אינפי 1 לתיכוניסטים תש"ע: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 2: שורה 2:


כאן יהיה המקום שלנו להיעזר אחד בשני בקורס חשבון אינפיניטסימלי 1. אתם מוזמנים לשאול שאלות ולדון בבעיות הנוגעות לקורס אינפי 1 - סטודנטים הלומדים בשתי הקבוצות מוזמנים להגיב כאן.
כאן יהיה המקום שלנו להיעזר אחד בשני בקורס חשבון אינפיניטסימלי 1. אתם מוזמנים לשאול שאלות ולדון בבעיות הנוגעות לקורס אינפי 1 - סטודנטים הלומדים בשתי הקבוצות מוזמנים להגיב כאן.
-
==תרגיל 1 - שאלות==
*בשאלה 5 שצ"ל <math>A_n>=G_n</math> הצבתי לפי ההדרכה <math>b_i=\frac{a_i}{G}</math>, והגעתי למצב בו עליי להוכיח את אי השוויון הבא:
<math>a_1+a_2+...+a_n>=G</math>
איך אני מוכיח את הטענה? הנ"ל? האם מותר לי להעלות בחזקת n, מכיוון ששני האגפים בודאות חיוביים?

גרסה מ־14:34, 6 בנובמבר 2009

אינפי 1 לתיכוניסטים

כאן יהיה המקום שלנו להיעזר אחד בשני בקורס חשבון אינפיניטסימלי 1. אתם מוזמנים לשאול שאלות ולדון בבעיות הנוגעות לקורס אינפי 1 - סטודנטים הלומדים בשתי הקבוצות מוזמנים להגיב כאן.


-

תרגיל 1 - שאלות

  • בשאלה 5 שצ"ל [math]\displaystyle{ A_n\gt =G_n }[/math] הצבתי לפי ההדרכה [math]\displaystyle{ b_i=\frac{a_i}{G} }[/math], והגעתי למצב בו עליי להוכיח את אי השוויון הבא:

[math]\displaystyle{ a_1+a_2+...+a_n\gt =G }[/math] איך אני מוכיח את הטענה? הנ"ל? האם מותר לי להעלות בחזקת n, מכיוון ששני האגפים בודאות חיוביים?