שיחה:89-214 הדרכות והסברים: הבדלים בין גרסאות בדף
אין תקציר עריכה |
(←5.3.11) |
||
שורה 9: | שורה 9: | ||
== 5.3.11 == | == 5.3.11 == | ||
הכוונה היא לחבורה שנוצרת על ידי הקבוצה <math>\{g^2:g\in G \}</math>. זאת אומרת אוסך כל המכפלות הסופיות מהצורה <math>a^2_{1}\dots a^2_{k}, a_i\in G </math>. אין צורך להוכיח זאת | הכוונה היא לחבורה שנוצרת על ידי הקבוצה <math>\{g^2:g\in G \}</math>. זאת אומרת אוסך כל המכפלות הסופיות מהצורה <math>a^2_{1}\dots a^2_{k}, a_i\in G </math>. אין צורך להוכיח זאת בתרגיל, אבל תבדקו עם עצמכם שאתם מבינים מדוע זו חבורה בכלל. עליכם להראות שחבורה זו נורמלית. | ||
== 5.3.14 == | == 5.3.14 == |
גרסה מ־17:28, 11 בדצמבר 2012
תרגיל 5
5.3.9
הבהרה לגבי חבורת קיילי ([math]\displaystyle{ K }[/math]) - אם תשימו לב, בתרגיל 5.5 יש תרגיל שמבקש להוכיח שזו היא תת-חבורה נורמלית של [math]\displaystyle{ S_4 }[/math]. אתם רשאים להתשתמש בעובדה זו כמשפט. ייתכן שנוכיח אותה בתרגול או ניתן כתרגיל בית בהמשך.
5.3.13
היכנם מתבקשים להראות מצד אחד שהליבה היא תת-חבורה נורמלית, ומצד שני שהיא מקסימלית ביחס להכלה מבין כל תתי-חבורות הנורמליות של [math]\displaystyle{ G }[/math] שמוכלות ב [math]\displaystyle{ H }[/math]. זאת אומרת, לכל תת-חבורה [math]\displaystyle{ N }[/math] נורמלית של [math]\displaystyle{ G }[/math] שמוכלת ב [math]\displaystyle{ H }[/math], מתקיים [math]\displaystyle{ N\leq \cap_{g\in G} g^{-1}Hg }[/math]
5.3.11
הכוונה היא לחבורה שנוצרת על ידי הקבוצה [math]\displaystyle{ \{g^2:g\in G \} }[/math]. זאת אומרת אוסך כל המכפלות הסופיות מהצורה [math]\displaystyle{ a^2_{1}\dots a^2_{k}, a_i\in G }[/math]. אין צורך להוכיח זאת בתרגיל, אבל תבדקו עם עצמכם שאתם מבינים מדוע זו חבורה בכלל. עליכם להראות שחבורה זו נורמלית.
5.3.14
לשאלת התלמידים ששאלו איך לפתור את סעיף ג' - הרעיון הוא להשתמש בסעיף א. כיצד הראתם נורמליות של [math]\displaystyle{ G^{n-1} }[/math]?
שימו לב שמדובר ב-n נתון מראש. בנוסף - יש להראות ש [math]\displaystyle{ G^n }[/math] היא תת-חבורה של [math]\displaystyle{ G }[/math]. בסעיף א' ובכל שאר הסעיפים מדובר באותו n שמופיע בנתון.