | |||
::<math>f(x)=x^2sin\Big(\frac{1}{x^2}\Big)</math> | |||
כיוון שזו הרכבה וחלוקה של פונקציות גזירות, זו פונקציה רציפה וגזירה לכל <math>x\neq 0</math>. בנקודה אפס הפונקציה אינה מוגדרת ולכן אינה רציפה ואינה גזירה. | |||
אולם, נוכיח כי אי הרציפות בנקודה אפס הינה סליקה, ונתקן את הפונקציה לקבל פונקציה רציפה על כל הממשיים: | |||
::<math>g(x)=f(x)</math> כאשר <math>x\neq 0</math> ו <math>g(0)=0</math> | |||
(קל לבדוק כי <math>\lim_{x\rightarrow 0}g(x)=0</math> ולכן הפונקציה רציפה על כל הממשיים). | |||
האם g גזירה באפס? יש לבדוק ישירות מתוך ההגדרה (כיוון שהיא לא מוגדרת על ידי פונקציות אלמנטריות בנקודה זו). | |||
::<math>g'(0):=\lim_{x\rightarrow 0}\frac{g(x)-g(0)}{x-0}= | |||
\lim_{x\rightarrow 0}\frac{x^2sin\Big(\frac{1}{x^2}\Big))}{x}=0 | |||
</math> | |||
על כן g גזירה באפס, וביחד היא גזירה על כל הממשיים. | |||
::<math>g'(x)=2xsin\Big(\frac{1}{x^2}\Big)-x^2sin\Big(\frac{1}{x^2}\Big)\cdot\Big(-\frac{2}{x^3}\Big)</math> | |||
וקל לראות שפונקציה זו אינה חסומה באף סביבה של אפס ולכן אינה רציפה שם. | |||
==פרמה, רול ולגראנז'== | ==פרמה, רול ולגראנז'== |
גרסה מ־15:49, 16 בינואר 2012
הגדרת הנגזרת
נגזרת, באופן אינטואיטיבי, מודדת את השיפוע של הפונקציה בנקודה. בדומה למושגים קודמים כמו גבול וסכום טור, אנו נותנים הגדרה מדוייקת ל'שיפוע' התואמת את ההגיון ובודקים אילו מן הפונקציות מקיימות הגדרה זו.
שיפוע של קו ישר מוגדר על ידי המרחק בציר y חלקי המרחק בציר x. נביט בקו [math]\displaystyle{ y(x)=mx+b }[/math], אזי השיפוע שלו הוא:
- [math]\displaystyle{ \frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{mx_1+b-(mx_2+b)}{x_1-x_2}=m }[/math]
אם כך, נגדיר שיפוע של פונקציה כללית, לפי גבול שיפועים של קוים ישרים. לכל נקודה בסביבת [math]\displaystyle{ x_0 }[/math] נמדוד את השיפוע של הקו הישר בין שתי תמונות הפונקציה מעל הנקודה שבחרנו ומעל [math]\displaystyle{ x_0 }[/math]. הנגזרת, או השיפוע, ב[math]\displaystyle{ x_0 }[/math] מוגדר להיות גבול השיפועים לעיל כאשר הנקודות מתקרבות ל[math]\displaystyle{ x_0 }[/math].
הגדרה.
תהי f פונקציה המוגדרת בסביבה של נקודה [math]\displaystyle{ x_0 }[/math]. אזי הפונקציה גזירה בנקודה [math]\displaystyle{ x_0 }[/math] אם הגבול הבא קיים וסופי:
- [math]\displaystyle{ f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} }[/math]
שימו לב, קל להוכיח שהגדרת הנגזרת שקולה ושווה לגבול הבא:
- [math]\displaystyle{ f'(x_0)=\lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} }[/math]
הערה חשובה: התייחסו אל [math]\displaystyle{ \Delta x }[/math] כאל משתנה יחיד, ולא כפונקציה את x.
דוגמא.
נגזור את הפונקציה [math]\displaystyle{ f(x)=\sqrt{x} }[/math] בנקודה כללית [math]\displaystyle{ x\gt 0 }[/math].
- [math]\displaystyle{ f'(x)=\lim_{\Delta x\rightarrow 0}\frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} =\lim_{\Delta x\rightarrow 0}\frac{x+\Delta x-x}{\Delta x (\sqrt{x+\Delta x}+\sqrt{x})} =\lim_{\Delta x\rightarrow 0}\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})} =\frac{1}{2\sqrt{x}} }[/math]
אריתמטיקה של נגזרות
- [math]\displaystyle{ (cf)'=c\cdot f' }[/math]
- [math]\displaystyle{ (f+g)'=f'+g' }[/math]
שימו לב: משני תנאים אלה ניתן לראות כי 'נגזרת' היא אופרטור לינארי על מרחב הפונקציות (שהוא אכן מרחב וקטורי).
- [math]\displaystyle{ (f\cdot g)'=f'g+g'f }[/math]
- [math]\displaystyle{ \Big(\frac{f}{g}\Big)'=\frac{f'g-g'f}{g^2} }[/math]
- [math]\displaystyle{ \Big(f(g)\Big)'=f'(g)\cdot g' }[/math]
- [math]\displaystyle{ \Big(f^g\Big)'=f^g\Big[g'ln(f)+\frac{gf'}{f}\Big] }[/math]
שימו לב: זו בעצם נגזרת ההרכבה [math]\displaystyle{ f^g = e^{ln\Big(f^g\Big)}=e^{gln(f)} }[/math]
רציפות הנגזרת
שאלה, האם קיימת פונקציה הגזירה בקטע פתוח שנגזרתה אינה רציפה בקטע זה?
נחקור לצורך מענה על השאלה את הפונקציה הבאה:
- [math]\displaystyle{ f(x)=x^2sin\Big(\frac{1}{x^2}\Big) }[/math]
כיוון שזו הרכבה וחלוקה של פונקציות גזירות, זו פונקציה רציפה וגזירה לכל [math]\displaystyle{ x\neq 0 }[/math]. בנקודה אפס הפונקציה אינה מוגדרת ולכן אינה רציפה ואינה גזירה.
אולם, נוכיח כי אי הרציפות בנקודה אפס הינה סליקה, ונתקן את הפונקציה לקבל פונקציה רציפה על כל הממשיים:
- [math]\displaystyle{ g(x)=f(x) }[/math] כאשר [math]\displaystyle{ x\neq 0 }[/math] ו [math]\displaystyle{ g(0)=0 }[/math]
(קל לבדוק כי [math]\displaystyle{ \lim_{x\rightarrow 0}g(x)=0 }[/math] ולכן הפונקציה רציפה על כל הממשיים).
האם g גזירה באפס? יש לבדוק ישירות מתוך ההגדרה (כיוון שהיא לא מוגדרת על ידי פונקציות אלמנטריות בנקודה זו).
- [math]\displaystyle{ g'(0):=\lim_{x\rightarrow 0}\frac{g(x)-g(0)}{x-0}= \lim_{x\rightarrow 0}\frac{x^2sin\Big(\frac{1}{x^2}\Big))}{x}=0 }[/math]
על כן g גזירה באפס, וביחד היא גזירה על כל הממשיים.
- [math]\displaystyle{ g'(x)=2xsin\Big(\frac{1}{x^2}\Big)-x^2sin\Big(\frac{1}{x^2}\Big)\cdot\Big(-\frac{2}{x^3}\Big) }[/math]
וקל לראות שפונקציה זו אינה חסומה באף סביבה של אפס ולכן אינה רציפה שם.