פתרון אינפי 1, תש"נ: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "==שאלה 1== טענה 7.8 אצל ד"ר שיין: תהי <math>f </math> פונקצ' המוגדרת בסביבת <math>x_0</math>. נניח כי <math>f</math> ...")
 
אין תקציר עריכה
שורה 1: שורה 1:
([http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef19f65ab044.pdf המבחן] )
==שאלה 1==
==שאלה 1==


טענה 7.8 אצל ד"ר שיין: תהי <math>f </math> פונקצ' המוגדרת בסביבת <math>x_0</math>. נניח כי  <math>f</math> גזירה ב-<math>x_0</math> וגם <math>f'(x_0) \neq 0</math> וגם קיימת הפונקצייה ההפוכה <math>f^{-1}</math> ורציפה בנקודה <math>y_0=f(x_0)</math>. אזי <math>f^{-1}</math> גזירה ב-<math>y_0 </math>, ונגזרתה שם שווה ל- <math>\frac{1}{f'(x_0)}</math>.
(טענה 7.8 אצל ד"ר שיין:) תהי <math>f </math> פונקצ' המוגדרת בסביבת <math>x_0</math>. נניח כי  <math>f</math> גזירה ב-<math>x_0</math> וגם <math>f'(x_0) \neq 0</math> וגם קיימת הפונקצייה ההפוכה <math>f^{-1}</math> ורציפה בנקודה <math>y_0=f(x_0)</math>. אזי <math>f^{-1}</math> גזירה ב-<math>y_0 </math>, ונגזרתה שם שווה ל- <math>\frac{1}{f'(x_0)}</math>.


הוכחה: לפי ההנחה, f גזירה ב-<math>x_0</math> ולכן עפ"י ההגדרה מתקיים <math>\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>.
הוכחה: לפי ההנחה, f גזירה ב-<math>x_0</math> ולכן עפ"י ההגדרה מתקיים <math>\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>.
שורה 7: שורה 10:
לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: <math>\frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)}</math>.
לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: <math>\frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)}</math>.


לפי ההנחות <math>f^{-1}</math> רצפיה ב<math>y_0</math>, ולכן הביטוי הנ"ל שווה גם ל
לפי ההנחות <math>f^{-1}</math> רציפה ב<math>y_0</math>. לכן <math>\lim_{y\rightarrow y_0}f^{-1}(y)=f^{-1}(y_0)=x_0</math>, ובאותו האופן <math>\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}</math>, ולכן בסך הכל קיבלנו ש-
 
<math>\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac{1}{f'(x_0)}</math>
זה נותן את הנדרש עפ"י הגדרת הנגזרת.


==שאלה 2==
==שאלה 2==
נגדיר פונ' <math>h</math> על ידי <math>\forall x \in [0,2]: h(x)=f(x)-\frac{1}{x}</math>.


==שאלה 3==
==שאלה 3==

גרסה מ־13:09, 3 בפברואר 2012

(המבחן )


שאלה 1

(טענה 7.8 אצל ד"ר שיין:) תהי [math]\displaystyle{ f }[/math] פונקצ' המוגדרת בסביבת [math]\displaystyle{ x_0 }[/math]. נניח כי [math]\displaystyle{ f }[/math] גזירה ב-[math]\displaystyle{ x_0 }[/math] וגם [math]\displaystyle{ f'(x_0) \neq 0 }[/math] וגם קיימת הפונקצייה ההפוכה [math]\displaystyle{ f^{-1} }[/math] ורציפה בנקודה [math]\displaystyle{ y_0=f(x_0) }[/math]. אזי [math]\displaystyle{ f^{-1} }[/math] גזירה ב-[math]\displaystyle{ y_0 }[/math], ונגזרתה שם שווה ל- [math]\displaystyle{ \frac{1}{f'(x_0)} }[/math].

הוכחה: לפי ההנחה, f גזירה ב-[math]\displaystyle{ x_0 }[/math] ולכן עפ"י ההגדרה מתקיים [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0) }[/math].

לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: [math]\displaystyle{ \frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)} }[/math].

לפי ההנחות [math]\displaystyle{ f^{-1} }[/math] רציפה ב[math]\displaystyle{ y_0 }[/math]. לכן [math]\displaystyle{ \lim_{y\rightarrow y_0}f^{-1}(y)=f^{-1}(y_0)=x_0 }[/math], ובאותו האופן [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0} }[/math], ולכן בסך הכל קיבלנו ש-

[math]\displaystyle{ \lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac{1}{f'(x_0)} }[/math] זה נותן את הנדרש עפ"י הגדרת הנגזרת.

שאלה 2

נגדיר פונ' [math]\displaystyle{ h }[/math] על ידי [math]\displaystyle{ \forall x \in [0,2]: h(x)=f(x)-\frac{1}{x} }[/math].

שאלה 3

שאלה 4

שאלה 5