מכינה למחלקת מתמטיקה/מערכי שיעור/14: הבדלים בין גרסאות בדף
(יצירת דף עם התוכן "==שיטות הוכחה== ===הוכחה בשלילה=== הוכחה בשלילה מבוססת על הטאוטולוגיה <math>(\sim p \rightarrow F)\rightarrow p<...") |
|||
שורה 35: | שורה 35: | ||
'''בסתירה'''. | '''בסתירה'''. | ||
'''דוגמא'''. תהיינה A,B קבוצות כך ש <math>(A\backslash B)\cup B = (A\cup B)\backslash B</math> הוכח כי <math>A\cap B = \phi</math> |
גרסה מ־08:20, 30 באוגוסט 2012
שיטות הוכחה
הוכחה בשלילה
הוכחה בשלילה מבוססת על הטאוטולוגיה [math]\displaystyle{ (\sim p \rightarrow F)\rightarrow p }[/math]. בהוכחה בשלילה אנו מניחים את השלילה של מה שצריך להוכיח ומגיעים לסתירה.
שימו לב שאנו לא שוללים את הנתון אלא את הצ"ל.
דוגמא:
תרגיל תהיינה A,B קבוצות המקיימות [math]\displaystyle{ A\backslash B=B\backslash A }[/math]. הוכח כי [math]\displaystyle{ A=B }[/math]
הוכחה בשלילה:
- נתון: [math]\displaystyle{ A\backslash B=B\backslash A }[/math]
- צ"ל: [math]\displaystyle{ A=B }[/math]
נניח בשלילה כי [math]\displaystyle{ A\neq B }[/math].
לכן קיים [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\notin B }[/math] (או ההפך)
לכן לפי ההגדרה [math]\displaystyle{ a\in A\backslash B }[/math] אבל [math]\displaystyle{ a\notin B\backslash A }[/math] (או ההפך)
לכן [math]\displaystyle{ A\backslash B\neq B\backslash A }[/math]
בסתירה.
דוגמא. תהיינה A,B קבוצות כך ש [math]\displaystyle{ (A\backslash B)\cup B = (A\cup B)\backslash B }[/math] הוכח כי [math]\displaystyle{ A\cap B = \phi }[/math]