שיחה:83-116 מתמטיקה בדידה הנדסת מחשבים סמסטר א תשעג: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 64: שורה 64:
תודה
תודה
: לא למדנו להוכיח ע"י טבלת אמת. בשביל התרגיל זה בסדר, בשביל המבחן- אני צריכה לברר מול המרצה. --[[משתמש:שירה ג|שירה ג]] 20:26, 6 בנובמבר 2012 (IST)
: לא למדנו להוכיח ע"י טבלת אמת. בשביל התרגיל זה בסדר, בשביל המבחן- אני צריכה לברר מול המרצה. --[[משתמש:שירה ג|שירה ג]] 20:26, 6 בנובמבר 2012 (IST)
== האם בדקת מול המרצה אם ניתן להשתמש בטבלת אמת להוכחת משפטים? ==
?

גרסה מ־16:57, 12 בנובמבר 2012

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

ניסוח מיותר

בתרגיל 1 שאלה 2 סעיף א יש 3 תנאים אבל התנאי הראשון והשלישי זהים.

תודה על הדיוק. העלתי תרגיל מתוקן.--שירה ג 22:15, 24 באוקטובר 2012 (IST)

שאלה בש"ב

האם בתרגיל 1 חלק ב שאלה 2 ד ניתן פשוט לומר שזה אמת עפ חוג הפילוג (דיסטורבטיביות)?

חוג הפילוג שדיברנו עליו מתייחס לחיתוך ואיחוד. בתרגיל אתם מתבקשים לבדוק אם זה מתקיים בין עוד פעולות.--שירה ג 07:34, 30 באוקטובר 2012 (IST)

קבוצת תרגול של יום א

שלום שירה,

בחלק ב' של התרגיל, אנחנו למדנו לפתור את שאלות 5-6?

נראה לי שלא נגענו מספיק בחומרים הללו כי אני לא יודע לפתור את זה

את שאלה 6 לא אמורה להיות בעיה לפתור. (יש להפעיל את המשפט האחרון שלמדנו כמה פעמים). לגבי 3 ו-5 באמת לא הספקנו לעשות דוגמאות אבל הרעיון דומה.
למשל ב5 ג אפשר לעשות הכלה דו כיוונית: נקח [math]\displaystyle{ (C,D)\in P(A)XP(B) }[/math] לפי הגדרת מכפלה זה אומר ש [math]\displaystyle{ C\in P(A) }[/math] וגם [math]\displaystyle{ D \in P(B) }[/math].
לפי הגדרת קב' החזקה זה אומר ש [math]\displaystyle{ C\subseteq A }[/math] וגם [math]\displaystyle{ D \subseteq B }[/math]. וכו'...
אני רוצה שלפחות תנסו, אם זה עדיין קשה תודיעו לי. --שירה ג 07:49, 30 באוקטובר 2012 (IST)

דוגמא לשיוויון קב' חזקה

הוספתי דוגמא בחלק של חומר עזר. מקווה שזה יעזור להבין איך נגשים לקב' החזקה.--שירה ג 00:14, 1 בנובמבר 2012 (IST)

קושי בפתרון חלק ב של תרגיל 1

ערב טוב! את כל התרגילים של הפרך הצלחנו להביא דוגמאות אבל התקשנו להוכיח את חלק מהטענות הנכונות. זה הגשה ליום ראשון ואנחנו לא מצליחים להבין את ההוכחות (בעיקר בהפרש סימטרי). נשמח לעזרה. תודה רבה!

שימו לב ש [math]\displaystyle{ x \in A\bigtriangleup B }[/math] זה אומר ש [math]\displaystyle{ x \in A\backslash B }[/math] או [math]\displaystyle{ x \in B\backslash A }[/math] לפי הגדרה אחת
או לפי ההגדרה השניה זה אומר ש [math]\displaystyle{ x\in A\cup B }[/math] וגם [math]\displaystyle{ x\notin A\cap B }[/math]
אני אצרף דוגמא לחומר עזר. טיפ כללי: לכו משני הכיוונים ונסו לחפש מפגש. בד"כ הצד הקל יותר הוא מקב' מסובכת לפשוטה יותר. --שירה ג 10:28, 2 בנובמבר 2012 (IST)

תרגיל 1 חלק ב שאלה 5 סעיף א

שלום, האם יש טעות בניסוח באגף ימין? נראה שחסר משהו בין הסוגריים. תודה

לדעתי אמור להיות שם הפרש (\). אסף.

צודק. צריך להיות שם הפרש.--שירה ג 09:37, 4 בנובמבר 2012 (IST)

שאלה 5

כשמדברים על AXB זה קבוצה של זוגות(קבוצות) או של איברים? yoni159 07:54, 4 בנובמבר 2012 (IST)

AXB זה קב' של זוגות של איברים הראשון מA והשני מB. אבל שים לב שקבוצה יכולה להיות איבר! כך למשל:
נניח [math]\displaystyle{ A=\{ 1,2, 3 \} }[/math] אזי
[math]\displaystyle{ (1,2) \in A \times A }[/math]
[math]\displaystyle{ (1,\{1,2\} ) \in A\times P(A) }[/math]
[math]\displaystyle{ (\phi , \{ 3 \} ) \in P(A)\times P(A) }[/math] --שירה ג 09:57, 4 בנובמבר 2012 (IST)

טבלאות אמת/לוח השתייכות

שלום! פתרתי את שאלה 2 (בחלק ב') על ידי טבלאות אמת. אני רואה שהדיון בפורום הוא על שיטות הוכחה אחרות. השאלה שלי היא האם מה שעשיתי זה מספיק בשביל תרגיל?! תודה

לא למדנו להוכיח ע"י טבלת אמת. בשביל התרגיל זה בסדר, בשביל המבחן- אני צריכה לברר מול המרצה. --שירה ג 20:26, 6 בנובמבר 2012 (IST)

האם בדקת מול המרצה אם ניתן להשתמש בטבלת אמת להוכחת משפטים?

?