פתרון אינפי 1, תש"נ: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
שורה 19: שורה 19:
נגדיר פונ' <math>h</math> על ידי <math>\forall x \in [0,2]: h(x)=xf(x)</math>.  
נגדיר פונ' <math>h</math> על ידי <math>\forall x \in [0,2]: h(x)=xf(x)</math>.  
h רציפה בקטע הנ"ל כמכפלת 2 פונ' רציפות.
h רציפה בקטע הנ"ל כמכפלת 2 פונ' רציפות.
<math>h(2)=2f(2)=2\cdot 1=2</math> ואילו <math>h(0)=0f(0)=0</math> ולכן לפי משפט ערך הביניים <math>\exists x_0 \in [0,2]:h(x)=1</math>. בנקודה זו מתקיים הדרוש - <math>h(x)=x_0f(x_0)=1\rightarrow f(x_0=\frac{1}{x_0}</math>.
<math>h(2)=2f(2)=2\cdot 1=2</math> ואילו <math>h(0)=0f(0)=0</math> ולכן לפי משפט ערך הביניים <math>\exists x_0 \in [0,2]:h(x)=1</math>.
 
בנקודה זו מתקיים הדרוש - <math>h(x)=x_0f(x_0)=1\rightarrow f(x_0=\frac{1}{x_0}</math>.


==שאלה 3==
==שאלה 3==
משפט טיילור - תהי <math>f</math> פונקצייה מוגדרת וגזירה <math>n+1</math> פעמים בסביבה <math>S</math> של <math>x_0</math>. אז <math>\forall x \in S: f(x)=P_n(x)+R_n(x)</math>, כאשר <math>P_n(x)=\sum_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k</math>.


==שאלה 4==
==שאלה 4==


==שאלה 5==
==שאלה 5==

גרסה מ־13:23, 3 בפברואר 2012

(המבחן )


שאלה 1

(טענה 7.8 אצל ד"ר שיין:) תהי [math]\displaystyle{ f }[/math] פונקצ' המוגדרת בסביבת [math]\displaystyle{ x_0 }[/math]. נניח כי [math]\displaystyle{ f }[/math] גזירה ב-[math]\displaystyle{ x_0 }[/math] וגם [math]\displaystyle{ f'(x_0) \neq 0 }[/math] וגם קיימת הפונקצייה ההפוכה [math]\displaystyle{ f^{-1} }[/math] ורציפה בנקודה [math]\displaystyle{ y_0=f(x_0) }[/math]. אזי [math]\displaystyle{ f^{-1} }[/math] גזירה ב-[math]\displaystyle{ y_0 }[/math], ונגזרתה שם שווה ל- [math]\displaystyle{ \frac{1}{f'(x_0)} }[/math].

הוכחה: לפי ההנחה, f גזירה ב-[math]\displaystyle{ x_0 }[/math] ולכן עפ"י ההגדרה מתקיים [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0) }[/math].

לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: [math]\displaystyle{ \frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)} }[/math].

לפי ההנחות [math]\displaystyle{ f^{-1} }[/math] רציפה ב[math]\displaystyle{ y_0 }[/math]. לכן [math]\displaystyle{ \lim_{y\rightarrow y_0}f^{-1}(y)=f^{-1}(y_0)=x_0 }[/math], ובאותו האופן [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0} }[/math], ולכן בסך הכל קיבלנו ש-

[math]\displaystyle{ \lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac{1}{f'(x_0)} }[/math] זה נותן את הנדרש עפ"י הגדרת הנגזרת.

שאלה 2

נגדיר פונ' [math]\displaystyle{ h }[/math] על ידי [math]\displaystyle{ \forall x \in [0,2]: h(x)=xf(x) }[/math]. h רציפה בקטע הנ"ל כמכפלת 2 פונ' רציפות. [math]\displaystyle{ h(2)=2f(2)=2\cdot 1=2 }[/math] ואילו [math]\displaystyle{ h(0)=0f(0)=0 }[/math] ולכן לפי משפט ערך הביניים [math]\displaystyle{ \exists x_0 \in [0,2]:h(x)=1 }[/math].

בנקודה זו מתקיים הדרוש - [math]\displaystyle{ h(x)=x_0f(x_0)=1\rightarrow f(x_0=\frac{1}{x_0} }[/math].

שאלה 3

משפט טיילור - תהי [math]\displaystyle{ f }[/math] פונקצייה מוגדרת וגזירה [math]\displaystyle{ n+1 }[/math] פעמים בסביבה [math]\displaystyle{ S }[/math] של [math]\displaystyle{ x_0 }[/math]. אז [math]\displaystyle{ \forall x \in S: f(x)=P_n(x)+R_n(x) }[/math], כאשר [math]\displaystyle{ P_n(x)=\sum_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k }[/math].


שאלה 4

שאלה 5