88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 0: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 16: שורה 16:


==טבלאות אמת==
==טבלאות אמת==
הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד

גרסה מ־09:52, 8 ביולי 2012

סיכום הנושא המלא נמצא בדף 88-101 חשיבה מתמטית.

קשרים, כמתים, הצרנה

ראשית, נכיר את הקשרים הלוגיים (וגם, או, שלילה, גורר), הכמתים (לכל, קיים) ואת מושג ההצרנה.

תרגיל: הגדרה: איחוד של שתי קבוצות A וB הוא קבוצת האיברים שנמצאים לפחות באחת הקבוצות. החיתוך הוא קבוצת האיברים שנמצאים בשתי הקבוצות.

  • הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB

הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים [math]\displaystyle{ \mathbb{N}\subseteq\mathbb{Z} }[/math], והשלמים מוכלים בממשיים [math]\displaystyle{ \mathbb{Z}\subseteq\mathbb{R} }[/math]).

  • הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
  • הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB

טבלאות אמת

הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד