אלגברה לינארית 1 תיכוניסטים קיץ תשעב/פתרון מועד א': הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 84: שורה 84:


יש סטודנטים שהשתמשו בעוד כל מיני דרכים מקוריות, חלק מהן היו נכונות.
יש סטודנטים שהשתמשו בעוד כל מיני דרכים מקוריות, חלק מהן היו נכונות.
==שאלה 3==


=חלק ב'=
=חלק ב'=

גרסה מ־17:16, 3 בספטמבר 2012

חלק א'

שאלה 1

ב. הפרכה:

נניח כי [math]\displaystyle{ T }[/math] באמת חד חד ערכית.

זה אומר כי [math]\displaystyle{ Ker(T)=\{0\} }[/math], ולכן [math]\displaystyle{ dimKer(T)=0 }[/math].

לפי משפט הדרגה [math]\displaystyle{ dimKer(T)+dimIm(T)=dimV=n }[/math]

היות ו [math]\displaystyle{ dimKer(T)=0 }[/math].

נקבל כי [math]\displaystyle{ dimIm(T)=n }[/math].

מצד שני, [math]\displaystyle{ Im(T) \subseteq W }[/math] ולכן [math]\displaystyle{ dimIm(T) \leq dim W =m }[/math].

קיבלנו ש [math]\displaystyle{ n=dimIm(T)\leq m }[/math]

כלומר [math]\displaystyle{ n \leq m }[/math] בסתירה לנתון ש [math]\displaystyle{ n \gt m }[/math].

סתירה.

ולכן [math]\displaystyle{ T }[/math] לא יכולה להיות חד חד ערכית.

שאלה 2

ראשית נוכיח כי [math]\displaystyle{ B }[/math] בת"ל.

נייצג את איברי [math]\displaystyle{ B }[/math] בתור וקטורי קוארדינטות ב [math]\displaystyle{ \mathbb{R}^4 }[/math] לפי הבסיס הסטנדרטי ונקבל

[math]\displaystyle{ (1,1,1,1),(3,4,0,5) }[/math].

נשים וקטורים אלו בשורות מטריצה ונדרג אותה כדי לוודא שהם בלתי תלויים.


[math]\displaystyle{ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 0 & 5 \end{bmatrix} \overset{R_2=R_2-3R_1} {\rightarrow} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -3 & 2 \end{bmatrix} }[/math]

הגענו לצורה מדורגת בלי שקיבלנו שורת אפסים ולכן רשימת הוקטורים שהתחלנו איתה בת"ל.

(הערה: מי שהראה שכל צירוף [math]\displaystyle{ \alpha (1+x+x^2+x^3) + \beta(3+4x+5x^3)=0 }[/math] מחייב ש [math]\displaystyle{ \alpha=\beta=0 }[/math]. זאת גם תשובה טובה. וגם מי שהראה שאין [math]\displaystyle{ \alpha }[/math] כך ש [math]\displaystyle{ \alpha(1+x+x^2+x^3)=3+4x+5x^3 }[/math] זו גם תשובה נכונה).


השלמת [math]\displaystyle{ B }[/math] לבסיס:

הואיל ובמטריצה המדורגת שהגענו אליה יש איברים מובילים בעמודות [math]\displaystyle{ 1,2 }[/math] למדנו שאפשר להוסיף את [math]\displaystyle{ (0,0,1,0),(0,0,0,1) }[/math] כלומר [math]\displaystyle{ e_i }[/math] עבור כל עמודה [math]\displaystyle{ i }[/math] של משתנה חופשי.

ולכן קיבלנו בסיס [math]\displaystyle{ 1+x+x^2+x^3,3+4x+5x^2,x^2,x^3 }[/math].

שימו לב שצריך לנמק למה מוסיפים את [math]\displaystyle{ x^2,x^3 }[/math] - מי שסתם כתב שמוסיפים אותם בלי הסבר איבד נקודות.

הסברים מקובלים:

יש איברים מובילים בעמודות [math]\displaystyle{ 1,2 }[/math].

יש משתנים חופשיים בעמודות [math]\displaystyle{ 3,4 }[/math]

אם מוסיפים את [math]\displaystyle{ e_3,e_4 }[/math] המטריצה נשארת מדורגת.

אם מוסיפים את [math]\displaystyle{ e_3,e_4 }[/math] שורות המטריצה עדיין בלתי תלויות לינארית.


או משהו בסגנון.


יש סטודנטים שהמציאו שני וקטורים כלשהם (לאו דווקא [math]\displaystyle{ x^2,x^3 }[/math]) והראו שהקבוצה הנוצרת היא בת"ל/ פורשת ולכן לפי השלישי חינם היא בסיס. יש סטודנטים שהמציאו שני וקטורים והוכיחו שהקבוצה הנוצרת בת"ל+ פורשת (שזה מיותר כי אפשר להשתמש בשלישי חינם) גם התשובות האלה התקבלו, אמנם זה מייגע, אבל זה נכון.

יש סטודנטים שהשתמשו בעוד כל מיני דרכים מקוריות, חלק מהן היו נכונות.

שאלה 3

חלק ב'